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Use of the Chew-Low Equation in Strong Coupling*

C. J. GOESEL
UNiversity o/Rochester, Rochester, Sew Fork

(Received October 11, 1957}

In charged scalar fixed-point-source theory, the isobar energies and scattering amplitudes in the strong-
coupling limit are derived by extending the Serber-Lee solution with the aid of perturbation arguments.

E shall show in this note that in charged scalar
fixed-point-source theory, all the strong-coup-

ling (A~ ~) results (isobar energies and scattering
amplitudes)' can be deduced from the "reciprocal"
Chew-Low equation' plus some perturbation ("Feyn-
man diagram") arguments. By the reciprocal Chew-Low
equation we mean the equation for the reciprocal of the
scattering amplitude, due to Chew and Low' and used

by Serber and Lee' to solve the charged scalar theory
in the one-meson approximation; Castillejo, Dalitz, and
Dyson4 noted its use to derive the isobar energy in this
approximation.

As was pointed out by Lee and Serber, ' the Chew-
Low equation is very simple in the charged scalar theory,
because the crossing relation is simply f+(&o) =f (—to)

Lhere f+(to) is the scattering amplitude of a positive
meson, defined on the co plane cut from —~ to —p and
from tt to oo; we shall henceforth write just f for f+j.
Hence there is just one Chew-Low equation, identical
to the causal dispersion relation, namely
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f( .)=f'( )+-
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where or(&o)=—ay+(co) =trz (—to); the range of integra-
tion is where A: is real, namely from —~ to —p plus
p, to ~. Et is to be noted that from the nature of the
equation, the only singularities of f are those of f~.
If the coupling is so weak that there are no (stable)
isobars, then the only singularity of f is at to=0, the
"Yukawa bound state" pole. Then f~ is just the Born
approximation (lowest order) scattering amplitude, the
renormalized coupling constant being used. For scatter-
ing on a proton,

we note that
2P, Imf tt or
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If f has no zeros, then g has no poles and can be written
in the form
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(see Chew and Low, ' also Castillejo et a/. ,
4 for the argu-

ment). Using (3) for Img, we have the key equation
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tt+zp
gt(to )=1—2P, , p=
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+v'(tt' —co')& for (to) (tt

as found by Lee and Serber, ' (The subscript 1 stands
for 1-meson approximation. )

The crucial remark to be made now, is that Fq. (5)
for g(to) is completely independent of any singularities
which f might have, ' in addition to the "Yukawa"
singularity at co=0. In fact, we note that if P,)z, gt
acquires a zero at co =tsar, +4p. 'j '—=Dt, hence ft has
a pole at ~=61, and we have

in which the only unknown is the ratio o.r/o. t. If the
coupling is so weak that there is no stable isobar, then
there is no charge exchange scattering, so that the only
contribution to o.y —o-,l is meson production. Thus if
we neglect meson production (one-meson approxima-
tion), Eq. (5) is completely known:

(2)f~=f~~= 2P,/to, P.=g.z/4sr.

Following Chew and Low, ' we now introduce the
function

g(~) =

1 )tt p,'——,
'

fP(to) =2P, —,X= . (7)
to to —At p,z+ et

~ An equally crucial comment on our use of Eq. {5) is that we
2P, assume that as the coupling becomes strong f continues to have

no zeros; for if this were not so, singular terms, a priori unknown,

~f(~) would have to be added to the right-hand side of Eq. ('5}. We
bolster our assumption by an appeal to a principle of "conserva-

* This work was supported in part by the U. S. Atomic Energy tion of zeros": as we vary g, zeros of fcan only move around, they
Commission. cannot be created. As a contrary example suppose that, when

1 The latest paper on this subject is A. Pais and R. Serber, taking (7) as the "bound term" of (1), 6 and X were arbitrary
Phys. Rev. 105, 1636 (1957). Our coupling constant differs from (fixed) numbers unconnected with P„ i.e., that in weak coupling
theirs; ours is defined by Pl = g7 p (0), a= 1, 2. there were particles X++ and X in addition to p and n. Then in

' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956). the weak-coupling limit f would have a zero at co=tt/(1 —X), and
R. Serber and T, D. Lee, private communication quoted in for stronger coupling f would still have a zero somewhere; this f

reference 4; also private communication in reference 2. would then be qualitatively entirely different from j&, Eq. (6)
4 Castillejo, Dalitz, and Dyson, Phys. Rev. 101,453 (1956). above.
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FIG. i. Scattering dia-
grams for f inx,

FIG. 2. Scattering dia-
grams for f ~~.

That is, in the "one-meson approximation, '" if P,)s
there exists an X++ isobar with (excitation) energy Ai
and coupling to meson and nucleon of strength (Xi)*'

times the rslcleom-nucleon-meson coupling. ' Ke con-
clude that when P,)-', the correct ("one-meson")
Chew-Low equation has (7) as its inhomogeneous term;
presumably, the original ("one-meson") Chew-Low
equation Li.e., with f i=r2p, / &]ohas bio solufiors when

1

We now consider the strong-coupling (s.c.) limit,
g~ . We take, temporarily, two results from s.c.
theory: (a) the cross section for meson production goes
as 1/g' and can thus be dropped in the s.c. limit, (b)
charge exchange scattering equals elastic scattering in
the s.c. limit. These facts imply that or/o. i=2, and
thus (5) is again determined:

(8)

Thus, using (3), we have

line) is a proton; the chance of this is the charge re-
normalization. As the coupling becomes strong, the
average number of virtual mesons becomes large, the
average charge of the core becomes zero, and the proba-
bility that the core is a proton is just —', . Hence g, = ~g,
P, =srP, and (10) becomes

~. .=21 /P, (10')

in agreement with s.c. theory.
Along the same lines as above, we can now treat

states of higher charge. Consider the scattering ampli-
tude f++(oi) of a positive meson on an S++ isobar.
Using the above results for the energy and the coupling
of the E++ isobar [X., =1+0(P. ')], lowest order
perturbation shows that f++(co) has a pole term'
f++is"=2p, /(a& —6); thus g+~(co), defined as g++(ro)
=f++n "/f++, satisfies the equation

g++(~.)

1 GO

s.c. (uy =—
2 4,

—(Ii+iP)

As p, ~ oo, f, .~ —-', (li+ip) ' in agreement with s.c.
theory. The zero of g, ,, is at

Again putting o.r/o, i ——2, we have

~=li/2P, =E,.. (=-',Ai). (10)

To compare this isobar energy with s.c. theory, we need
to know the renormalization of the coupling constant;
fortunately this is trivial, as shown by Lee.' The argu-
ment can be given verbally: a clothed proton can emit
a positive meson only when the core (i.e., the nucleon

' Actually, when the Q=2 isobar is bound, our ansatz o-+=0.,&

also means neglect of the charge exchange processes (+,e)~
(—,E++) and its conjugate (—p)+-+(+,Ã ). Clearly, when the
isobar is almost bound, the corresponding meson production
processes (+,I)&-+(—+,p) and (—,p)c-+(+ —,e) will be im-
portant; a smooth transition is made as g passes the critical
"binding" value.

'Reference 4, Eqs. (3.4) and (3.5). If P.(x, Ai would be a
zero of g only if p in (6) were equal to ~(p' —cu')&. This means
that this pole of f(ca) is found if we go through the cut extending
from p to ~ in the co plane, and thus enter the under "physical"
Riemann sheet. Note that we have "conservation of poles" as g
is varied: as g is raised, this pole moves out from the under sheet
and becomes the "physical" isobar pole. Note also that the fact
that the pole has "imaginary coupling" when P, (-,', according
to (7), is irrelevant: being unphysical does not make it a ghost,
in fact precludes that. It is interesting that as g ~ 0 this second,
non- Yukawa, pole approaches co =0, i.e., becomes directly "under"
the Yukawa pole, and has equal residue; whereas in a nonrenor-
malizable theory the behavior of an isobar pole as g ~ 0 is quite
different: the pole approaches a pole of the cutoff function v„. I am
indebted to B. lumino for an introduction to the concept of
unphysical poles.

T. D. Lee, Phys. Rev. 95, 1329 (1954).

where p'=p' —lV. The zero of g++, which corresponds
to X. . . , is found at ooo ——b+-,'p/P, = 2A. Since the zero
of energy is here the energy of X++, we have E. . . =36,
in agreement with s.c. theory. " Also we have f++=f.
We can proceed: calling the energy of the charge Q
isobar E@, and the amplitude for scattering a positive
meson on a charge Q

—1 isobar fQ, we have fQs"
=2P,Lro —(EQ i—EQ s)] '. Then defining gQ=fQn"/fQ,
we find that gQ has a zero at oio=ZQ i—EQ s+6; thus
+Q roo++Q —i 2+Q—i EQ—2+6, which implies that
~Q= lQ(Q —1)~

In order for our arguments to be independent of s.c.
theory, it remains to establish assumptions (a) and (b)
above. We sketch the argument, which uses perturba-
tion theory. "Using the above results for 6 and X, we

9 We abbreviate h. ., by 6 in a11 that follows.
'~ Note that the dift'erence in energy between the isobar pole

and the Yukawa pole system is 6, exactly as in the charge 2
system. One sees this to be true in every charge state.

"The circularity of our argument only precludes the establish-
ment of the uniqueness of the solution; the recourse to perturba-
tion theory may be frowned upon. But this latter, we feel, is an
interesting result of the present investigation: namely, that
perturbation methods (i.e., "Feynman graphs") can be used
successfully in the s.c. region in the charged scalar theory. A
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find in the s,c. limit that the lowest approximation to
the charge exchange amplitude is tt/cos= f.—in" (Figs.
1 and 2); and the one-meson production amplitude is of
order g '. It is then seen that these statements hold in
all higher orders of perturbation.

Presumably the above techniques can be used to

further example is that in the s.c, limit there is a two-to-oIIe
correspondence of charged scalar to neutral scalar self-energy
diagrams, and this observation immediately leads to the correct
self energy.

enter the intermediate coupling region; this is being
investigated. A more interesting question is whether
the techniques can be used on more complicated theo-
ries, for example symmetric scalar. Here, as is well
known, the complication of the crossing relation pre-
vents the one-meson Chew-Low equation from having a
trivial analytic solution; in the s.c. region the essential
intractability of such a theory from our viewpoint shows
itself in the infinity of isobars coupled in any one
charge state.
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The spectrum of Wick s two-body problem is examined with respect to normalization conditions and the
assumptions made in deriving the equation. The problem is considerably simplified by using a formalism
based on Sakata-Taketani field operators. It is found that the spurious state amplitudes (suitably normal-
ized) have a behavior inconsistent with the assumptions used by Gell-Mann and Low to derive the bound-
state equation. Similar results are found for the two-fermion problem if the vertex operator is (1+y„.), and
it is suggested that all spectra of the Bethe-Salpeter equation contain only three quantum numbers.

I. INTRODUCTION

'HE covariant many-body equation' has been com-
pletely solved for one problem only: Wick' has

derived a Bethe-Salpeter (B.S.) equation for a pair of
scalar particles interacting through a scalar massless
field and, together with Cutkosky, ' he has obtained
complete solutions in the ladder approximation. Al-
though these solutions are labeled by four quantum
numbers (tt, l,sit, ic), investigations have indicated that
only the ~=0 states correspond to those obtained in
nonrelativistic theory. ' ' It seems plausible that the
K& 0 states are actually spurious" but no rigorous
means of eliminating them has been proposed.

Formal normalization conditions and methods of
calculating expectation values for all B.S. amplitudes
have been derived in recent years. ' These conditions
are applied here to investigate the origin and signifi-
cance of the I(:&0 states. It has been found that con-

* Supported in part by the U. S. Atomic Energy Commission.
f This work performed while one of the authors (H. U.) was a

visitor at the University of Washington.' E. E. Salpeter and H. A. Bethe, Phys. Rev, 84, 1232 (1951).
s G. C. Wick, Phys. Rev. 96, 1124 (1954).' R. E. Cutkosky, Phys. Rev. 96, 1135 (1954).
4 F. L. Scarf, Phys. Rev. 100, 912 (1955).' D. A. Geffen and F. L. Scarf, Phys. Rev. 101, 1829 (1956);

R. K. Cutkosky and G. C. Wick, Phys. Rev. 101, 1830 (1956).' K. Nishijima, Progr. Theoret. Phys. Japan 10, 549 (1953);12,
279 (1954); 13, 305 (1955); S. Mandelstam, Proc. Roy. Soc.
(London) 233, 248 (1955); G. R. Allcock, Phys. Rev. 104, 1799
(1956);A. Klein and C. Zemach, Phys. Rev. 108, 126 (1957).

siderable simplification and clarification of the problem
can be attained if this discussion is carried out in a
formalism differing from that used by Wick. For
instance, we observe that one needs four independent
components (p„sr,pe, srs) to describe a state of two
noninteracting scalar particles on a space-like surface,
and it is natural to infer that the same number is neces-
sary to describe a bound state. This suggests that
knowledge of Wick's one-component amplitude, C (on a
space-like surface), is insufhcient to describe the system,
construct expectation values, or determine which states
are admissible.

Accordingly, a formalism using two-component
Sakata-Taketani (S.T.) field operators' is employed
to derive a B.S. equation for a four-component am-
plitude, g. Since the equation is linear in the two
energies Pe, Pcs, one obtains a Breit equation of the
form (E Ho Ho V' )x=0 —if reta—rdatio—n is neg-
lected. Another consequence of this linearity is a
natural reduction to a one-particle problem when
stts/r)t. -+~ .

The solution of the new B.S. equation can be ex-
pressed in terms .of the Wick-Cutkosky solutions,
C„„'~. It is found that X„„' (x, t=0) is regular for

7 S. Sakata and M. Taketani, Proc. Math. Phys. Soc. (Japan) 22,
757 (1940); W. Heitler, Proc. Roy. Irish Acad. 49, 1 (1943). Al-
though this linear formalism for bosons is not manifestly covariant,
it is used instead of the Kemmer equations in order to avoid redun-
dant components.


