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with meson production as well as at a peak energy of
255 Mev when meson production processes were
appreciable. Despite the strong energy dependence of
the fast-photoneutron angular distributions for carbon
and deuterium, they are similar to each other at both
values of the peak energy.

4. The upper limit of the probability that a meson
produced on one of the nucleons of a deuteron or quasi-
deuteron of a carbon nucleus will be reabsorbed by the

second nucleon, can be estimated by comparing our
results with the data on photoproduction of mesons on
deuterium and carbon. In the range of energies at 250
Mev and higher, this probability is (0.1 for deuterium
and is apparently appreciably smaller than 0.5 for
carbon.

In conclusion we wish to express our appreciation to
A. M. Haldin and V. A. Petrunkin for participation in
the discussion of the results obtained in this paper.
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The boundary condition on the solution to the nonrelativistic time-independent Schrodinger equation
for arbitrarily complicated rearrangements of spinless particles is carefully examined. For real energies E
it is shown that the outgoing boundary condition on the scattered wave p need not imply that p is "every-
where outgoing. "This and similar considerations make apparent the fact remarked by Foldy and Tobocman,
namely that the Lippmann-Schwinger integral equation need not have a unique solution for real energies.
The relationship of this result to the added fact that solutions to the Lippmann-Schwinger integral equation
are unique for complex energies E+ie, e&0 is discussed, as is also the relationship of the usual operator
manipulations to the outgoing boundary condition.

I. INTRODUCTION AND SUMMARY

~'OLDY and Tobocman' have remarked recently
that the Lippmann-Schwinger integral equation'

need not have a unique solution. This observation,
which has been discussed by Epstein, ' is based on
Lippmann's4 reformulation of the integral equation for
rearrangement collisions. Similar reformulations in
more specific cases also have been given by Altshuler'
and Ku. '

In this paper we examine carefully the boundary con-
dition on the solution to the nonrelativistic Schrodinger
equation (B—E)%'=0 for an arbitrarily complex colli-
sion of a system of e particles. The main conclusions,
subject to certain limitations which are amplified in
the text, are as follows:

1. The usual condition that the scattered wave y be
"everywhere outgoing" means qualitatively that p
behaves asymptotically like the outgoing Green's
function 6 for the total Hamiltonian, and implies the
vanishing of an integral 8(G, y) =J'dsv WLG, yj Lsee
Zqs. (1.3) and (2.3c) below) integrated over the
surface at infinity in the 3n-dimensional space of all
the particles. Conversely, the requirement that 0 vanish

* Supported by the Office of Naval Research.' L. L. Foldy and W. Tobocman, Phys. Rev. 105, 1099 (1957).
~ B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
3 Saul T. Epstein, Phys. Rev. 106, 598 (1957).
4 B.A. Lippmann, Phys. Rev. 102, 264 (1956).
~ S. Altshuler, Phys. Rev. 91, 1167 (1953).
'Ta-You Wu, Can. J. Phys. 34, 179 (1956). See also H. E.

Moses, Phys. Rev. 91, 185 (1953).

is a formal statement of the boundary condition since
d(G, p) vanishes for at most one solution to the
Schrodinger equation. However the requirement that
8 be zero does not necessarily imply that p behaves
asymptotically like G. The Lippmann-Schwinger and
other integral equations imply the vanishing of surface
integrals similar to but not identical with 8 (G, &p). These
considerations make it apparent that for real energies
E the Lippmann-Schwinger integral equation need not
have a unique solution.

2. For complex energies E+ie, no boundary condi-
tions are required and the solution to the Lippmann-
Schwinger integral equation is unique. Since the surface
integral 8(G, y) is automatically zero when e)0, the
only possible boundary condition making the solution
for real E consistent with the limit e—&0 is d(G, q) =0.
In general, results proved by operator techniques will

apply to the solution of (H —E)%'=0 satisfying this
boundary condition, but will not apply to an arbitrary
solution 0 of the Lippmann-Schwinger integral equation
for real energy E.

To avoid extra elaborations we take the particles to
be distinguishable and spinless; the angular momentum
of any aggregate' in its center-of-mass system is not
restricted however, and may be nonvanishing. Dis-

'By "particle" we mean always a spinless "fundamental"
particle having no internal degrees of freedom. The somewhat
unesthetic term "aggregate" denotes either a single particle or a
collection of particles; in the latter event the particles are pre-
sumed bound in a specified eigenstate of negative energy (in the
rest system of the aggregate).
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tinguishability is not a serious limitation, since it is
well known' that with indistinguishable particles,
though the cross sections are given by squares of linear
combinations of ordinary and exchange amplitudes, the
amplitudes continue to be computed as if the particles
were distinguishable. The nontrivial modifications
produced by particle spin and some less evident con-
comitants of particle indistinguishability are left to a
future communication. Our procedures have not been
extended to relativistic or time-dependent problems,
nor to collisions involving particle creation or annihi-
lation.

a+b~c+d, (1.1a)

where the aggregates c, d are a rearrangement of the
particles contained in the aggregates a, b. Our results
pertain also to more complex collisions however, e.g.,
of type

(1.1b)

Subscripts i and f, designate, respectively initial and
final reaction channels. Unbarred symbols refer to the
laboratory system; German characters, barred symbols,
or symbols with the superscript ', refer to the center-of-
mass system. ' The superscript (+) distinguishes solu-
tions satisfying the boundary condition 8(G, p)=0.
For the reaction channels of Eq. (1.1a) the total
Hamiltonian in the laboratory system I'I=T+V is
partitioned into

II=II,+V,=Hy+Vr,

V= V.+VJ,+V b= V„.+V~+V,~,

(1.2a)

(1.2b)

where T represents kinetic energy, V potential energy;
V is the sum of the interactions between the particles
composing the aggregate a; V ~—= V; for the reaction
(1.1a) is the interaction between the aggregates a, b.
To illustrate, if particles 1, 2 form a, particles 3, 4 form

Va VJ2 V~/ V13+V14+ V23+ V24. The eigen-
functions of a in its own rest system are N, (s; E )
satisfying (T,+V,—E,)N, =O; s, are the set of internal
coordinates of aggregate a.

The coordinates of the e particles comprising the
system are r;=r;n;, j=1, ~, n, measured relative to
a fixed origin in the laboratory system; r is the location
in the laboratory system of the center-of-mass of a;
r;„=r~—r;; r ~=r~—r, . The entire set r~, ., r„will

' See, e.g. , L. I. Schi6, Quantum Mechanics (McGraw-Hill Book
Company, Inc. , New York, 1955), second edition, Sec. 34.

9 We apologize for this proliferation, forced by the requirements
of the printer and of further theoretical treatment in preparation.

1. Mathematical Preliminaries

In this section, to make our subsequent discussion
less disjointed, we introduce our notation and summar-
ize our mathematical contentions. Ke are concerned
mostly with reactions of the type

be symbolized by r=rn, which can be regarded as a
vector in the 3n-dimensional combined coordinate space
with coordinates ri= (xi,yi, sJ) along unit vectors i» ji,
ki, , coordinates r„=(x„,y„,s„)along i„,j.„,k„;
r= ~r~ = (rP+. +r„')&is the magnitude of r; in the
center-of-mass system the coordinates form a 3(n—1)-
dimensional vector symbolized by the German t=zn.
Each direction n in the laboratory system corresponds
to possible formation of a definite class of aggregates.
Along most directions n the separation r, I, of each pair
of particles becomes infinite as r~~; these are the
directions corresponding to complete dissociation of all
the aggregates. There also are special directions n&,

corresponding for instance to possible formation of t

aggregates a, b, , along which the separations r,~

of each pair of aggregates become infinite as r~~, but
along which the distances (r„—r, J. ~,

~ ~, (ri, ; rJ,J—. (,
~ ~ ~, between pairs of particles belonging to the same
aggregate remain finite. Directions tt in the center-of-
mass system are classified similarly.

Integration by parts in the many-dimensional r space
yields

~dr)XTV VTX]=—— ' d5v W(X, Vj, (13a)

where the integral on the right is over the surface
bounding the closed volume of integration on the left. ;
v is the outward drawn normal to the surface element
dS; X and Y are any two functions of r which are well
behaved in the integration volume; W=—WJ, , W„
is a 3n-dimensional vector; and the components of W;
(along the same unit vectors i, , j;, k; as the components
of r,) are defined by

(1.3b)

(H—X)G(X)=I,
(II, X)G,=I, —
(II'—X)Gg I, ——

(T—X)GJ &"&=I,

(1.4a)

(1.4b)

(1.4c)

(1.4d)

with I=b(r —r') =8(ri—ri') ~ 8(r„—r„')the unit oper-
ator in r space. Each of these Green's functions is
symmetric; G(r; r', X) =G(r', r; X). Their limits as e—+0
with X=E+i», e&0 are the corresponding outgoing
Green's functions G(E), G,(E), etc. These assertions
have a rigorous mathematical basis for the case Of a

We term Eqs. (1.3) Green's theorem.
For complex X there are unique Green's functions

G G Gf Gp' "' in the laboratory system. The Green's
functions are analytic functions of X, are exponentially
decreasing as the space coordinates become infinite,
and are defined by
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single one-dimensional particle. " In more complicated
cases for reasonably well-behaved interactions it may
be presumed that the Hamiltonian is a self-adjoint
operator in Hilbert space, although the precise require-
ments on the potentials to assure H is self-adjoint are
not known. "We infer" that G fails to exist only at the
point eigenvalues of H; elsewhere, although unique,
G may not be a single-valued function" of ) .The Green's
functions satisfy"

G= G,—G;V,G= G;—GV,G; (1.5a)

(G VG)*."=J, d G ( ' )V( )G( ' ). (1&)

We claim that the asymptotic limits of G(E), G;(E),
~ at large rn, excepting terms which become negligibly
small, represent propagation of the particles in the
aggregates corresponding to n. Moreover, where the
asymptotic limit of Gy for instance is non-negligible,

Vlf Gf and
~
G~

~

'dS is finite and independent of r
in Eqs. (1.3). It follows that in considering integrals
d(G, p), 8(G;,p), . we need be concerned only with
surface elements dS at infinity along directions n
corresponding to energetically open channels, provided
the Green's functions G, G;, ~ in question actually
permit propagation in these channels. We remark that
all interactions V,~ are omitted from LI,~, so that G g

can propagate only in bound or dissociated states of
a, b, but cannot propagate in a true rearrangement of

"See B. Friedman, I'rieciples and Techniques of Applied
Mathe7eatzcs (John Wiley and Sons, Inc. , New York, 1956),
especially Chaps. 3 and 4. The relevance of this mathematical
theory to quantum mechanical scattering problems has been
discussed by 3 Friedman .and E. Gerjuoy, LNew York University,
Washington Square, Mathematics Research Group, Research
Report No. CX-4, 1952 (unpublished)g. Other mathematically
more dificult references bearing on the one-particle one-dimen-
sional case are: E. C. Titchmarsh, Ezgenfuectzon Expansions
(Clarendon Press, Oxford, 1946); F. Rellich, New York Uni-
versity, Institute for Mathematics and Mechanics lectures, 1951
(unpublished); E. A. Coddington and N. Levinson, Theory of
Ordinary Differential Equations (McGraw-Hill Book Company,
Inc. , New York, 1955), Chap. 9."T.Kato, [Trans. Am. Math. Soc. 70, 195 (1951)g has proved
the Hamiltonian is self-adjoint when the total potential is a sum
of two-body Coulomb potentials. Consequently II is self-adjoint
for any system of particles interacting via two-body potentials
which decrease no less rapidly than

~
r;—rq

~

' at iniinity and are
not more singular than ~r; —rs~ ' at r;=re See also T. . Kato,
Comm. Pure Appl. Math. 10, 151 (1957)."M. H. Stone, Linear Transformations ie Hi/bert Space (Amer-
ican Mathematical Society, New York, 1932), Chap. 4, especially
theorems 4.12 and 4.18. See also R. G. Cooke, Linear Operators
(Macmillan and Company, Ltd. London, 1953),Chaps. 5 and 6, '

"These relations are derived and discussed brieQy in an
Appendix to this paper. The relation G;U;G=GU;G; has been
discussed briefly by 3.A. Lippmann, Ann. Phys. 1, 118 (19'57).

G= Gy —Gg VyG= G; —GVgGy, (1.5b)

G =Gr'"l —Gr'"' VG= Gs &"'—G VGs '"'. (1.5c)

Equations (1.5) are consistent with the usual operator
formalism in implying integration over the entire range
of the suppressed intermediate variables, i.e., since
V(r, r') = V(r)b(r —r') is a point operator

is supposed to have a solution 0;&+' of the form

(2.1a)

(2.1b)

We intend to make precise the boundary condition on
q;. The incident wave P, is a solution of

(H —E)P =0

Equations (2.1) imply that

(2.1c)

(2.2a)

(2.2b)

Multiply Eq. (2.2a) on the left by the outgoing Green's
function G(r; r', B); Eq. (1.4a) (with X=E) on the
left by q;(r); subtract; integrate over all r space; and

'4 E. Gerjuoy (to be published).

the particles in a and b. The assertions of this paragraph
are crucial and can be made plausible, '4 but we are not
prepared to prove them rigorously; they are consistent
with the behavior of the e-particle system free space
Green's function Gp("), which can be written in closed
form, as well as with what is known about the behavior
of the Green's function in a channel containing two
aggregates only.

To avoid mathematical dBIiculties which in the main
are irrelevant to our purpose, we assume explicitly that
whenever a channel speci6ed by bound states of the
aforementioned f aggregates a, b, is open, the
interaction V ~ between each pair of these aggregates
decreases more rapidly than r &

' as their separation
r ~

—+~. This assumption rules out open channels con-
taining two charged aggregates a and b, but it seems
clear that in such channels our subsequent analysis is
modified only by the replacement of plane waves in r &

by Coulomb functions. In the event that three or more
outgoing aggregates actually are charged, the appro-
priate modification of the theory is not even surmised,
since the asymptotic behavior of the Green's. functions
for three or more interacting charged particles is not
knowI1.

II. REAL ENERGIES

1. SIjecification of Solution

We proceed to specify the solution in the laboratory
system. As will be seen a laboratory system formulation
is equivalent to and algebraically somewhat simpler
than a formulation ab initio in the center-of-mass
system. The primary motive for our procedure is frankly
pedagogic however; the laboratory system offers the
most obvious illustration of the fact that the scattered
waves satisfying the boundary condition need not be
"everywhere outgoing. " We stress that a11 statements
in this Section II pertain to real energies only.

The Schrodinger equation in the laboratory system,
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use Green's theorem. "There results

I"

y, (r') = —
) dxG(r; r') V;(r)P, (x)

+ dSv W/G(x; r'), p;(r)] (2.3a)

integrated over the surface at infinity in r space. It is
convenient to rewrite Eq. (2.3a) in the conditional
form:

p;(r) =—
I dr'G(r; r') v;(r')P;(r'), (2.3b)

provided' that, for all r",

d(G, q~) =
J

d5v W[G(r; r"),&p, (r)]=0, (2.3c)

integrated over the surface at infinity in r space. In
Eq. (2.3b) we have used the fact that G is symmetric.
Similarly, multiplying Eq. (2.2b) on the left by the
outgoing G, (r; r", E), Eq. (1.4b) on the left by p, (r),
we obtain

y, (r) = — dr'G;(r; r') V;(r')4;(+i (x'), (2.4a)

provided' that, for all r",

S(G;,p;) = dSv W/ G(r; x"),p, (r)]=0. (2.4b)

Equations (2.3b) and (2.4a) combine with Eqs. (2.1)
to give the well-known ' formal solution,

4,i+& =f; GV,P, , — (2.5a)

and the integral equation,

+,(+)=P, G,V,+,.(+) (2.5b)

The more customary notation replaces Eqs. (2.5) by

+,.i+) —P,— V,P,
H —E—ie

(2.6a)

(2.6b)+,i+i —p, y.@,(+)

H E $6

"Strictly speaking, with X= G in Eq. (1.3a), we must integrate
only over a volume exterior to the singularity of G at r=r'. By
equally strict definition of G however, the contribution to the
right side of Eq. (1.3a) from an infinitesimal surface surrounding
r=x' then equals F(r'). Thus it can be seen that this more careful
procedure is equivalent to integrating over all space and evaluating
the surface integral in Eq. (1.3a) at infinity only."Our subsequent discussion of Eqs. (2.3) is made less awkward
by our insistence on integrating over the unprimed variable in
Eq. (2.3c). It is obvious from Eq. (2.3a) that adding to the right
side of Eq. (2.3b) the surface integral of Eq. (2.3c) evaluated at
r"=r yields an expression for y;(r) which is correct whether or
not Eq. (2.3c) holds for all r". In the same way Eq. (2.4a) is
made strictly correct by adding to its right side the surface integral
of Eq. (2.4b). The same remark pertains to other similar pairs of
equations, e.g., Eqs. (2.15);

'7 M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
(1953).

Presumably the asymptotic behavior of the outgoing
(careen s function G(E) is consistent with intuitive
expectation, namely that at large distances in any open
channel the aggregates should be moving not toward
but away from each other and the origin. The demand
that the scattered wave y; be "everywhere outgoing"
expresses the conviction that at large distances q,
should behave like G. If p, and G behave similarly at
infinity, W,LG, p,]will decrease more rapidly than the
product q;G, since GV;q; and q;V,G will tend to cancel;
as a result, in view of the assertions in Sec. I.1, d(G, y~)
of Eq. (2.3c) will vanish because each surface element
dS makes a negligible contribution to the integral. For
these reasons the boundary condition on p; is restated
precisely as the requirement that Eq. (2.3c) hold,
thereby guaranteeing Eqs. (2.3b) and (2.5a). This
requirement we say makes p; "outgoing" but not
necessarily "everywhere outgoing, "because Eq. (2.3b)
may hold even though p; behaves differently from G
along some directions n; there may be cancellations
between non-negligible contributions from differen. t
surface elements in Eq. (2.3c). Correspondingly, Eq.
(2.5a) may yield solutions 4 +i whose scattered parts
4;~+)—P; are not everywhere outgoing.

Equation (2.3a) is an integral equation of a sort for
&p;; the class of solutions 4' to Eq. (2.1a) yield a class
of scattered waves p—=4—P; and a corresponding class
of functions f(r) = d(G, p). Conversely, to any given
f(r) there corresponds at most one q (there may be
none) in the class 4' —f;, since Eq. (2.3a) then yields
the explicit formula y= GV,P;+f. I—n particular, there
exists always a unique solution to Eq. (2.1a), namely the
function +;(+& defined by Eq. (2.5a), having the prop-
erty that y;=4,'+) —f; satisfies d(G, y,)=0; whether
or not p, of Eq. (2.3b) proves to be "everywhere
outgoing, " it follows from Eq. (1.4a) that y, necessarily
satisfies Eq. (2.2a) and therefore, making use of Eq.
(1.3a), also satisfies the boundary condition (2.3c).
With 4';&+i defined by Eq. (2.5a), it can be shown that
&p; of Eq. (2.4a) satisfies d(G, , q,) =0; also Eq. (2.5b)
can have at most one solution 4—=0';(+& for which
p= 4' f, satisfies —d(G—, p) =0. On the other hand, the
boundary condition 8(G;, y) =0 yields not an explicit
formula for y but an integral equation (2.5b). Conse-
quently we are not able to conclude immediately, as
we did conclude for Eq. (2.3c), that the boundary
condition (2.4b) will specify the solution uniquely.

We now observe that because FI commutes with p~,
i.e., conserves the total momentum in the laboratory
system, we know on physical grounds that an incident
wave P;=f, exp(iK R) must yield a scattered wave
y;= g, exp(iK R), g; independent of R. In other
words, the solutions 0' +) with which we are concerned
never have everywhere outgoing scattered parts p;. in
the laboratory system, although Eq. (2.5a) does specify
&I,&+' in terms of the laboratory system outgoing Green's
function G; in fact there are no channels in which q;
behaves asymptotically like G. Formulating the scat-
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tering problem in the center-of-mass system, we infer,
as in the laboratory system, that

p;= —GV.;P;

provided" that, for all t",
(2.7a)

(2.7b)

integrated over the surface at infinity in r space. In
Eq. (2.7a) integration over the suppressed variables r'

is implied, consistent with our practice in the laboratory
system. The 3(e—1)-dimensional vector W' of Eq.
(2.7b) is defined by

this explanation to the fact that the integral equation
(2.5b) does not have a unique solution.

The field G(r; r') produced by a source at r' is not
necessarily outgoing at large r if r' becomes infinite
along with r. This obvious remark shows that unless
the integral of Eq (2. .3b) converges so rapidly that for
large r there are negligible contributions from large r',
p, (r) need not behave like the limit of G(r;r') as r
becomes infinite artsd r' is held coestaeI, "i.e., need not
be everywhere outgoing in the laboratory system. In
actuality, because V;(r') is independent of R', —GV;P;
does not converge rapidly along all directions n' in
r' space, and consequently y, (r) = g, (r) exp(iK R)
instead of behaving like G(r; r'). With two incident
aggregates a, b, we have

dr)XT Y YI'X]—= — d8v' W'LX, Y]. (2.8) P;=expt i(k r,+ks rs) ju, (s,)us(ss), (2.10a)

Using the coordinate set t= t2, -, t„with t;= r,—r&,

we have

yA
&=2 + Z 4'Ps

2@~ 2' y /+It:
(2.9a)

A2

+ Q (XV's V—Y~'sX), (2.9b)
23fi &~~

where p, = ihV'—;; p; is the reduced mass of the pair
of particles 1 and j; and's W', are the components of
W' along the same unit vectors as the components of r, .

Of course the formulation in the laboratory system,
after removing the factor exp(iK R), is identical with

the formulation in the center-of-mass system. Specifi-

cally it can be proved" that the validity of Eq. (2.7b)
guarantees the validity of Eq. (2.3c) and vice versa,
and that integrating over R' in Eq. (2.3b) yields Eq.
(2.7a). Henceforth, unless there is some special point
to be made, we shall not distinguish between formu-

lations in the center-of-mass and laboratory systems;
the unqualified phrase "everywhere outgoing" shall

mean "everywhere outgoing in the center-of-mass

system. "

» The terms proportional to M& ' in Eq. (2.9a), well known in
atomic spectroscopy LD. S. Hughes and C. Eckart, Phys. Rev.
36, 694 l1930lj, produce the corresponding complicating terms
proportional to 3f1 in Eq. (2.9b). By an appropriate change of
variables, the quadrati= form (2.9a) can be diagonalized and %'
of Eq. (2.9b) accordingly simplified. The new diagonalizing
coordinates are not readily interpretable physically however.

2. Integral Equations. Uniqueness of Solution

In this section we erst explain how it comes about
that expressions like GV;f; or G;VpI, involving out-

going Green's functions, do not necessarily behave

asymptotically like G or G;. Ke then go on to relate

e=xpgi(M ks. M—sk ).rs/, Mjg I,.
e=xp (ik&,r s).uus, .(2.10b)

From Eq. (2.10b) and our having assumed that V', = V,&

decreases faster than r,& ', it appears that Eq. (2.7a)
does make p, behave asymptotically like 6, in other
words everywhere outgoing. With three incident aggre-
gates, however, e.g. , c, d, e incident in Eq. (1.1b), even
in the center-of-mass system the scattered wave
to = —CV f,' is not everywhere outgoing. Here

p, '=N, udg, expLi(k, r,+kd r~+k, r,)j
= f, ' exp(iK R), (2.11)

and V,'= V,d+V, .+Vs. , hence the integral GV,~Q,
'

for instance, in which V,q(r, d') is independent of r, .',
has the wrong asymptotic dependence on r„.This
difFiculty with three incident aggregates is related to
some complications which arise when the cross section
for the reaction (1.1b) is computed. "For the purposes
of the remainder of this paper we can and do confine
our attention to collisions of the type (1.1a).

The arguments of the preceding paragraph show also
that unless —6;V;4 converges sufFiciently rapidly,
functions 4' formally satisfying Eq. (2.5b) need not
have everywhere outgoing scattered parts. To under-
stand this comment, note that an arbitrary solution
%(r') of Eq. (2.1a), unlike P;(r') of Eq. (2.10a), does
not decrease exponentially as r' goes to inanity along
directions n' corresponding to channels other than the
incident channel. Furthermore V, (r') generally remains
finite as r' approaches in6nity along directions n'

corresponding to true rearrangements (not merely
breakup) of i=a, b In Eq. (1.1a) f.or example, at least
one pair of particles which are not in the same aggregate
of i will be contained in a single aggregate c or d;
calling this pair 1 and 2, V, (r), which includes Vis(rts ),

"More precisely, as r becomes infinite along a direction n
corresponding to formation of t aggregates, ~(r) = —GV;p; need
not behave like the corresponding limit of G(r; r'} holding r'
constant unless r y(r) converges uniformly as a function of r,
where a= (3t—1)/2.
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does not diminish as r' approaches in6nity along
directions n, ~' corresponding to formation of c, d. Let
us suppose the f=c—, d channel is open, and denote by
+r&+&=pf+ pf the solution to Eq. (2.1a) with
everywhere outgoing and fr an incoming plane wave
in channel f T.hen, replacing 4', &+& in Eq. (2.4a) by
4'=4';&+&+4'q&+& causes the integral to be slowly con-
vergent along directions ny' and makes y= —G;V;0
incoming in the f channel.

Although q = —G;V;4 is incoming in the f channel,
we can prove that 4'=4', &+&+4'r&+& is an alternative (to
4,'+&) solution of Eq. (2.5b); in other words Eq. (2.5b)
does not have a unique solution. Our assertions about
the asymptotic behavior of the Green's functions mean
v W)G, , p,+yq) is negligible at infinity, where rp„
= —GV,P, and yr ———GVrfy each are everywhere
outgoing. Moreover, because G; does not propagate in
true rearrangements of i, we have

Because p; is everywhere outgoing, d(Gy, p,) =0 and
Eq. (2.13c) implies

+,(+)— gfp fLJf,.(+)

provided" that, for all r",
(2.15a)

r
8(Gf f;)= dSv. WLGr(r; r"),f,(r)]=0. (2.15b)

J

Equation (2.15b) holds when f=c, d i—s a true rearrange-
ment of i —=a, b, under which circumstance GJ does not
propagate in the i channel. For Anal channels corre-
sponding not to rearrangement (or dissociation), but to
scattering of a, b with or without excitation, e.g., the
elastic channel, Vr= V &,

= V;, Gr=G, &, =G;, Eq. (2.15b)
is inconsistent with Eq. (2.14b), and Eq. (2.15a) is
inconsistent with Eq. (2.5b).

Interchanging i and f in Eqs. (2.15) Li.e., we suppose
the arrow points to the left in Eq. (1.la) g, we infer that

d(G, ,Py) = dSv. WLG, (r; r"),f&(r))=0. (2.12)
e&(+~ = —G;V;ef (+} (2.16)

Thus y=4 f,=%';&+—&+4'r&+& —P; satisfies d(G, , &&&) =0,
implying, referring to Eqs. (2.4), that 4 is a solution of
Eq. (2.5b). At this juncture the significant distinction
between the boundary conditions (2.3c) and (2.4b)
becomes manifest. G propagates in every channel, so
that d(G, &p) is not zero unless v&=—p; is everywhere
outgoing; on the other hand, 8 (G;,q) =0 puts no
restrictions on the asymptotic behavior of q in channels
other than the incident channel. We add that by virtue
of Eqs. (1.3a) and (1.4b), whenever 4 solves Eq. (2.5b)
q= —G, V,% satisfies (H—E)&»= —V,%' and 8(G;, v&)

=0, thereby demonstrating that every solution 4 of
Eq. (2.5b) is a solution of Eq. (2.1a) of form (2.1b)
and satisfying the boundary condition (2.4b).

With the aid of Green's theorem, Kqs. (1.4) and
(2.1a) yield

@(r)= dSv WLG(r; r")P(r)j=d(GP'), (2.13a)

@=—G,V,@+ dSv W[G, (r; r")P(r)], (2.13b)

GfVf% + dSv. WLGr(r; r")P(r)j, (2.13c)
J

@~&+&(r)= dSv WLG(r; r"),f;(r)$= d(G, Q,) (2.14a)

evaluated at r"=r; also Eqs. (2.5b) and (2.13b) imply
that

(2.14b)

where the surface integrals are evaluated at r"=r, and
4' is an arbitrary solution of Eq. (2.1a). When@'=W, &+&

of Eq. (2.1b), Eqs. (2.3c) and (2.13a) imply that

provided Eq. (2.12) holds. As has been amply argued,
Eq. (2.12) is satisfied when i=a, f&—is a rearrangement
of f=c, d. Th—is line of reasoning' makes it obvious that
the inhomogeneous equation (2.5b) generally has no
unique solution, since if 4', &+& solves Eq. (2.5b) so does
4'= g,&+&+4'r&+&. Evidently the right side of Eq. (2.15a)
cannot be everywhere outgoing, since it must yield the
incoming part f, of 4';&+&; equally evidently —GfVf%,&+'

does not converge rapidly as r' approaches infinity
along directions n' corresponding to formation of
aggregates a, b. We scarcely need mention that Eq.
(2.15a) does not have unique solutions; for given
f= c, d, the inci—dent wave P, can be furnished in any
channel i which is a rearrangement of c, d.

III. COMPLEX ENERGIES

The usual operator techniques typically involve
Green's functions for complex energies X=E+ie, e.g. ,
Eqs. (2.6). As we have explained in Sec. I-1, the
Green's functions G(l&), G, (X), . are exponentially
decreasing at infinity, so that all surface integrals at
infinity of the type we have been considering automati-
cally are zero. Hence, for given P, and every e)0, we
have 8(G, q;) =0, where here G= G(E+i e) and p, —
= q;(E+ic)=0';&+&(E+ie) P—, equals G—(E+ie) V,/;—
according to Eq. (2.6a). If we believe, as this writer
does, that the physical situation is represented by the
limit c—&0 of 0,'+&(E+ic), and expect to represent the
same physical situation by a solution of the Schrodinger
equation (H E)4=0 for real energy—E, then the
boundary conditions specifying the solution at &=0
must be consistent with the behavior of p, (E+ic) for
very small ~. From this point of view, therefore, the
only possible boundary condition at real energies &=0,
in the class of boundary conditions 8 (G, &»;) =f, is f=0,
the boundary condition to which we were led in Sec.
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lI-1 by the qualitative consideration that thes cattered
wave should propagate like the outgoing Green's
function. The same consistency requirement suggests
that other surface integrals which vanish for the
correctly specified solution 4;&+&(E) of Eq. (2.5a), for
instance d(Gt, f;) of Eq. (2.15b) when f is a rearrange-
ment of i, are neglected implicitly (though justifiably)
in the routine operator manipulations. On the other
hand, such surface integrals need not vanish for an
arbitrary solution %(E) at real energies. Similarly,
because the Green's functions are exponentially de-
creasing, it usually (not necessarily always) should be
legitimate to invert the order of integration of repeated
integrals when the energy is complex, and we anticipate
that it will be equally legitimate to perform the same
operation for the correctly specified solution 4',&+&(E)

when &=0; the operation need not be legitimate for an
arbitrary solution 4(E), however. We note also that
the integrals and other expressions which occur need
not converge uniformly as ~~0, meaning that we
cannot assume that results proved for finite though
arbitrarily small e necessarily hold at &=0. Failure to
recognize these implications of the operator manipu-
lations can lead to erroneous conclusions when, as is
frequently the case, the results are applied to solutions
of the Schrodinger equation for real energy E.

We shall expand and illustrate these remarks by
comparing results for the pair of Eqs. (2.6) with
the results obtained in previous sections for Eqs. (2.5).
The reader is reminded that Eqs. (2.5) were derived
for real energies, G—=G(E), G,=G;(E), while in—Eqs.
(2.6) (H—E—i») '=—G(E+z»), (Hi —E—z») '=—G, (E
+i»). By routine operator algebra, solutions to either
of Eqs. (2.6) are seen to satisfy

(H E z»)4,&+& =—i—qk, , — (3.1a)

in which p, still satisfies Eq. (2.1c). Since the Green's
function G(g) is uni'que for complex X, or alternatively
since the homogeneous equation (H—X)4'=0 has no
bounded solutions for complex X, Eq. (3.») has a
unique solution:

+;&+&= i »G(E+i »)P—,=f—;, (3.1b)
H —E—ie

and no boundary conditions are required. Hence, for
arbitrarily small »)0 the integral equation (2.6b) has
a unique solution N +& given by Eq. (2.6a) or equiva-
lently by Eq. (3.1b). At »=0, on the other hand, the
dependence on the incident wave f; disappears from
Eq. (3.1a), making the equation homogeneous instead
of inhomogeneous; consequently the solution to the
Schrodinger equation (H—E)%'=0 is not unique and
requires a boundary condition.

To make the connection between solutions of Eqs.
(2.5) and (2.6) more apparent, let us derive Eqs. (2.6)
from Eq. (3.1a) by strict mathematical procedures
rather than by operator techniques. Using Eqs. (2.1b)

and (2.1c) in Eq. (3.1a) yields

(H —E—z») q, =- —V,P,,

(H,—E—i») p, = U,e,&+&

(3.2a)

(3.2b)

in complete analogy with Eqs. (2.2); of course p,= p;(E+i») in Eqs. (3.2). Multiply Eq. (3.2a) on the
left by G(E+i»), Eq. (1.4a) for X=E+i » by p;(E+i»),
and use Green's theorem. We integrate not over all
r space, however, but only over a finite volume, say a
3e-dimensional sphere of radius p centered at r=r'; in
this way we avoid the problem that the integral over
all space is itself defined as the limit of the sequence of
integrals p—+~, which sequence need not converge
uniformly as a function of e. Thereby we find that

(p, (r') = —)t drG(r; r'; E+i») V, (r)&&t, (r)
p

+ dSv W[G(r; r'; E+z»), q;(r)], (3.3a)

(p, (r') = —
~ drG, (r; r'; E+i») V;(r)+,&+&(r)

p

+ dSv W[G, (r; r'; E+i»), q;(r)], (3.3b)J,
wherein the first terms on the right are integrated over
the interior" of the sphere of radius p, and the second
terms over the surface bounding this sphere; Eqs. (3.3)
involve no infinite integrals. Letting ~~ for constant
e&0 causes the surface integrals to vanish and yields
Eqs. (2.6); whereas letting» approach and equal zero
holding p constant and then letting p—+~ yields the
previously deduced Eqs. (2.3) and (2.4). With suKci-
ently rapidly decreasing potentials, the sequence of
volume integrals p—&~ in Eq. (3.3a) should converge
uniformly as a function of e in the center-of-mass
system (not in the laboratory system). Consequently,
recalling that we could have formulated the scattering
problem ab initio in the center-of-mass system (in
which event all quantities in Eq. (3.3a) would be
replaced by their corresponding center-of-mass quanti-
ties, e.g. G(r; r') by G(r; r'), W by W', etc.), we are
entitled to assume that limp, (E+i») as»—0, which
limit we term p;"(E), is found by erst letting ~~ in
Eq. (3.3a) and then putting»=0 under the integral
sign, in other words that p,"(E)= G(E) V,P; inte-—
grated over all space. The consistency requirement
implies immediately that we must use the boundary
condition (2.7b), or equivalently (2.3c). Equation
(3.3a) is an integral equation for p;(r; E+i»); although
it has a unique solution p;(E+i») = —G(E+i») V,Q,
for every»)0 and although p, (E+i») converges uni-
formly, there is no reason to suppose that the equation
which is the limit of Eq. (3.3a) as»~0 has a unique
solution. Similar comments pertain to Eqs. (2.4) and
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(3.3b); in particular, although for every e)0 the
Lippmann-Schwinger integral equation (2.6b) has a
unique solution, it is not necessarily true that there is a
unique solution to Kq. (2.5b), the limit as e—&0 of the
sequence of integral equations (2.6b).

Suppose 4(E+'ie) is any solution of Eq. (2.6b). We
shall demonstrate explicitly, as we already know from
Eq. (3.1b), that 4 necessarily is identical with 0'„&+&of
Eq. (2.6a). Using Eq. (2.6b) to eliminate P; in Eq.
(2.6a), we find that

%,t+&=0+G,VP —GV;(4+G;V,+}, (3.4a)
or

from Eqs. (1.4). Equation (3.6a) means that

GU, (G,VP') = (GV,G;) V;+

+ ~dSv W[G(r; r"), q (r)7, (3.6b)

instead of Eqs. (3.5), the surface integral being evalu-
ated at: r"=r. Returning to Eqs. (3.4) we see that for
real E, inverting the order of integration is not justified
and hence % W%';&+' unless 8(G, y) =0, in complete
agreement with Sec. II.

As a final example, we rewrite Kq. (2.17a) in the form

+,~+'=4+(G,—G—GV,G,) VP', (3.4b) (H g E i e)—%,t+—i = i ei—P, U—g%';t+&, (3.7a)

implying, according to. Eq. (1.5a), that 4'(E+ie)
=4 t+~(E+ie) Putti. ng c=0, we might conclude that
the solution to Eq. (2.5b) is unique and identical with
4;&+& of Eq. (2.5a), in contradiction to the results of
Sec. II. The apparent inconsistency arises because in
going from Eq. (3.4a) to (3.4b) we have inverted the
order of a repeated integral, which operation is not
permissible when &=0. Specifically, we have assumed
that

i.e.,

GV;{G;V,+)= {GV,G;}V.+, (3.5a)

,

' dr'G(r; r') V;(r') ~dr"G, (r'; r")V;(r")4(r")

y V;(r")% (r"). (3.5b)

(GV,G;) VP

= {G;—G) V,+= —{G,—G}(H, —E)q&(r")

= —(LH'(r") —E7[G'(r; r")—G(r; r")7) v (r")

+ dS"v" W[G, —G, &p(r")7

For real E, however, with 0' an arbitrary solution of
Kq. (2.5b), we can define qr =——G;VP', use Green's
theorem, and note that d(G;, q) =0 [see added remark
preceding Eqs. (2.13)7; we then have

from which we infer'4 that

4';t+& = i &GAL(E+—ie)P, Gr(E+—ie) Vr@ t+&

zE
Vg+;t+'. (3.7b)

IIy
—E—ze Hy —8—ze

In Eq. (3.7b) the inhomogeneous term disappears at
~=0, from which we seemingly obtain the integral
equation (2.15a) conditions on the surface integral of
Eq. (2.13c). Using Green's theorem and integrating
over a sphere of radius p as in Eqs. (3.3), we find,
however, that letting e—&0 and then letting p—+ yields
precisely Eq. (2.13c). Alternatively, substituting Eq
(1.5b) for G in Eq. (2.6b) and using Eq. (2.6a) to
eliminate GV,Q; yields

@;t+&=P; GgV,@~+Gg—VgGV,f, (3.8a)

=~,-G~(U.-U~)~.-G~U~~"" (38b)

But Gq(V; Uyg;=—Gy(Hy —H;)0;=Gx(Hr —&)4
that, in Eq (3 8b)., .

Gx(V, Vx—)P;—
—ZC

(H~ —E)4'= (3.9)
By—8—z6 By—E—z6

Thus Eq. (3.8b) is equivalent to Eq. (3.7b), as it should
be since for e)0 the solution 4',&+&(E+ie) is unique.
From Eq. (3.9) we might infer that for real energies
P;—Gg(V;—Vy)$, =0, and therewith from Eq. (3.8b)
once more conclude that the integral equation (2.15a)
holds without auxiliary conditions. Actually for real
energies, using Green's theorem, we have

= —"dr"V;(r")G(r"; r) v (r")—a(G, q). (3.6a) O' —Gs(H~ —E)4'= &(G~A'). (3 10a)

In Kq. (3.6a) braces imply integration as in Eqs. (3.5),
but brackets do not; the dependence on the coordinates
is indicated only where necessary for clarity and is
consistent with Eqs. (3.5); we have used

(H;—E)(G, G) = V,G—
Furthermore, in obtaining Eq. (3.8a) we have assumed
that (GyV~G) V,P;= GyVy{GV,Q;) whereas, by manipu-
lations similar to Eq. (3.6a), for real E we obtain

(GgV+) VyP, =GgVi(GV P,)+8(Gg, q;), (3.10b)

with y, = —GULP, . As we know, d(Gy, f,) = d(Gq, y,) =0
when the f channel is a rearrangement of i and when



q; is everywhere outgoing, providing a good illustration
of our assertion that the operator manipulations neglect
implicitly (though for complex energies justifiably)
the same surface integrals which we neglected explicitly
in Chap. II. Without assumptions about 8(G!pP;) and
d(G!,p,), and using Eq. (3.10b) to go from Eq. (3.8a)
to (3.8b), we again arrive at Eq. (2.13c).

Sections II and III amplify and extend results
obtained by Foldy and Tobocman' and other authors. ' '
Comparison with Lippmann's purely operational treat-
ment is recommended.

definition the limit of G(E+ie) as &~0, we infer that
G(E) is symmetric for real E. Knowing this, we can
start from Eqs. (A.1) with X=X, again use Green's
theorem, and thereby conclude that the right side of
Eq. (A.2) is zero at a=0 for all r', r"

In the same way, from Eqs. (1.4a) and (1.4b) we find

G;(x', r"; X)—G(r"; r'; X)

drG;(r; r"; X) V;(r)G(r; r'; X)

APPENDIX

Equations (1.5) usually are derived by operator
techniques. We wish to deduce them by more rigorous
procedures, so as to understand their applicability at
real energies. Ke prove 6rst that the Green's functions
are symmetric. From Eq. (1.4a), we have

LH (r) —QG(r; r'; X) =8(r—r'), (A.1a)

LH(r) —X)G(r; r"; X) =8(r—r"). (A.1b)

Multiply Eq. (A.1a) by G(r; r"; 1!.), Eq. (A. ib) by
G(r; x'; 1%,), integrate, and use Green's theorem. Then

G(r'; r";X)—G(r"; r', X)

~dSv WLG(r; r";X),G(r; r', X)j. (A.2)

The right side of Eq. (A.2) vanishes for all complex 1i,

so that for all e) 0, G(r'; r";E+ie) =G(r"; x'; E+ie).
Taking the limit of this symmetry relation as c~o and
recalling that the outgoing Green's function G(E) is by

—)~' dSv WLG;(r; x";1!),G(x; r', li)j. (A.3)

Again for all complex P the surface integral vanishes.
Thus, since the Green's functions are symmetric, re-
writing the right side of Eq. (A.3) to be consistent with
the notation (1.6) for the r", r' element, and inter-
changing r" and r' in G; on the left side of Eq. (A.3),
yields the first equality of (1.5a); interchanging r' and
r" in G on the left side of Eq. (A.3) and rewriting the
right side to be consistent with the notation for the
r', r" element yields the second equality of (1.5a).
Th!s proves Eq. (1.5a) for all complex li. Taking the
limit as a~0, we shall conclude that Eq. (1.5a) holds
at e =0 provided the integral G, V,G converges uniformly
as a function of ~; G;V;G should converge uniformly
for sufficiently rapidly decreasing potentials. Starting
with Eqs. (1.4), at real energies we infer that if Eq.
(1.5a) holds, then d(G, G,) vanishes at real energies
and conversely; i.e., the validity of Eqs. (1.5) for real
E is tied to our assertions in Sec. I.1 concerning the
ways in which the Green's functions propagate.


