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Variational Principles for the Wave Function in Scattering Theory
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Variational principles are designed for the solution of the Schrodinger equation when a point source is
placed in the presence of an inhomogeneous, absorbing medium represented by an arbitrary complex
potential function. When the point source is allowed to recede to inanity, these stationary structures
reduce to variational principles for the wave function in the standard scattering problem, namely the
outgoing solution to the Schrodinger equation for an incident plane wave. Finally in the asymptotic region,
the well-known bifunctional variational principles for the transition amplitudes arise automatically from
the stationary forms for the wave function describing the standard scattering problem. A few examples
leading to variationally improved wave functions are discussed.

INTRODUCTION

HE object of the present report is to draw atten-
tion to the fact that variational principles may

be constructed for the solution to the point source
scattering problem. Then, by allowing the point source
to recede to infinity, these stationary structures become
variational principles for the wave function describing
the general propagation problems defined by a plane
wave incident upon an inhomogeneous medium. I'ur-
thermore, upon selecting the observation point in the
asymptotic region, the variational principles for the
wave function reduce, as they should, to the well-known
bifunctional variational principles for the transition
amplitude.

In Sec. I, two variational principles for the point
source problem are discussed while Sec. II develops
stationary expressions for the wave function in the
ordinary scattering problem. A few simple applications
are given in Sec. III. Although these variational prin-
ciples need not in principle be restricted to single-
particle scattering, this study will be limited to poten-
tial scattering where the potential may be nonspherica1
as well as complex.

I. POINT-SOURCE VARIATIONAL PRINCIPLE

The point-source problem is defined by the equation

t V'+k' U(r))e(p—, r) =b(r y) —(1).

Upon including the outgoing boundary condition, the
integral equation for the symmetric function 4'(p, r)
may be written as

lim @(p,r) =
ei kr

' e '"'o+ %(yr')'U(r')e '" "dr'

For exact, @(r,r'), St reduces to 4(r, y), while for
arbitrary variation 8%(r,y),

bSt(r, p) =2N'(r, p) — 6%'(r', p) D7"+O' —U(r') $

0(—kl y)—err

Here, k is a vector of magnitude k pointing in the direc-
tion r, and P(—k

~ y) is the wave function evaluated at
the source point y which describes the motion of a plane
wave incident in the negative k direction and scattered
by U(r). We note in passing that (4) contains the
statement of reciprocity, namely,

+(p, r) I

lim = iP(-k)p) [, (~)-"G(r, y)

which states that the relative magnitude of the field
due to a point source placed at y when observed along
the k direction in the far-Geld region is the same as the
magnitude of the field observed at the near-field point
p when a plane wave of unit amplitude is incident upon
the scattering center in the —k direction.

The following expression defines a variational prin-
ciple for the point-source problem:

St(r,p) =2+(r,p)

t e(r', p)t'V"+k' —U(r'))e(r', r)dr'. (6)

%(p, r) =G(r,p)+~ G(r, r') U(r')%(p, r')dr', (2)

where G(r, r') is the free-wave Green's function

G(r, r') = e'"~' "~/ —4z
)
r r'( . —

Thus (2) represents the problem of a point source at p
in the presence of the medium described by the complex
potential function U(r), and behaves asymptotically
like the following outgoing wave:

1830

)&%(r',r)dr' —
~ @(r',p)

XP'"+k' —U(r') jN (r', r')dr' (7)

8
= lim — ' +(r', p) Se(r', r)

7 '~oo

8—&I (r', r) +(r', p) dS'
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f(kpl r). Now, it is to be noted that the bifunctional
character of this new principle has arisen quite naturally
from (6). That is, Eq. (12) is stationary for arbitrary,
independent variations of two wave functions, namely
%(r', r), the solution to the point source problem with
the source point placed at r, and P(kplr), which de-
scribes the standard scatter problem. Thus, performing
variations about the true solutions

The surface term vanishes in virtue of the outgoing
radiation condition upon +(r,y), a condition which is
also imposed upon the trial functions.

A second vaxiational principle for 4'(r, y) is given by

S,(r,y) =e(r,y)

t
%(r',y) l

V"+O' —U(r') 74(r', r)dr'
Xexp 1— (8)

+(r,y) (13)

f l9
5I'~ ——lim — 4(r', r) 8$(kp l

r )' "- &,. l
'

ar'II. VARIATION PRINCIPLES FOR THE WAVE
FUNCTION IN THE STANDARD

SCATTERING PROBLEM 8—8&(kp l
r') @(r',r) dS'=0. (14)

BfThe standard scattering problem is defined as the
outgoing solution of the Schrodinger equation for an
incident plane wave. Iet us imagine that the plane
wave moves from left to right in the direction fixed by
the wave number vector kp. If the source point y in (2)
is now allowed to recede to the left into the direction

kp, then (2) becomes

The surface term again vanishes as a result of the
outgoing radiation condition since

e~kr' ) eikr'

»m ~4(kplr') =~l e'"' "+ fl = .~f (13)i

J
LVP+O' —U(r)7$(kp l r) =0,

Again, Sp ——4(r, y) for exact %(r'', r) and the stationary and E (1);t frill~~~ as;n (y) that
character of $2 may be easily demonstrated by taking
arbitrary variations about the true solution.

~i

kryo

lim 4'(r, y) —+ e'"p'+ G(r, r') U(x')

Xe(r', y)dr'=ÃP(kpl r), (9)

A second variational principle for P(kplr) follows
from (8) by means of the same limiting procedure which
led to I'& in (12). The result is given by

Yp=f(kpl r) expl — 4(r', r)l V"+O' —U(r')7
where P(kpl r) is the wave function for the standard
scattering problem and E is an uninteresting amplitude
factor (—4vrr, ) 'exp(iOr~). —

When this limiting process is applied to the stationary
expression for S~, the result is

X4(kpl")«' 4(kplx) l (16)

and by partial integration

Another stationary form for P(kpl x) follows by
eliminating the Schrodinger operator V'+O' —U(r).
Thus, after replacing f(kp

l
r) by its equivalent from the

(10) integral equation

Sg—=2'�(kp l r) — @(r', r) PV"+O' —U(r') 7&(kp l
r')dx'

E aJ

8
P(kpl r') 4'(r', r)

ar'

8—4 (x', r) f(kp l
r') dS'. (11)'

ar'

g(kpl r) =e"'""+ G(r, r') U(r')P(kpl r')dr', (17)

F~ in (12) is transformed to

' Y~' =e"'""+ G(r, r') U(r') P(kp l
r')dr'

+ O(r', x) U(r')e'"p "dr'

But it is shown in Appendix I that the surface integral
is exactly f l

kp
l
r) . Therefore,

Sg
Yg=————P(kpl r) —

) 4(r', r)LV"+O' —U(r')7
X

XP(kp l
r')dr' (12)

is the variational principle for the wave function

r

4'(r', r) U(r')P(kp l
r')dr'

+ 4'(r', r) U(r')G(r', r")U(r")
~ J

XP(kp l
r")dr'dr". (18)
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The term e'""may be dropped so that what remains
is a variational principle for the scattered part of
lt (keir). ' This is the near-field analog to Schwinger's
variational principle' for the transition amplitude while

(12) is analogous to Kohn's principle. ' Both transition
amplitude principles follow immediately by allowing
the observation point r to become infinitely large. For
example, in the stationary form (12), the incident plane
wave may be first subtracted oG and what remains is a
variational principle for the scattered wave. Then, in
the asymptotic region, it follows after employing (4),
that

This is the Kohn' bifunctional variational principle for
the amplitude F for scattering into the direction given
by the unit vector k.

It is desirable to find amplitude-independent sta-
tionary forms. In the case of (12), the Kohn-type vari-
ational principle, we follow the method employed by
Moe4 in finding an amplitude-independent form for the
Kohn variational principle on the scattering amplitude.
The two wave functions P(ks l r) and @(r',r) are divided
into perturbed and unperturbed parts,

p(ks l r) =e'""+AC (r),

4'(r', r) =G(r', r)+BW(r', r),
and

gikr

E(ks—+k) —= lim (Yi—e'"")
br~~

ei kr ei kr

f(kook) — — &( kl r)4r—
where A and 8 are constants. These are then substituted
into (12) and the requirement

~[C'(r)j d[c'(r) j=0)&( [V"+k' —U(r') jf(ks l
r') dr',

or

[C (r)j =—Y —e'""
BA 88

where
47rP(ks~k) =krf (ks~k)+ Jr lt'( k

l
r )

X[&"+k' U(r'))4'(ks
l

—r')«' leads easily to the following stationary form for [4 (r)]:

J
G(r', r) U(r')e (r')dr' W(r', r) U(r') e'"o "dr'

[ ( )]= J' G( ', ) U(r') """d '+-
W(r', r) P"'+k' —U(r') )C (r')dr'

The amplitude independent form constructed from the amplitude independent variational principle for the
various integrals appearing in (18) may be written transition or scattering amplitude. That is, the follow-
down at once by analogy with Schwinger's well-known ing expression. for the scattered wave is also stationary:

'4 (r)'=

G(r, r') U(r'g (ks
l
r')dr' +(r', r) U(r')e'"""dr'

t%'(r', r)U(r')P(ksl r')dr' — '

~@(r',r)U(r')G(r', r")U(r")P(ksl r")dr'dr"

(20)

IIL ILLUSTRATIONS OF VARIATIONAL PRIN&1&LES = (2ik)—' exp(ikl x—x'l), the scattered wave from (20)
FOR THE WAVE FUNCTION

The first example applying a variational principle for
the wave function will concern the rather trivial one-
dimensional scattering for a delta-function interaction.
It is amusing to see how the exact solution follows prac-
tically by inspection if the stationary form (20) is
chosen. Thus, if U(x) =2'(x), then since G(x,x')

' A near-field variational principle equivalent to (18) has been
derived for the surface scattering problem by Harold Levine. It
appears in "Lectures by H. Levine, Variational Methods for
Solving Electromagnetic Boundary Value Problems, " September
1, 1954 (unpublishedl, prepared by L. Mower, Sylvauia Electric
Products, Inc. , Mountain View, California.

~ B. A. Lippman and J. Schwinger, Phys. Rev. 79, 469 (1950).
3 W. Kohn, Phys. Rev. 74, 1763 (1948).

(g/ik) e"~*~ (2g)
C(x) =

2g —(2g)'/2ik ik(1 g/ik)—(21)

Therefore,
g~ik xl

y(a) eikx+@(~) eikx+
ik(1-g/ik)

(22)

the exact solution.
A more realistic example is the general three-dimen-

sional propagation problem which will now be con-
sidered in connection with Ys in (16). After choosing
the undisturbed solutions exp(ikp 1') and G(r r) for

M. M. Moe, thesis, 1956, University of California at Los
Angeles (unpublished).
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( ( G(r', 1)U(r')G(r', r)
Ss(r,p) =G(r, p) exp~

' dr' ~. (27)
G(r p)

F's(r) =exp(iks r)

P(ks~ r) and +(r,r), respectively, it follows that the chosen as trial solution in (8), with the result that
improved wave function is given by

(—1 t exp(imp i—kp p)
Xexp~ ~ U(r —9)dp ~, (23)

)E4 ~ p

where 9= r—r'. The integral in (23) may be evaluated'
in terms of an expansion in reciprocal powers of k by a
stationary phase method which is based upon the ob-
servation that most of the contribution to its value
arises for small angles between kp and y. For excep-
tionally large k, one obtains'

exp( —ikp 9)=
k

~
—t, kp ~t, kp

3 (kp —p) —3 (kp+ p)

A

where kp and p are unit vectors. Thus, the leading term
for the integral may be written down at once. It is

00

U (r—Ass) ds.
2k ~p

Consequently, contributions from the other regions in
the space of p give rise to nonclassical or diffraction
effects which is, of course, correlated with higher order
terms in powers of k ' since the leading term is simply
the well-known solution of the Hamilton Jacobi or
eikonal equation along a straight line trajectory. Schiff'
has evaluated the O(k ') term and has indicated a
procedure for further integration. The approximate
wave function in (23) is not new. It has already been
used, although derived in a different way, by Obukhov. '
His method is essentially equivalent to that of Rytov'
who substitutes a semiclassical-type wave function

—iw(r)
P(ks) r) =exp(iks r) exp(

&exp(iks r))
(25)

Upon dropping the nonlinear term, the solution for
w(r) leads to (23).

It is now interesting to develop an approximate
solution to the point source problem which parallels
(23). Therefore, the free-space Green's function is

6 L. I. Schi8, Phys. Rev. 103, 443 (1956).
E. Gerjuoy and D. S. Saxon, Phys. Rev. 94, 1445 (1954).

'A. M. Obukhov, Izvestica, Geophysical Series No. 2, 155
(1953) (translation by M. D. Friedman).' S. M. Rytov, Izvestica, AN: U.S.S.R. Physica Series No. 2
(1937).

into the wave equation to deduce the following exact
nonlinear equation for w(r):

(V'+As)w(r) =iU(r) exp(iks r)
+i exp(iks r)(VI w exp( iks r) j—}'. (26)

Xexp~ U(1+~~)ds I, (28)

where y is a unit vector in the direction r—p. As one
would expect, the free-wave Green's function is merely
corrected eikonal-wise for phase change along straight-
line trajectories connecting the points p and r, just as
in the case previously discussed in relation to (23).

As further examples, the WEB solutions for 4'(r, r')
and it (ks

~
r) can be used as trial solutions in (12), (16),

(18), or (20), and lead to a variety of variationally
improved wave functions. Of course, the stationary
forms (18) and (20) have the advantage that the trial
solutions need only be meaningful in regions of space
where the potential is important since the potential
limits the domain of integration in each term. Thus, the
WEB trial solution

Z

f(ps~ r) =exp iks r—— U(r —kss)ds (29)
2k p

which is a sensible approximation at finite distances
from the scattering center is best employed in connec-
tion with (18) and (20).

It is, however, important to point out that (29)
does not produce any difhculty as a trial solution for
the stationary expressions containing the operator
V'+O' —U(r), although at 6rst sight it would appear
erroneous on the basis of the radiation condition (15)
which is sufhcient for the requirement that the surface
term in (14) vanish. It is demonstrated in Appendix III
that this surface term does in fact vanish when the
trial solution (29) is employed. Consequently, this trial
solution is also valid for the stationary forms (12) and
(16). The plane wave e'"" as trial solution produces
no difficulty since 3f in (15) is in this case the exact f
and the surface term automatically vanishes.
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APPENDIX I

We wish to evaluate the surface integral

we first eliminate x by the transformation g=r —r'.
Next, the variable of integration is eliminated by
transforming to p= r"—r'. Thus,

p 1 explikl8 —1il i—k(p p—)5U(r'+p)dpI——— . (A2)4~" I8—
a IP

For large k and slowly varying U in a length (k '), the
principal contribution to the integral arising from the
integration over the angles of p occurs when the phase
is stationary. Therefore, for the main contribution
y p 1 and for such small angles 0, one has

I 8—I I (p p—) = E—s'+p' 2pp(1—l8') 5—' (p p—)—

where the asymptotic forms for large r' are given by

pp=+( —p) I
1+ —

I
—(p —p).

(p-p)' 2 &

and

$(ko I
r') e"'"0'"+f(ko, kr')

eikr'

Here, the positive sign holds when p(p and the
negative sign is required for p& p.

We first consider the case p(p for which the phase
term is then L2(p —p)5 'pp8'. Hence, for small 8

@(r',r)- P(—kP'I r)

Here, r" is a unit vector taken in the direction of obser-
vation in the asymptotic region.

The outgoing part of P(ko I
r') may be omitted at once

since the integrand vanishes exactly for this term.
Then, upon employment of (24) for e'"0'" as r'—+m,
there remains

2zi —
t

e'""' . e '""'—b(kp —i') — -- 8(kp+r')

eikr'

p t exp[~ikpp8'/(p p)5—U(r'+y)dy
(A3)

4x ~ p(p —~)

But dp=p' sin8d8igitdp=p'ad(8'/2)dg, and partial in-
tegration over 8 can be done at once yielding

( ikpp8' q
d(8'/2) ex&

I

( 2(p p))

)& U(x'+ p sin8 cosit, y'+ p sin8 sing, z'+p cos8)

(p —p) exp[ ,'ikpp8'/(p -p)5U '—
imp

X P(—kr'I r) — —y(-k~'I r)—err' —4n.r'

ice""'

ice&-""'

&(ko r')+ —8(ko-+ p')
r' r'

—2zi ( 2ik )
I + I8(ko+&')4'( —ki'

I
r)«

=+/(kp
I
r).

r"dr"'

1 t ( ikpp8' )
expl I

U'd(8'/2).
ikpp " ~2(p —p))

The integral on the right is to be dropped since it is of
order (kpp) ' relative to the 6rst term since another
partial integration will introduce an additional power
of (kpp) in the denominator. Furthermore, the upper
limit in the first term contains the rapidly oscillating
factor hap and is small compared with the lower limit.
Hence the leading term in (k ') is given by

APPENDIX II
1 1' —it'

In order to evaluate' the leading term (order k ') of I= . U(~ ~3' i z+&)dp= ' U(r +PM)dpi~

the integral
(A4)

where p is a unit vector in the direction y. When p& p,

(A1)
' The basic idea employed in the analysis of this integral

follows Schi6' in his reduction of the integral in Eq. (23) of the
present report.

I8—
a I

—(p —p) = —2(p —p) —
I

Ep —p) 2

and it now follows that the final integral over p which
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remains after the angular integration is

1
e"k(a»U(x' y' s'+&i)dp

2ik ~,

and yields, therefore, terms of order (k ') and higher.
Consequently, the leading term arises from the domain

p (p and is given by (A4) . It is to be mentioned that no

difhculty relative to the angular integration can occur
for p= p. In this case, for small angles,

with the result that the leading term of the integral
over angles is now

The second term in (}}}t,the standard radiation con-
dition, may be omitted at once. Thus, the problem
reduces to evaluating

eikr'-
C&

lim A (r', r) (e'"' "(e '"'—1))
r' 8r'

—e'"""(ea("&—1)ik r"dr' (A6)

eikr'-
= lim A (r', r) (ea("&—1) e'"""

s. rl Br'

U (r'+tk) ti'Bdgdrt& =
4m ~ p'0

—2p«ti e'k}'U(r'+to) '

4x

U( r r sr+ )
2ik

—(ea("&—1)e'"' "ik r"dr'

eikr'

A (r' r) e'"o " ea("}r"d«' (A7)
Br

as before.

APPENDIX III

Let us first consider the integral on the left. The term
in brackets, after incorporating the asymptotic form
for e'"o '" is

y(k
~
r) —ei}rp r+a(r}

We wish to demonstrate here that the wave function 2~&
- e'lr'

(e ("&—1)ik b(ko —«"')+b(ko+r')
r'

where —1
r}((r)= U(r —kps) ds,

2k ~p

e—~7cr~ eikr p

b(ko r')+t'}(ko—+r')
r' r'

can be used as a trial solution in connection with the
variational principles for ltd(kp~r) which contain the
Schrodinger operator V'+ k' —U(r). Of course, the
associated trial solution for the point source problem is
everywhere outgoing. Therefore, it is required to prove
that the surface integral

4rA (—kp, r) (exp'&( —kor') j—1). (AS)

and upon performing the integration over angles, the
result for this part of the surface integral is

8 8
4'(r, r') bg(kp~ r') —t}P(kp~ r') 4'(r, r') dS' (A5) But,

8r' Br'

vanishes in the limit r'—&~ when n( —kpr') =
2k &p

U (—kpr' —kps) ds

lim (}}}t(kp
~

r') = Iim(trial f(ko
~

r') —exact&(ko
~

r') j
( evkr')

= eikp ~ r'+a(r'&
~

eikp r'+ f(kook«')
r' &

and when

=e'"p "(e ("&—1)—f(kp —+kr"')
eikr'

lim 4'(r, r') A (r', r).
r r-+oo r'

As indicated in (4), A(r', r)=f(—kr'~r) when 4(r, r')
is exact.

—i r

U(0,0,t)dt=0 in the limit r'~ap.

Hence, (AS) vanishes.
The integral on the right in (A7), when handled in

a similar manner, reduces easily to

lim A(ko, r)e"""' exptn(kpr')$ n(kpr')
r r-woo Br'

8—A (—kp, r) expLa( —kpr') j (r( —kor')
Br'
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However,

8 „—$8 f
rr(+kpr ) = ~ U(+kpr' kp—s)ds

Br' 2k Br' p

i—cl

U(0,0,t)dt,
2k Br'~ „

A

where we have chosen ~' in the direction ko. Therefore,

8 „2
n(&kpr') =- U(0, 0, +r'),

Br' 2k

and vanishes in the limit r'~~ for bounded potentials.
This concludes the proof that (A1) vanishes asymp-
totically.
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Phonon-Polaron Problem*

FRANCIS R. HALPERNt
Palmer Physica/ I.aboratory, Princeton University, Princeton, Eem Jersey

(Received October 30, 1957l

The method of moments is employed to determine the ground state of the phonon-polaron system. The
trial function employed in this calculation is a bare-electron wave function. It appears that the method is
convergent for this problem. Although the energy is in general a complicated function of the parameter and
must be determined numerically, it is possible to formally construct a power series expansion for the energy
about the unperturbed energy in powers of the coupling constant. The first term in this series has been
determined and agrees with the result of conventional p=rturbation theory. The s cond term has not yet
been evaluated to all orders but it appears that it will have the opposite sign from the corresponding term
in perturbation theory. The second and higher terms in some orders of approximation are singular for
small values of the cutoff.

I. INTRODUCTION

'HE phonon-polaron problem has been extensively
studied both because of its intrinsic physical

interest and because it is one of the simplest models of
a field theory. Physically the system represents the
interaction of the longitudinal optical mode of a polar
crystal with an electron. The derivation of an appro-
priate Hamiltonian has been discussed at length' and in
the present work the primary concern will be the
mathematical discussion of this operator.

There are several quantities which it is of interest
to calculate in this model. The simplest are the energy
level and structure of the ground state. More com-
plicated quantities are the scattering cross sections and
the structure of the excited states. The description of
the ground state has been carried out at considerable
length and quite successfully by several authors. "
The purpose of the present work is to describe an
alternate method of approach. The results obtained are
not quite as strong as some previously attained; how-
ever, it seems likely that the present method can be

* This work was supported by the OS.ce of Naval Research and
the U. S. Atomic Energy Commission.

t A portion of this work was carried out while the author was
employed at the Radiation Laboratory, University of California,
Berkeley, California.

H. Frohlichin, Advances in Physics, edited by N. F. Mott
(Taylor and Francis, Ltd. , London, 1954), Vol. 3, p. 325.

'Lee, Low, and Pines, Phys. Rev. 90, 297 (1953); M. Gurari,
Phil. Mag. 44, 392 (1953); T. D. Lee and D. Pines, Phys. Rev.
92, 883 (1953); E. Haga, Progr. Theoret. Phys. (Japan) 11, 449
(1954); R. P. Feynman, Phys. Rev. 97, 660 (1955).

extended to improve them. There also is an interesting
suggestion on the existence of the power series ex-
pansion.

The Hamiltonian' is

H= +cp Q as*as++(asUse""'+as*Vs*e '"').
282 k

The sums are cut off for k&E. The first two terms in
this expression represent the energy of the noninter-
acting systems, p'/2m is the kinetic energy of the
electrons and uk*uk is the number of phonons of wave
number k. The number of phonons multiplied by the
energy M which is independent of k gives the total
energy in the phonon field. The a's are the usual creation
and annihilation operators with the commutation rule
Las, as *j=8ss . The second term is the coupling of the
electron to the phonon field. The V's, which are defined
by

icp (4Iro. '
tr 1

UA
————

(
k & V &2mpIJ

are the amplitudes for the emission and absorption of
phonons, while the exponential factors take into
account the electron recoil. The dirnensionless number
e gives the strength of coupling. In units in which 5
and c are unity, H/cv is dimensionless and it is the
operator H/pI which is considered in the following
discussion.


