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Possible Determination of the Spin of a' from Its Large Decay Angular Asymmetry
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General consideration of the angular distribution of the decay products of a hyperon into a pion and a
nucleon is carried out for arbitrary values J of the hyperon spin. Li'mitations on the magnitude of the
asymmetry in the angular distribution are found. These limitations are formulated in terms of certain test
functions which when applied to experimental results may lead to an unambiguous determination of the
value of the hyperon spin. These considerations and the large "up-down" asymmetry in h.' decay reported in
recent literature suggest that the spin of Ao is ~~.

ECENT experiments' have shown that in the decay
of (partially) polarized Ao there is a strong asym-

metry in the distribution of the momentum of the
decay x . YVe wish to point out in the present note that
such a strong asymmetry may also serve to rule out high
values of spin for Ao. No nonrelativistic approximation
on either of the decay products is made in this note.

Ke consider a sample S of A"s in their rest system,
produced in any process or collection of processes,
selected in any manner as long as the selection process
does not inzolee the angular distribution of the decay
Products of As. It is well known that the angular distri-
bution 8 of the decay pion from such a sample S when
expanded into spherical harmonics Yl.~ involves onlyI values up to 2J, a conclusion that follows from the
law of invariance under space rotation. Such conclusions
on the maximum complexity of an angular distribution
have been widely used to yield information on the spins
of various systems. An additional type of conclusion,
which vre shall discuss below, is that the coefFicients of
such an expansion in Y&~ satisfy certain inequalities,
which in the case of A' decay can lead also to useful
information about the spin of A'. To be more speci6c,
let

where
-'~(k)df (&=5=—&)

$= cosi, (2)

Theorem 1

be the distribution with respect to cosl. Here i is the
angle between the decay proton momentum and the s
axis, which is any direction 6xed in any manner (e.g.,
with respect to the production process), but independent
of the angular distribution of the decay products. As
examples, one can quote the following two theorems
(proved in the appendix):

J=—spin of A'

and ( )
—=average over the distribution d.

Theorem Z

If one assumes that 8 is linear in $;

then
1

6J 6J

(4)

The experimental results' so far, with a total of
X~500 cases indicate that )with the +z axis chosen
along ys.Xy; ]

Since we do not discuss the azimuthal distribution of
the decay protons, the sample S can' be considered as an
irlcohererIt mixture of states each with a definite angular
momentum m(= J, J—1, or —J) in units of hatt along
the s axis. We denote by I the statistical weight of the

This large value of the average of f compared to the
maxima given by (3) and (4) lends hope that perhaps
one can narrow down in an unambiguous way, free from
assumptions (such as E spin=0), the value of the spin
of A'.

In the next section the most general conditions on the
distribution function for J= ~ and J= 2 are given. These
lead to certain test functions which when applied to the
experimental data may give a determination of J. The
limit of confidence of such tests is also discussed. In the
appendix we give the general conditions on the distribu-
tion function for arbitrary J.

2J+2 2J+2
*On leave of absence from Columbia University, New

New York.' F. S. Crawford et a/. , Phys. Rev. 108, 1102 (1957); F.
et a/. , Phys. Rev. 108, 1353 (1957); L. Leipuner and R.
Phys. Rev. 109, 1358 (1958).

(3)
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Kisler
Adair,

'Any state function tt can be decomposed into a coherent
mixture of such states, but the interference term between the
states characterized by m and m'Wm always have the azimuthal
distribution {constant) Xe'( ')&+complex conjugate, which
contributes zero when integrated over the azimuthal angle p. If
azimuthal distribution is also studied, more inequalities can be
derived than those discussed in the present paper. They are how-
ever of more complicated forms, involving quadratic or higher rank
forms in the averages of the spherical harmonics.
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state characterized by m. Sy de6nition

and

I =1, (7)

The inequalities that will be derived follow from (8).
To illustrate the reasoning involved, let us take as an
example the case J=-,'. The decay proton and m. must
then be in a mixture of pt and d; states. If the ampli-
tudes of the p and d waves are respectively A and B
where [AI'+[B['=1, the final state wave function
resulting from a h. with spin component- m is

A pI, m+ Bdf, m.

These equations, together with (7), yield the following
identities:

I~+I-I= l —2(P2),

I;+I;=',y ,'(-P,)-,

(lt —I-~) = —(9/2)(P )+ (7/6)(P ),
(18)

(I~—I-:)= —l(P )—l(P ).

The I's are all positive. .Since [n [ (1,one must have

(I-+I--)= la(l- —I--) I

Hence

Lk
—2(P2&j= I

—(9/2)(Pi&+ (7/6)(P3) I,

Ck+8(P2&j=[—i&Pi&—2&P8) I

One therefore obtains for the incoherent mixture that
makes up S,

Clearly one has also from (14) and (16);

(Pr,)=0 for L~4. (20)

it= p I„(Ap),„+Bd;,„)t(Ap), +Bdy, „). (9)

We use the notation ( )t( ) to indicate a matrix
multiplication with respect to the proton spin coordinate
only. 5 is therefore a function of the proton momentum
direction.

It is easy to verify that

Fs-=pL 'pa-—=d~, -'da-
G-* m=d —' mtp~ m p~ meed-' nr,
Fg, =Jig,

G~ = —Gg,

One can therefore write (9) in the form

(10)

(12)

(13)

4!=(I)+I 4)FL I+c4(I) I 4)G;—
+ (I4,+I 4)F;, 4+c4(Iy I;)G;,4, (1—4)

vs here
~=2 Re(A*B)/([A [+IB[2) (15)

is a real constant between —1 and 1 that characterizes
an interference between the two 6nal states of diferent
parities. The functions F and G can be easily calculated
from their definitions (10) and (11);

F:,;= l(1—t') F:=l (1+38,),
G-:.:=-:(-~+a), G:,~=-:(5~-9e),

Equations (19) and (ZO) are necessary . conditions for
T= 23, for an infinite sa'mple g (for which the determina-
tion of the averages (PJ.) is exact). In the absence

of additional knowledge concerning the sample 8 and the
quantity 0., these equations also insure the possibility of
mathematically constructing a sample 8 of a kind of
particle of spin —, with a suitable mixing of parities in its
decay so that the decay product has the distribution 8'.

Mathematically speaking (19) and (20) therefore give a
necessary and sufficient condition for J=-'„provided
the azimuthal dependence is not considered.

For higher values of I the generalization of (20) is

immediate and is well known; (Pl)=0 for L~2J+1.
The generalization of (19) is given in the appendix. The
explicit form for the case J=

~ is listed below

[:l—(25/12)(P )+l&P )j
—

[

—5(Pi)+ (35/12)(PS)—(11/30)(P4) [,

I:l+(5/12)(P )—(9/2)(P )j
(21))

[
—3(Pi)—(49/12)(P3)+ (11/6)(P4) [,

Ll+ (5/3)(P2&+3(P4& j)
I
—(Pi)—P/3)(P3) —(»/3)(P4) I.

To test the inequalities (19) it is convenient to define

the following four test functions:
where $=cos l and f is the angle between decay proton
momentum and the s axis.

From the intensity formula (14) one can compute the
various averages (over 4i) of the I,egendre polynomials

PI,
Tg, t=9Pi+SP2 —(7/3)P3,

T~, ~
—=—9Pi+5P2+ (7/3)P»

T), )=3Pi—SP2+7P3, —
T), ~=——3Pj—5P2—7Pg.,

(22)

The inequalities (19) then reduce to

(T&, )~1, (23)

P.(~) = (e-1)',2'!dP
(P,)= —(3/15) (I;—I;)n—(1/15) (I~ I;)n, (17)—
(P2)= 4 (I'.+I :)+4 (It+I;)=-
(P4) = (3/35) (I) I g)u (9/35) (Iy —I ))u. — —
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Similarly, we de6ne

Ti 1
=15Pr+ (25/4) Ps—(35/4) Ps

—(9/2) P4+ (11/10)Ps,

TL i= —1—5Pt+ (25/4)Ps+ (35/4)Ps
—(9/2) P4—(11/10)Ps,

TL 1—=9Pr—(5/4) Ps+ (49/4) Ps
+ (27/2)P4 (11/2—)Ps, (24)

Ti, 1= 9P—r —(5/4—)Ps—(49/4) Ps
+ (27/2)P4+ (11/2)Ps,

T;„.=3Pt —SPs+—7Ps 9P4+—11Ps,

TL;= 3Pt —SPs —7Ps —9P4 —11Ps.—

Eq. (21) now becomes

(25)

both quite impossible. It may therefore be worthwhile
to select from the experimental sample those A.' pro-
duced at an angle of production 9 between, say, 30' and
150' for which the average polarization is likely to be
greater than the over-all average, and thereby obtain a
sample with a larger value for ($).

APPENDIX

We give here the formulas for general values of J.
Derivation of these formulas follows the same line as for
the case J= 2. The distribution function 8 is expressible
in terms of the diagonal elements I of the density
matrix of Ao;

d= g Fg, (I„+I )+Q Gg, (I„I )n, —(A1)
tn&0

Fz, ~=Fr, D(J—s, J—s ', J, m, m; L, 0)Pr, , (A2)

where n, as before, is a parity mixing parameter with
The inequalities (23) and (25), for J=-,' and-', , apply to t l b t 1 d1 Th f t F d G
infinite samples. For any 6nite sample S of S cases the
determination of the average (T) of any function T has
the standard statistical uncertainty;

(T)=I —ZT I

(1
E~

Gz, =Pl. D(J+,', I—-'„I,m, -m;I., O)P, (A3)

where

where the sums are extended over the finite sample S.
By using the various test functions Tz, in (26), (23),
and (25) one obtains tests for various values of J
together with confidence limits.

The large exPerimentair value of (Pr)=($)—0.17,
together with the large positive coeKcients of E~ in

T~, ~ and TL~ make these test functions the most
sensitive ones. Lacking the detailed experimental infor-
mation, we make the following estimates which, it may
be hoped, are not too different from the experimental
data. We assume i' calculating the right hand side of (26)-

that the experimental distribution of X=500 cases
follows a linear law like (4). We assume also (Pr) =0.17.
The test

The ( ) and ( ) symbols are the 3j and 6j symbols
which are symmetrical versions of the Clebsch-Gordan-
Wigner coeKcients and the Racah coeKcients. 4

The averages (Pl.) are given by

(Pr,)= P S~(L,m)(I +I ), (even L), (A5)

(Pl)= g Sg(L,m)(I —I )rr, (odd I), (A6)
m)0

where

/1
+& '

I

—2 T'
I

—
I
—Z T I, (26) D(l', l; J,m', m'L, ~)

—= (—1) '+of ~+sr+ (2J+1)(2L+1)(2l+1)&(2l'+1)&

(l l' Lt (L J J ) L J JxI, 0 0)II,~, ,I. . ., . (A4)

(T;, ;)~1
then becomes

2.55W0.45~ 1,

showing that J= ~ is very improbable. For the test

one obtains
(Tt.»=1

1.53~0.2'? & 1,

which indicates that J= ~ may also become unlikely.
The discussion in the last paragraph is meant only for

orientation purposes. One sees from the estimate that if
the sample has a slightly larger value of ($)=(Pr), say
(Pt)=0.20, one can conclude that J=s and J=ss are

Sg(L,m)=2( —1)"—~ &i

X(J,m; J, mI J, J;L,O)/V, , „—
(even L), (A7)

Sg(L,m)=2( —1)" ~ &~&

x(J, m; J, mI J,J;L,o)/v. ,.. -
(odd L), (AS)

3 It is of interest to note that for arbitrary spin value J of h.o the
longitudinal polarization of the decay proton from unpolarized A.

is always —n. The special case of J=
~ has been discussed recently.

T. D. Lee and C. N. Yang, Phys. Rev. 108, 1645 (1957).See also
R. Gatto, University of California Radiation Laboratory Report
UCRL-3795 (unpublished).

'See, e.g. , A. R. Edmonds, Angular Momentum irI, Quantum
31echanics (Princeton Unive'rsity Press, Princeton, 1957).
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U Js L
(2J+L+1)!(2L+1) 1

(2J—L)!

The test functions are

2J
Tg, „=—Q (J+~s)Qg(rN, L)Pr„

(m= J, J—1, , —J). (A1.')
The inequalities are

[(T . )j=(J+ )Q (sn 0)=1
(e=J, , —J). (A16)

VJ, I,=
(2J+I.+1)!(2L+1) &

(2J—L)!

Equation (A16) together with

(Pl) =0 for L~2J+1 (A17)

(sL—s) t(sL—s)!(J—sL) l

(A10)
Lf(J+sL) l

The symbols (J, m; J, —m
~
J,J;L, 0) are the standard'

Clebsch-Gordan-Wigner coeS.cients. The inverse of the
Eqs. (A5) and (A6) are given by

give a necessary and sufhcient condition for the case of
spin J, in the mathematical sense discussed in Sec. lI.

To prove Theorem 1, one computes from (AS) that

SJ (1,m) = —m/[2J(J+1)].
Thus (A6) shows that

(P,)=—g nm(I —I=)/[2J(J+1)j
te&0

where

I +I = p Qg(m, L)(PJ.)
even L

~(I-—I- )= Z Q~(~,L)(Pn»
odd L

(A11)

I e , (.P.~) is equal to a weighed average of
[—am/2J(J+1)1 with positive weights. Theorem (1)

(A12) then follows immediately.
To prove Theorem 2, one computes from (A14) that

Qg(m, 1)= —6m/(J+-,').
Thus if (Pr) =0 for L~2, (A15) shows that

Q (~ L) —( 1)m-j—$I

)&(J, m; J, —tps~ J, J;L, O)U~, I.,

(even L), (A16) then gives directly Theorem 2.
We remark that the functions FJ, ~ and GJ, ~ have been

used before in recent literature. 'Q ~( s,1s)L= (—1)

&( (J, sw; J, -m i J, J;L, 0)Vz, L„ s R. K. Adair, Phys. Rev. 100, 1540 (1955); S. B. Treiman,
Phys. Rev. 101, 1216 (1956); T. D. Lee and C. ¹ Yang, Phys.

A14 Rev. 104, 822 (1956).


