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The method of superposition of configurations, which provides
a general solution of the quantum-mechanical many-particle
problem (for fermions), is reformulated so that equations may be
compared with those used in the Brueckner theory. Important
differences occur in application to finite or nonuniform systems for
which the Hartree-Pock or Brueckner self-consistent orbitals are
not plane waves. In such cases nonvanishing single-particle
matrix elements occur which cannot be described by the Brueckner
formalism based on a two-particle operator. Equations for an
effective two-particle operator, equivalent to the variational
equations of the method of superposition of configurations, are
derived for a basis of Hartree-Pock orbitals. At the expense of
making the orbital basis dependent upon the effective two-
particle operator, the orbital basis can be determined by a condi-
tion which is essentially that of the Brueckner method. This con-
dition removes a class of matrix elements which do not necessarily

vanish in the Hartree-Pock basis although they would be neglected
to second-order in a perturbation calculation starting from the
Hartree-Pock wave function. The equations for the effective two-
particle operator are formally the same in both cases but lead to
different operators because of the different choice of basis. In
neither case can the equations be written in terms of products of
such operators, a formalism assumed in the Brueckner theory. It is
shown that the Brueckner condition is not equivalent to the con-
dition which would determine the best possible orbital basis for
the form of wave function implied by the use of an effective
operator dependent on two particles only. The argument of the
present paper is limited to systems with a finite number of par-
ticles, since the variational principle used here is not applicable
without modification to systems with an infinite number of
particles.

I. INTRODUCTION

'HERE is a considerable literature concerned with
the solution of many-particle problems in

quantum mechanics by the method of superposition of
configurations. ' This can be thought of as an extension
of the Hartree-Fock self-consistent field method' but,
as emphasized by Boys, ' whether or not one starts with
a Hartree-Fock calculation, methods can be developed
within the context of superposition of configurations
which necessarily converge to an exact eigenfunction
and energy eigenvalue of Schrodinger's equation.

Recently calculations on the hypothetical infinite
uniform nucleus have been carried out by Brueckner
and collaborators, 4 based on a method which is formally
quite different from superposition of configurations, yet
also has its roots in the Hartree-Fock method. The
Brueckner method has been further developed' and its
theoretical basis has been discussed by several writers. '

'L. Brillouin, Les Champs self comst'stelt de 77-artree et de Foch
(Hermann et Cie, Paris, 1934), No. 159 in series: Actualities
Scientifiques et Industrielles; C. Mpller and M. S. Plesset, Phys.
Rev. 46, 618 (1934); S. F. Boys, Proc. Roy. Soc. (London) A200,
542 (1950);P. P. Manning, Proc. Roy. Soc. (London) A230, 415,
424 (1955);P. O. Lowdin, Phys. Rev. 97, 1474, 1490, 1509 (1955).

2 L. Brillouin, reference 1; C. Mufller and M. S.Plesset, reference
1; R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955);
R. McWeeny, Proc. Roy. Soc. (London) A232, 114 (1955).' S. F. Boys, reference 1.

Brueckner, Levinson, and Mahmoud, Phys. Rev. 95, 217
(1954); K. A. Brueckner, Phys. Rev. 96, 508 (1954); 97, 1353
(1955); K. A. Brueckner and W. Wada, Phys. Rev. 103, 1008
(1956).

~ K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344
{1955);K. A. Brueckner, Phys. Rev. 100, 36 (1955); K. M.
Watson, Phys. Rev. 103, 489 ('1956); W. B.Riesenfeld and K. M.
Watson, Phys. Rev. 104, 492 {1956).

R. J. Eden and N. C. Francis, Phys. Rev. 97, 1366 (1955);
H. A. Bethe, Phys. Rev. 103, 1353 (1956);R. J. Eden, Phys. Rev.
99, l418 (1955); Proc. Roy. Soc. (London) A235, 408 (1956);
J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957); L. S.
Rodberg, Ann. Phys. 2, 199 {1957).

It has been suggested that the Brueckner method be
applied to finite nuclei, and to calculations on the
electronic wave functions of atoms and solids. '

The purpose of the present paper is to develop a
version of the method of superposition of configurations
in which the formal solution to the many-particle
Schrodinger equat'ion is expressed, insofar as possible,
in terms of an effective two-particle reaction operator.
In this development this effective operator is not and
does not have to be completely defined. It exists as a
collection of numbers which can be interpreted as
matrix elements of a two-particle operator under
certain severe restrictions —in particular that the
operator depends upon a choice of basis for its matrix
representation. This choice can be determined by aIi
arbitrary auxiliary condition which may be chosen so
as to simplify the equations of the method. Two such
choices will be considered in this paper, the first, a con-
dition equivalent to the Hartree-Fock equations, and
the second, a condition which corresponds as closely as
possible to the method of Brueckner.

The Brueckner method is primarily concerned with
such an effective two-particle operator. The present
paper will examine the possibility of defining such an
operator, starting from a formal solution to the many-
particle problem, and will discuss certain discrepancies
that arise in an attempt to apply the Brueckner for-
malism to finite systems. The principal difficulty in
finite (or nonuniform) cases is that plane-wave expan-
sions no longer simplify the problem. Matrix elements
which are identically zero because of translational

' In the present paper "the Brueckner method" will be used to
denote the self-consistent procedure for finite systems summarized
by Brueckner and Wada, reference 4. Secs. II and VI, and by
Bethe, reference 6, Sec. III. A discussion of higher order correc-
tions and the infinite case (where it is necessary to distinguish
between the Brillouin-Wigner and Schrodinger perturbation
theories) will be given in a later paper.
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symmetry in the uniform infinite case no longer vanish
and must be explicitly included in the theory. Matrix
elements arising from one-particle transitions are of this
nature. Although the auxiliary condition on the basis
for representation of operators can be chosen explicitly
to make a large class of one-particle matrix elements
vanish, it does not seem to be possible to remove them
completely from the formalism. The matrix elements of
this kind which remain after application of the auxiliary
condition cannot be represented as matrix elements of a
two-particle operator and hence cannot be treated
within the Brueckner formalism.

There are further diKculties which arise in finite
systems when the determinantal function of stationary
energy is degenerate or nearly degenerate. This situ-
ation is usually characterized by a configuration of
un6lled shells in the independent-particle approxi-
mation. In such cases the auxiliary condition on one-
particle basis functions indicated by the Hartree-Fock
or Brueckner method (applied to a single determinantal
function) is not in general compatible with the special-
ized form of such functions which is assumed in applying
group theoretical techniques to simplify the problem.
For example the atomic orbitals appropriate to the
determinantal function of lowest energy for an unfilled
atomic electron shell cannot in general be expressed as
products of radial functions and single spherical har-
monics, and cannot be transformed into such products
without destroying the stationary property of the
energy of the determinantal function. This situation
has been analyzed in detail elsewhere. ' The general case
can be treated by trivial modifications of the method
of superposition of configurations without losing the
considerable advantage of available group theoretical
methods. It is not possible to describe the technique
applicable to such cases in terms of an effective two-
particle operator. Hence the Brueckner method could
not be used in connection with the usual group-
theoretical methods.

One of the results of the present analysis is to obtain
a formalism as nearly as possible equivalent to the
Brueckner method, ~ wherever both are applicable,
which is derived from the variational principle and
resolves many of the apparently ad hoc features of the
Brueckner method. Although the present paper does
not make use of perturbation theory, it should be
pointed out that the principal equations derived here,
if used to define a calculation by successive iterations,
would lead to summations over expressions which
exclude only the particular "unlinked cluster" terms of
perturbation theory' ' that correspond to matrix ele-
ments connecting the trial state Co with itself. Other
"unlinked clusters" would not be cancelled out in the
truncated basis of determinantal functions considered
here. These terms arise from a perturbation expansion
of the total energy shift hE and should not be im-

R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955).

portant for systems with a finite number of particles
unless DE is comparable in magnitude to the excitation
energy of the two-particle excited states closest to Co.

The variational approach of superposition of con-
figurations cannot be used unless all integrals are finite
over operators occurring in the many-particle Hamil-
tonian and trial one-particle wave functions. A nuclear
potential with an extended "hard core" (i.e., infinite
over a finite region in two-particle space) must be
treated by the Brueckner method, which was designed
to deal with this problem. However, in solid-state,
molecular, and atomic problems the Coulomb inter-
action operator leads to finite integrals. Presumably
both approaches are possible with suitable modi-
fications to the Brueckner method for finite problems.
Insofar as the nuclear two-particle interaction can be
represented by an operator which leads to finite inte-
grals, both approaches are again possible and should be
used to complement each other.

The present paper is concerned only with 6nite
systems for which the di8erence DE between the true
energy and the Hartree-Fock energy is small. When AE
can be neglected in comparison with the energy of
doubly excited states the equations derived here are
equivalent to those of the Brueckner method' except
for differences discussed in the text.

II. REFORMULATION OF THE METHOD OF
SUPERPOSITION OF CONFIGURATIONS

The general solution to the many-particle Schro-
dinger equation,

with
II=+ T(i)+P v(i,j), (I)

'b i&j

for a system of lV fermions, can be expressed as
4=+„c„C„, (2)

where {C„}is the set of all normalized Slater deter-
minants

C „=det@;„. (3)

constructed from a complete orthonormal set of orbitals
(one-particle wave functions p,). To avoid special con-
sideration of a continuum it will be assumed that E
is finite and that the set of orbitals is denumerable
(there is no difficulty in extending the results to the
case S—+~ and to a basis of orbitals specified by a con-
tinuous parameter). The discussion will be limited to
operators (1) which have finite matrix elements
between normalized determinants.

The coefficients c„ in (2) are components of the
eigenvector of the matrix (p~H

~
v) corresponding to the

eigenvalue E:
g„(pi Hi v)c„.=Bc„. (4)

It can be shown' that Eq. (4) is equivalent to the
' See Appendix I. This is the steady-state form of the scattering

matrix considered by B. Lippmann and J. Schwinger, Phys. Rev.
76, 469 (1950); M. L. Go1dberger, Phys. Rev. 84, 929 (1951);
K. M. Watson, Phys. Rev. 89, 575 (1953).
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homogeneous equations for an auxiliary vector G„p,
where

G,o=
&~.G.o

v g—D„

Then the coeKcients c„are proportional to G„o/(E —D„).
Here N„„=(p IH I v) (1—8„.), a matrix with no diagonal
elements; D„= (p, I

H
I v)B„„,a purely diagonal matrix.

If the coefficient co is set equal to unity (i.e., 4' is not
normalized), Eqs. (5) are equivalent to the inhomo-
geneous equations

Ã„,G,p

G,0=%„O+Q'
~~o E—D„

(6)

together with the auxiliary condition

&=Do+Goo. (6')

Suppose that a determinant Cp has been constructed
from the erst E of an orthonormal set of orbitals.
Indices i,j,k, . ~&X will be used for this set, and
indices a,b,c, . &E will be used for other orbitals from
a complete orthonormal set. Then the complete ortho-
normal set of determinants C„can be classified as

.a @,.ab @,. abc ~ ~ ~ (&)

where the lower indices i &j&k & && 1V denote
orbitals occupied in Cp which are replaced by orbitals
E&a&b&c . in determinant C„=—4;,I,...'b'".

Consistently with this notation, P;;q... will be used
to denote a summation over all e-tuples of indices with
i&j&k & &~E. Correspondingly P,t„... denotes
summation over E&a&b&c&

For a Hamiltonian of the form (1), there are no
matrix elements between Cp and any determinant in
which more than two orbitals have been changed.

Hence, if C p is in some sense an approximation to the
true wave function 4, it will be a better approximation
to diagonalize H over the set C p, C i, C;j b, which
includes all determinants having matrix elements with
C». Equations (6) for this problem are:

(olal")(;IGlo)
(olGlo)

(o I el "")("'IGI o)
+ZZ, (8)

ij ab D . .ab

(,'" I
a I,') (,'I G

I o)
(,'"IGlo)=(,'"IIIIO)yE&

'

a E.—D
(' "I

&
I
"')("'IG

I o)
+Z Z—,(8')

ij ab E—D"
(' '"'IGI o) = (' '"'I &I o)

("""I&l')(' IGIo)
+ZZ

a E—Di
("""

I
&

I
"')(""

I
G

I o)+2 2 (8")
ij ab E—D "a'

The diagonal matrix elements of II are to be omitted in
all summations.

The auxiliary condition (6') becomes

z= (olalo)+(OIGIO).

If determinants C;,I,
b' were added to the basis set,

there would be an additional set of equations (8"') for
matrix elements

(" """IGlo),

and additional terms involving such matrix elements
in Eqs. (8') and (8").Since all matrix elements of the
form

(ol~l;,.")
vanish for a Hamiltonian of the form (1), there would
be no additional terms in Eq. (8) . The new determinants
affect the energy only indirectly through the matrix
elements (, IGIO) and (,, ~IGIO). These equations
become equivalent to the original Schrodinger equation
when the orbitals form a complete set and all deter-
minants C i;~... ' " are included.

It is possible to interpret the sets of numbers

(, IGlo), (,,'~IGIO), (;; ~'IGIO), etc.,

as matrix elements of effective operators G~, G2, G3, etc.,
which are symmetric sums of operators acting on the
coordinates of one, two, three, etc., particles, respec-
tively. If equations for an effective three-particle
operator with matrix elements (,;q'~'IGIO) are not
included explicitly, then it is not compatible with the
variational principle to include matrix elements in-
volving the corresponding determinants C;,pb' in
determining the effective one- and two-particle oper-
ators.

In finite problems there is generally no simple
expression for the integrals involved here which can be
summed in closed form over a complete set of orbitals.
In such cases a practicable procedure is to select a set
of determinants indicated by perturbation theory Lmost
conveniently treated in the form of Eqs. (8), (8'), etc.)
to have the greatest effect on the true wave function
and to solve the appropriate equations which diagon-
alize the many-particle Hamiltonian over this truncated
basis. This produces a new trial wave function ex-
pressed as a linear combination of this truncated set.
Further determinants can be added by iterating
this procedure of estimating the contributions of
individual determinants or linear combinations of them
by perturbation methods and then diagonalizing exactly
a matrix whose basis has been selected from functions
which most affect the perturbation calculation. '

In such a procedure one would not ordinarily include
all determinants of the form C i, b before including any
which involve three-particle transitions or more. For
finite systems, whenever the total energy shift hE is
small compared with the energy of doubly excited
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states, the Brueckner method would be equivalent to
doing just this. This is advantageous only if there is
some convenient way to estimate the summations over
complete sets of functions required in Eqs. (8), (8'),
and (8").The remainder of this paper will be restricted
to consideration of the truncated set of determinants
Cp, C;, C; b.

III. CHOICE OF ORBITALS: HARTREE-
FOCK CONDITION

The equations derived up to this point have been
valid independently of any particular choice of the
basic orbitals. However, if C» were simply an arbitrary
determinant there would be no reason to expect the
truncated set C p, C;, C;, ' to be an adequate basis for
expansion of the true wave function. In the Hartree-
Fock approximation one chooses C p to be the best single
determinant. If this is expressed mathematically by
choosing the set of occupied orbitals p; which makes
(OIHIO) stationary, then it turns out that for this
basis of orbitals all matrix elements (; IH IO) are iden-
tically zero. ' "

In the Hartree-Fock basis the one-particle contri-
butions to Eq. (8), and hence to the energy, vanish no
matter how many higher order e8ects are taken into
account. Hence the correction to the Hartree-Fock
energy (of a single determinant as always in this dis-
cussion) can be expressed entirely by a two-particle
operator with matrix elements equal to (;; ~IGIO).
Since all ( IB'IO) vanish a 6rst approximation to
(; IGIO) is zero. If this is substituted in Eqs. (8")
we have left just the equations arising from the
truncated set of determinants C p, C i; b. These equations
lead to an effective two-particle operator similar in
nature to the Brueckner operator but derived in a
basis of Hartree-Fock orbitals. This degree of approxi-

mation, including determinants Cp and C;; b in the
Hartree-Fock basis, was taken into account in a
previous analysis of the binding energy of light nuclei. "

If G is thought of as an effective Hermitian two-
particle operator,

G=Z't N(i, j), (10)
then the matrix elements in Eqs. (8), etc. , can be
expressed in terms of integrals over u and the operators
T and v of the original Hamiltonian as follows:

(Olal*t") = (i~I~lab)N,
where

(~*
I
~

I ys) ~ —= (~~
I
t

I ys) —(~*l t'I sy)

("'IGIO) =(ablglij)~=(ijlglab)~*,
(""I&I"')=(cdlt lab)~

( "I&l';")=(ijl~l»),
( "I&I"')=(icl'Ia&)~if c)b, k) jor c&b,j &k

= —(ic
I
~

I ak)& if either c(b or 0(j,
(t"'I &I "')= (il T

I &)+E(ill ~l»)~
lQj

+ (ib
I

&
I &b)~+(ia

I
&

I
&a)»f &)j

=negative if k&j.
('t" I&l't")=(cl2'la)+ & («l~l«)~

l&i, j
+(cblvlab)~ if c&b

=negative if c)b. (11)
The Hartree-Fock condition on the basis of orbitals is

N

(' I &IO) = (al 2'li)+E(«l alii)~=0

for all i &~E, a)N. (12)

The equations derived from Eqs. (8), (8") for the
truncated set Cp C b are:

(»I ~ lij)~(ab
I
~ I»)~

(&a
I
~ Iic)~(bc

I
tt

I j&)~ (&b
I
t

I ic)~(ac I
tt

I j&)&

~=a('I~I')+r(' I I') +r, Z "'I'I"""I"I"'"
E—D"22

(ab
I

~
I «)~(«l ~ Iij)~

(ablglij)~=(abl~lij)~+ 2 +Z
cd&a, b D ..cd E—D„b
(&a

I
~

I jc)~(bcl tt Ii&)~ (&b
I
~

I jc)~(acl g li&)~+2
kWi, j c~,b D. bc E—D;g,ac

(13)

D. bc E D. ac

(aclglij)~
L(b I

2'I c)+ 2

(baal

~
I
ci)~+ (ba

I
&

I «)~j
l&i, j D . .ac

(bcl N
I

1j)~
I

I (a I
T

I c)+ P (al I
~

I
cl)~+ (ab I

~
I
cb)~l

Jl&i, j E—D"'
(ablgl jk)

L(&I2'li)+ 2 (»lwlii)~+(ual~lia)~+(&bi~lib)~)
i&i, j E—Da"

(ablglik)—L(&12"
I j)+ & (&cl~l ji)~+(balll ja)~+(&bl~l jb)~l . (14)

l/i, j. D &Nb.
t' L. Brillouin, reference i.

"R.K. Nesbet, Phys. Rev. 100, 228 (1955).
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It should be noted that the operator formalism is applicable only to the 6rst term of Eqs. (14) since the others
are not in the form of matrix products. To simplify these equations it is convenient to introduce the Hartree-Fock
single-particle Hamiltonian Ko, defined by its matrix elements

(ml Bcpl') =(ml Tln) +g(Ill rtleE)~. (15)

%ith this definition, formulas such as

9 l&lc)+ 2 (Ml~ld)~=(&l ~olc) —(»I~I~i)~ —(&jl~l~j)~

can be used to reduce Eqs. (14) to

(utl.
l j) (

flatlet)

, (~&l~l«)~(«l&lij)~
(ahl m

I
ij)&= (ah I

v Iij)&+2' +2
cd D . .cd kl

, (&~l~l jc)~(&~l~li&)~ (&&l~l j~)~(«l~li&)~+2' 2'
lc c D. bc E—D;I, '

(&~I r li~)~(&~1 ~1 j&)~ (&& lr li~)~(«l ~l j&)~

(&I ~el~)(«l~lij)~ (&I ~el&)(&~lllij)NI

E D.l, bc D. ac

cuba, b E—D;," D . .bc

I
(&I &oli)(~&l~l j&)~ (&I ~ol j)(~&1~ii&)~

(16)
~a~, r I E—D;q'~ E—D

The primed summations include all values of indices
k(l ~&Ã and of E(c(d with the exception of terms
for which the denominator would be E—Di;a'.

The Hartree-Fock condition (,'I8'lo) =0 is equiva-
lent to (al Xeli)=0. Since Co is independent of any
unitary transformation which does not mix occupied
and unoccupied orbitals of Co we can choose a basis in
which Xo is diagonalized for all orbitals, consistent with
the Hartree-Fock condition. In this basis (the canonical
Hartree-Fock basis), all terms in Eqs. (16) which
involve Ko are zero.

Equations (16) are exact as they stand for the
truncated basis Co, C;,. b independently of the Hartree-
Fock condition. The principal eIIfect of this condition. is
to remove the terms arising from determinants C, from
Eq. (8) for the energy and to justify neglecting such
one-particle terms in Eqs. (8").

E= (0 I
B 0)+ (0

I
G

I 0)

o
I
e I,,'~) ("'IG

I o)
=(ol&lo)+zz, (18)

D . ,abij ab

('"'I Gl o) = ('"'I&l o)

ij ab

(";""
I
G

I 0) = (,","'IIf
I 0)

D, .ab

This will be referred to as the "Brueckner condition"
since it has essentially the same effect as the auxiliary
condition which determines the basis of orbitals in
various statements of the Brueckner method. "

Under the Brueckner condition the equations for the
many-particle basis C o, C;, C;; b reduce to

IV. CHOICE OF ORBITALS: BRUECKNER CONDITION
(' ""I&l'")("'IGlo)

+2 Z — (2o)
ij ab E—D "abil

One very great practical advantage of the Hartree-
Fock condition is that it can be applied at a stage in the
calculation when only a single determinant is under
consideration, prior to solution of Eqs. (8), (8'), etc.
It has the disadvantage that it does not completely
remove the one-particle terms from Eqs. (8"). These
terms can be removed at the expense of imposing a
condition dependent on the solution of Eqs. (8) and
(8") by requiring that

(; IGI0) =0 for alii &~Z, a)E.

The diagonal matrix elements of H are to be omitted
from Eqs. (20).

If 6 is thought of as an effective Hermitian two-
particle operator

(21)G=Q;;t(i j),
"K. A. Brueckner and W. Wada, refereI)ce 4; H. A. Bethe,

(17) reference 6, Sec. III.
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which differs from the operator I defined in Eq. (10)
because of the diGerent conditions on the orbital basis,
Eqs. (18)—(20) can be expressed in terms of integrals
over the operators t, T, and v by use of the expressions
in Eqs. (11).Equation (18) for the energy reduces to
Eq. (13) with e replaced by the Brueckner operator t
and Eqs. (20) reduce to Eqs. (14) or (16) with the
same replacement. The principal change is that the
Hartree-Fock condition, Eq. (12), equivalent to
(al Xpli)=0, is replaced by the Brueckner condition
(19) which reduces to

(~jl ~
I
&o)~(&o

I
t lij)~

0=(al xpli)+P g—
D ..bc

(j~l I'f)-(f ltlj~)
+ZZ

jk E—Dp'

(jl ~p
I &) (~&

I
t lij)ip.+2 Z (22)

The summations include all values of j(k &~X and
E&b&c. Again it should be noted that the operator
formalism is not applicable to the third set of terms of
Eqs. (22) since they are not in the form of matrix
products.

Equations (22) can formally be set equal to matrix
elements of an effective one-particle operator (al gpli).
The usual statement of the Brueckner condition is that
the basis orbitals should be eigenfunctions of the
effective operator gp."This implies Eqs. (22) but is an
unnecessarily strong condition for simplifying Eqs. (8),
etc.

In the calculations to date on infinite uniform rnatter"
both conditions (22) and (12) are identically satisfied
for plane-wave orbitals by conservation of momentum.
Hence the Brueckner condition has not yet actually been
applied. In such cases there is no diGerence between
the effective operators I and $.

In calculations on finite systems conditions (12) and
(22) will not in general be compatible. Hence the one-
particle matrix elements in Eqs. (22) and (14) or (16)
will not vanish under the Brueckner condition even
though they can be made to vanish by a transformation
of orbitals compatible with the Hartree-Fock condition.
It would be necessary to take such matrix elements into
account in applying the Brueckner method to finite
systems.

V. DISCUSSION

Since no eGective three-particle operator is considered
in the Brueckner method, for small AE the trial wave
function is a linear combination of determinants 4'p,

C,', C;; '. The effect of the con.dition (12) or (22) is to
exclude the determinants 4; . In the Hartree-Fock
case, applied to a ground state, the determinant JIpCp

"See reference 4 and H. A. Bethe, reference 6, Sec. XI.

Consider a matrix eigenvalue equation,

Zv +v,vov Ecp,
'4 See Appendix II.

(A-1)

is that of minimum energy. Application of Eqs. (13)
and (16) can only improve this energy, since they are
equivalent to increasing the trial basis from Cp to Cp,
4;, ~. Hence a calculation in the Hartree-Fock orbital
basis, using the effective operator I LEq. (10)j would
necessarily obtain a better energy and wave function
than the Hartree-Fock result. A further improvement
could be assured by choosing the orbital basis which
obtains the best energy from diagonalizing the Hamil-
tonian over the set ~Cp, ~4;, ' in that orbital basis.
Here the subscript M is used to refer to this basis.

The wave function implied for small hE by use of
the Brueckner eGective two-particle operator t is also a
linear combination of some ~Cp and ~C;; in the
Brueckner basis. It can be shown that the Bruckner
condition (22) is not identical with the condition re-
quired to minimize the energy of a function of this
form. "Hence, unless there is an accidental degeneracy,
the single determinant ~Cp has necessarily a higher
energy than ~pCp, since the energy of the latter is
minimized, and the best linear combination of ~4 p and
~4 „~has a higher energy than the best function of this
form (a linear combination of ipC p aiid ipC;&'P). The en-
ergy of the best linear combination of IIpCp and
IrpC;., ' must lie somewhere between that of ~pC p and
the best linear combination of ~C'p and ~C;, . Unfor-
tunately, since the set ggCp, gC', & is far from complete,
it is not possible to prove that the best linear com-
bination of ~C p and ~C „~has an energy below that of
the single Hartree-Fock determinant ~p@p nor a fortion
below that of the best combination of IIpC'p and
IIgC;,. ~. Unless some further proof can be given, the
relative validity of calculations equivalent to super-
position of configurations Cp and 4;, ' based on the
Brueckner condition (22) and on the Hartree-Fock
condition (12) can only be decided empirically.

Since the Brueckner condition always can be satisfied
by a basis of plane waves, corresponding to uncoupled
particles for a finite system, it would be of great im-
portance to establish the existence of other nontrivial
solutions, as has been done empirically for the Hartree-
Fock condition, before applying this condition to
problems in which for practical reasons one must work
with an arbitrary 6nite set of orbitals and thus be
forced to truncate the summations in Eqs. (13), (16),
and (22). Otherwise there would be danger of con-
verging to the trivial solution, if it should be unique.
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If H„„ is divided into a purely diagonal matrix D„
=H„,„b'„„and matrix with no diagonal elements E„„
=H„,(1—8„„),this can be written

Now define
g.X„„c„=(E—D„)c„.

G„o—= (E D„)—c„.

(A-2)

(A-3)

Then the eigenvalue equation becomes

E„„G,p
G.o=Z

v g—D„
(A-4)

If the eigenvector is normalized so that cp=1, this is
equivalent to the inhomogeneous equations

The self-consistency condition Zqs. (19), (22) is

('"'lale) =o.
This is not equivalent to (A-6) since it neglects matrix
elements between + and determinants C;,j ' b and
CP which occur in (A-8). This has no effect in the case
of the infinite nucleus of uniform density, since all
these matrix elements are identically zero for plane-
wave orbitals.

The actual self-consistency condition of Brueckner
differs from (20) by one detail which cancels out some
of the matrix elements arising from (A-8). The
Brueckner formula represents matrix elements

('"'I&l',")=(jl2'I&)+ 2 (V I~lb&)
E„„G„p

G,o=&,o+Q'
v~ E—D„

(A-5) +(&'j I&I&'b)b (A-9)

simply by
under an auxiliary condition which determines the
eigenvalue E,

(oll ol~ &)& (A-10)

Ep„G„p
&—Do=Goo=g

„~p jv—D„

Now in the expansion of (1/dn)(6@IVI+) these
(A-3') matrix elements occur as

The numbers G„p can be thought of as the first
column of a matrix called the "reaction matrix. "

, b)
j~e bga'

(A-11)

APPENDIX II. CONDITION FOR
STATIONARY ENERGY

But. there is another term in the expansion, due to
determinants C;b,

For an arbitrary function 0', the mean value of the
energy will be stationary for variations N if where

—Z Z c'~"(~'I&I0),
j&p b&a'

(A-12)

(N IVI%)=0. ('I &10)= (jl &I &)+ 2 (bjl~ lbf)~
If 0' is a linear combination C o+gC;, 'C, ,'b, then if

the energy is stationary for all variations of the set of
orthonormal orbitals which retain the orthonormality
property, (A-6) must hold for the particular variation

+ (b j I
~

I
bV) N (A-13)

Hence each term in the combination of (A-9) and
(A-13) reduces to

=dn P 8P = —de Q (A-7)
(~'jl ~

I
o'&)~—(b'jl ~lb'&) ~ (A-14)

where only two orbitals are changed.
For this variation,

+PaQ g, ab@, a'ab.
do, ijgi' ab~'

C, a'b@ b

j4i' be'
(A-8)

which may be compared with (A-10).
All other matrix elements between (A-8) and +

involve the coeKcients C;, ' quadratically. If they are
small, it can be argued that the Brueckner self-
consistency condition is an approximation to the con-
dition of stationary energy.


