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Dynamical Instability in an Anisotropic Ionized Gas of Low Density*
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It is shown that when the thermal motions of a tenuous ionized gas are suKciently anisotropic, the gas,
and the initially uniform magnetic field which the gas is assumed to contain, become unstable. One mode
of instability occurs when the gas pressure is greater parallel to the field than perpendicular, and another
mode when the pressure is greater perpendicular than parallel. It is suggested that such instabilities may
be of astrophysical interest, particularly with regard to the configuration of the solar dipole field as it is
drawn out into interplanetary space by ionized gas from the sun.

I. INTRODUCTION

'O the extent that the dynamical properties of an
ionized gas satisfy the hydromagnetic equations

pdv/dt = 7(p+8—'/Sn)+ (B ~) B/4m,

BB/Bt=v X(vXB),

there are at least three well-known instabilities which

may upset a static equilibrium configuration. They are
the twist instability, the Taylor instability, and the
Gute instability. The twist instability was considered
first by Lundquist' and later by Roberts. ' The Taylor
instability was first described by Kruskal and Schwarzs-

child, ' and an excellent discussion of both the Taylor
and the Gute instabilities appears in a recent article

by Rosenbluth and Longmire, 4 where they present a
derivation based on the individual-particle treatment
for gases of low density, rather than relying (in that
case) upon the hydromagnetic equations.

In this paper we shall discuss two further instabilities
which may occur in ionized gases of low density, but
which do not occur in ordinary hydromagnetic cases.
These instabilities arise only in an ionized gas in which

the thermal velocities are significantly anisotropic,
and they depend explicitly on the anisotropy. We
expect anisotropy only in gases which are so tenuous
that the time between collisions of the individual

particles is long compared to the characteristic
dynamical period of the macroscopic mass motions.
Therefore it is only in such tenuous gases that we might
expect these instabilities to appear.

We shall treat the dynamical properties of an
ionized gas of low density with the usual approxima-
tions, assuming equal total numbers of electrons and
protons, neglecting all particle collisions, and assuming
that the cyclotron period and radius of gyration of the
ions and electrons are small compared to the character-
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istic period and scale of the macroscopic fields. Because
we shall treat explicitly the possible anisotropy of the
thermal motions, it becomes necessary to distinguish
between the direction parallel and the direction
perpendicular to the magnetic field B. We use the
subscript s to denote the direction pars, llel to B, and I
perpendicular. The ordinary isotropic pressure p is re-
placed by p, and p„, and the mass motion u„perpen-
dicular to B satisfies the modified hydromagnetic
equation'

pdu„/dt = ~'„(p„+8'/8—~)
+[(B 7) B]„[1+(p„—p,)/(8'/4~)](1/4~). (1)

The magnetic field is in turn related to u„by

BB/at = ~'X (u„XB), (2)

as may be readily seen from the fact that u„ is the
electric drift velocity, E= —u XB/c.

Now if the gas pressure p, parallel to B is sufficiently
large as compared to the pressure p„perpendicular
to B, we see that the coeKcient of (B 7)B in (1)
may become negative. The result is that the hydro-
magnetic wave equation goes over into an elliptic
equation, with resulting instability. This is the first
instability in an isotropic gas which we wish to point out.

If now we turn out attention ot the mass motion u,
parallel to B, we find that the situation is somewhat
more complicated than with u . Instead of an equation
of motion of the form of (1),we must solve a Boltzmann
equation. We let 0 be the angle of pitch; the angle
between the magnetic field aad the velocity of an
individual ion or electron. We define the distribution
function F(s,g) to be the number of particles per unit
volume with angle of pitch 9 at some given point which
is a distance s along the line of force from the origin.
For steady state conditions we find'' that if F(s,8)
has the form sin 0 at s=o, then it has the form

F(m+1) B(0)
F(s,e) =X(0) sin 0 (3)

2 P[-', (a+1)] B(s)

elsewhere along the line of force. Here X(0) is the

5 E. N. Parker, Phys. Rev. 107, 924 (1957).' K. M. Watson, Phys. Rev. 102, 19 (1956).
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number of particles per unit volume at s=0, and
B(s) is the field density. We note that the density of
particles at s is

1V(s) = ~~ dBF(s,8)
0

Isotropy obtains for o.=i, yielding uniform density.
But if the thermal motions are principally perpendicular
to B, so that p„&p„ then n)1, and we see that X(s)
is largest where B(s) is smallest. The gas pressure in
regions of low held density may become sufficiently
large, in this steady state case, as further to expand the
field there, thereby resulting in dynamical instability.

It is the purpose of this paper to show that at least
the instability arising when p,)p„ is of astrophysical
importance. It is to be noted that this instability
may be expected to occur after expansion of the gas
perpendicular to B, or compression parallel to B, since
such processes tend to increase p,/p„and to decrease n.

We tentatively suggest (we could at the moment
construct only speculative examples) that the instabil-
ity arising when p, (p„, as a consequence of expansion
parallel and/or compression perpendicular to B, may
also prove to be of astrophysical interest.

In general we would expect the instabilities to occur
wherever we have anisotropic compression or expansion
in a region of sufficiently low density that the collision
rate allows p, to become different from p . One thinks
of the expanding shells of novae, of the 100 km/sec
galactic halo motions, ' and, locally, of the gas moving
radially outward with more or less constant velocity
from the sun. ' In this last case we might hope to
account for a disordered magnetic shell around the
inner solar system, which seems to be required by the
isotropy and form of decay of the increased cosmic-ray
intensity from solar fiares'; the matter is considered
briefly in the last section.

II. INSTABILITY WHEN P, &P

Consider plane transverse hydromagnetic waves in
the uniform magnetic field

B=e,BO,

where e, e„, and e, represent unit vectors along the
coordinates axes. We suppose that the waves are of
small amplitude and consist of the magnetic field

b(z, t) in the y direction. Then

B=e,80+e„b(z,t).

7 D. S. Heeschen, Astrophys. J. 124, 662 (1956); Third Sym-
posium on Cosmical Gas Dynamics, June Z4-Zh', 19/7 (Smithsonian
Institution, Astrophysical Observatory, Cambridge, Mass-
achusetts).

L. Biermann, Z. Astrophys. 29, 274 (1951);Z. Naturforsch.
7a, 127 (1952); Observatory 77, 109 (1957).' Meyer, Parker, and Simpson, Phys. Rev. 104) 768 (1956).

Bb/Bt =BpBu„/By. (7)

We eliminate u„between (6) and (7) in the usual
manner to obtain the wave equation

B b/Bt2 —L1lo2(] + $)/47pp5B b/Bz2 =0

The velocity of propagation of the wave is (1+$)'*
times the usual hydromagnetic velocity, Bo/(4Irp)l.
Thus, in the limit as 8~0 the hydromagnetic wave
velocity becomes [(p„—p,)/p5l, and may be comparable
to the speed of sound.

The physical explanation for the change in the
velocity of propagation is straightforward. The thermal
motion perpendicular to B, which produces p„and
which tends to make $ and the velocity of propagation
large, results in a drift of ions, perpendicular to B
and perpendicular to gradients in B. The resulting
current density is in the opposite direction' to the
current density (c/4n )V XB required by ordinary
hydromagnetic theory. Thus in Maxwell's equation,

4z i+BE/Bt =cVX B, (9)

the curl of B tends not to be balanced immediately by
i, with the result that BE/Bt/0 The resul.ting electric
field means that the electric drift and BB/Bt, which is
equal to —cV')&E, must be larger than would otherwise
be the case, resulting in more rapid propagation of
the wave.

On the other hand, the thermal motion of the ions
parallel to B, which produces p, and which tends to
make $ and the velocity of propagation smaller, results
in an opposite drift of the ions perpendicular to B.
The drift arises from the fact that it yields a I.orentz
force on the ions which is a necessary back reaction
against the centrifugal force as the ions move along
curving magnetic lines of force; the drift produces a
current in the same direction as 7'g B. Thus vari

and cVXB may be balanced more quickly in (9),
and BE/Bt may be smaller than in the usual hydro-
magnetic case; the wave need not propagate as rapidly.

But now consider the interesting situation' when

p, &p„and when 80 is suKciently small that p& —1.

' Professor Chandrasekhar has kindly pointed out that the
solution to this problem can be obtained as a special case of the
general stability of the pinch; Watson, Kaufman, and Chan-
drasekhar, Proc. Roy. Soc. (London) (to be published).

The Geld density, 8, is 80 plus terms second order in
e; c=b/Bo. Thus, since we shall neglect all terms
second order in e, we have that p„and p, are un-
perturbed by the wave and its variations in magnetic
pressure. What is more, d/dt B/—Bt+0'(e), and (1)
reduces to u„=e„N, where

Bu„/Bt = $&o(1+&)/4zp5Bb/-Bz;

to the order considered $ is a dimensionless constant,
4 (p„—p,)/802. (2) reduces to



E. N. PARKER

then
b(z, t) =ho coskz exp(t/r),

,=~(4 p)~/a, k~1+g~-:. (12)

Any irregularities in the field grow exponentially in

time with a characteristic period of the order of the
time required for a hydromagnetic wave to propagate
the length of the irregularity, assuming ~1+$~ to
be of the order of unity. We note that we never have
instability in the limit of large Bo, because the field

is then stiG enough to resist whatever upsetting eBects
the gas may produce. In the limit as 80 goes to zero
we have

r-P(4~) '*/k1Lp/(P —P-)3'* (12a)

We see that v- is independent of the density, since

p/p is just the thermal velocity. We note also that
0(r(+~ so long as p,)P„; the difference between

P, and p may be as small as we like and we will still

have instability if we wait long enough.
We may understand the physical essence of the

instability by noting that it is analogous to the case
of a train of beads sliding on a string. The centrifugal
force of the beads as they slide around a wave in the
string tends to increase the amplitude of the wave.

IV. DISCUSSION

Kith our brief presentation of the instabilities arising
when p„&p„ let us now consider where and when such

anisotropy might arise. In the first place, we have
neglected to distinguish carefully between the electron
and the ion component of the gas. The electron thermal
velocity will be rather larger than the ion thermal

velocity, with the result that the electron collision rate
will be very much higher. We know of no circumstances,
except perhaps in a shock front, where the characteristic
dynamical time of the mass motions is expected to be
less than the electron collision time. Therefore, we do
not expect the electron pressure to deviate significantly
from isotropy.

It seems, however, that instances may occur where
the ioe collision rate is sufficiently low that anisotropy
may occur. Consider, for instance, the general outward
flow of gas from the sun, with radial velocities at the
orbit of the earth of ~ = 1000 km/sec. ' The temperature
of the gas we take to be about 4X10' 'K at the orbit

Then in place of (8) we have

crab/gP+[B ')1+pi/4n-pgB'b/Bz'=0 (10)

of the earth, " so that the ion thermal velocity is of
the order of 100 km/sec. If the collision cross section
is 10 " cm', then the mean free path is 10" cm for a
density of X=10' ions/cm'. The time between collisions
is 10' sec. Now the density is dropping off as 1/r'
(where r is the distance from the sun) with a character-
istic time of r/2v or 0.75X10' sec. Thus, at the earth
the collision and dynamical times are about equal.
Beyond the earth the collision time increases as r'
and the characteristic time of expansion as r. Thus, at
the orbit of the earth and beyond, the anisotropic
expansion of the radial Qow of gas from the sun may
result in anisotropic ion pressures, P, WP .

Since the lines of force of the solar dipole field will

be drawn out into radial lines by continued outflow of
solar gas, the general field density will fall off as 1/r';
1 gauss on the sun" yields about 2)&10 ' gauss at the
earth, Then 3'/Sm —10 " erg/cm', wherea, s the gas
pressure, XkT is about 0.6X10 erg/cm'. Thus the
field density is relatively small and we have instability
whenever the total pressure is anisotropic by 2&10 '
or more. Since the electron pressure is probably never
very anisotropic, the ion pressure anisotropy must
exceed about 4X10 ' to produce instability.

The expansion of the gas moving outward from the
sun is perpendicular to the radial direction, and at the
orbit of earth is perpendicular to the nearly radial
(if i:—1000 km/sec) lines of force from the sun. Thus
we would expect that p„will become somewhat less
than p, . By the time the orbit of the Earth is reached
(through not much inside the orbit) we might expect
the instability described by (12) to occur. The asym-
ptotic form (12a) is applicable. Suppose that (P,—P )/
p„=0.1 and k = 2~/X, where li is the scale of an irregular-

ity. Since p/p=-', ip', where w is the ion thermal velocity,
we have ~=3X10 9 sec. In the time that the gas
moves one astronomical unit at 1000 km/sec (1.5X10'
sec), an inhomogeneity with a scale as large as 5X10'
km can increase its amplitude by a factor of e; smaller
inhomogeneities increase proportionately more rapidly.

Therefore, beyond the orbit of the earth we

might expect, on the above theoretical grounds, to
And inhomogeneities in 8 in all directions from the
sun in which there is corpuscular emission. ' The
observation of the slow decay of cosmic rays from
solar Rares suggests' that such a heliocentric region of
disordered magnetic field does actually exist.

' S. Chapman, Smithsonian Astrophys. Contrib. 2 (1957).
"H. W. Babcock and H. D. Babcock, Astrophys. J. 121, 349

(1955).


