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The theory of cluster expansions is studied by a new method. A general procedure for obtaining the
thermal average of a many-body function as a series in powers of density is derived. A recipe based on the
Baker-Hausdorff theorem for reducing quantum thermal averages to th:ir classical analogs is also described.
These results are used to express the slow neutron cross sections of imp rfect gases as power series in mo-
lecular density. Formulas are given for the leading contributions to both elastic and inelastic scattering.

1. INTRODUCTION

~ 'HE scattering of slow neutrons by nuclei subject
to chemical forces in atomic and molecular

systems can be used as a tool to study these forces.
This technique is being developed as a new and welcome
supplement to such well established methods as x-ray
and electron diGraction. Considerable work has been
done on neutron diffraction by crystals and within the
past few years, the use of neutrons in the study of
gases and liquids has been initiated. '

Methods have recently been developed'- for the
treatment of inelastic as well as elastic scattering of
neutrons by gaseous systems. Since the eGects of inter-
molecular interactions were considered quite crudely,
and only in connection with the "outer eGect, " the
results are strictly valid only in the limit of vanishing
density. When scattering experiments are performed at
gas densities at which the departure from ideality is
manifested in other properties, corrections to the
formulas previously given may be required. From the
investigation of such imperfect gas corrections, one may
hope to elicit information on the potentials which act
between gas particles and on other aspects of the
behavior of dense gases.

In the present work, we extend the methods of
reference 2 to obtain the neutron cross section in a
power series in the gas density, the leading term of
which is the ideal gas result. For this purpose, a method
is presented in the next section which both unifies and
generalizes procedures previously used for deriving
density expansions in simpler contexts. We shall confine
our treatment to gases whose behavior approximates
that of a classical ensemble of particles (a slight
restriction in practice). A concise technique for obtain-
ing classical limits of averages over systems in thermal
equilibrium and quantum corrections to them is also
explained in Sec. 2.

* Work supported in part by the U. S. Atomic Energy Com-
mission.

f Now at the University of California, Berkeley, California,' G. E. Bacon, Eeutrom DQfraction (Clarendon Press, Oxford,
1955),

'A. C. Zemach and R. J. Glauber, Phys. Rev. 101, 118, 129
(1956), hereafter called ZG.

We discuss first some aspects of the scattering
formalism. The excitations of a target system bom-
barded by a slow-neutron beam remain, as a rule,
unobserved. We recall the optical theorem which relates
a total cross section, summed over all scattering
processes, to a coherent scattering amplitude, i.e., to
an amplitude for the process which leaves the dynamical
system as a whole unaltered. An analogous result is
achieved in the present case where a summation is
performed over the final states of the scattering medium
only. In the time-dependent formulation of the diGrac-
tion problem, the relation takes the form'

a (8) = (2zr)
—' P... (A,A, +8„CP)

X) ' (k/kp)e
—'"(x„„)dtde, (1.1)

(x„„)=(f~e' 'exp(izc. r„)e '~'exp( ix r„—) ~f), (1.2)

for the difFerential cross section when the initial state
of the scatterer is zlr.

Thus the cross section, originally computed within
the formalism of the first Born approximation, may be
reinterpreted in terms of a twofold collision of the
neutron and the scatterer following which the scatterer
returns to its initial state. Specifically, if the expression
for (7t„„) is read from right to left, we find that the
scatterer, initially in state tt, loses momentum zc in a
collision of the neutron with nucleus v', propagates
through a time interval t, and regains the momentum
v. in a collision involving nucleus v. The cross section
depends upon the overlap of the latter state with the
state e '~z1t resulting from an uninterrupted temporal
development of P in the course of the "collision time" t
The final states of the true scattering processes appear
as intermediate states in the double scattering picture.
The presence of the phase factor e '" insures that in
the integration over collision times, contributions from
intermediate states which disobey the conservation
condition

g= jv, —g~

'The reader is referred to ZG for definitions and notation.
Boltzmann's constant and A have unit magnitude in the system
of units adopted.
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interfere destructively. Equation (1.1) leads to compact
and powerful methods for the calculation of cross
sections; in addition, the accompanying physical inter-
preI;at, ion is of great utility in appreciating the quali-
tative features of the scattering.

The approximation method' ' based on an expansion
of all or part of the expectation values (1.2) in ascending
powers of t is of particular importance both because of
its wide domain of validity and the comparative
simplicity of the ensuing computations. The procedure
is applicable when the variation in time of the expanded
quant, ities is slow compared to the rate: of oscillation of
e '". We shall employ it in treating the imperfect gas
problem. Work extending these calculations to denser
systems such as liquids is planned.

2. CLUSTER EXPANSIONS AND
THERMAL AVERAGES

We present a theory of cluster expansions which
unifies and extends the formalism originated by Ursell
and Mayer' and which provides a foundation for our
later calculations.

The central problem concerns the average of a
many-particle operator Q,

QlQI~&

the W functions is then dered by

co

G (u) Q u(n)W (gn)dyn
n=o ~!J

(2.3)

In this equation, 5'0 is taken to be unity. Employing
the technique of functional differentiation with respect
to the parametric function, as expressed by

u(y) =8(r—y),
bu(r)

u(p) W(g)dg= W(r), etc. ,

we recover each IVY from the generator by the recipe:

WN(r~) = ~ ~ ~ Gs (u)
bu(rl) bu(r~)

(2.4)

A many-particle function which vanishes when its
arguments separate into isolated clusters will be termed
a cluster function. The expansion of 8'~ in terms of
cluster functions will now be derived. Let us dehne, as
in (2.3), a generator Glf(u) for a set of functions U10 (r3')
and consider the relation

(2.5)G~(u) gev(n)

p(rl, r2, ,rg)Q)(rl, ~ ~,re�)drl ~ dry, (2.1)
which serves as a de6nition of the U functions in terms
of the 8' functions. The fundamental property of Eq.
(2.5) is that each U~ so defined is a cluster function if
and only if each 8'~ is separable. A proof of this theorem
is given in the Appendix. Applying (2.4) to (2.5), we
infer that

Wx(r )=U~(r )+Qx U10 1U1+
+Ul (rl) Ul (r2) Ul (r~). (2.6)

The general term of (2.6) is

Qll UxlU~2 U10„, Q E;=S,
where the symbol PN indicates summation over all

ways of allotting X arguments to the functions which
follow. For example,

Q3 U2Ul U2(rl r2) Ul(13)+U2(rl r3) Ul(r2)

+U2 (r2, r3) Ul (rl) .
W~(r") —+ W„(r'")Wm(r™) (2.2)

Solving (2.6) for the U functions, one obtains

in some state or thermal ensemble of states of a gaseous
system. The integrand above is a separable function;
i.e., when the particles divide into isolated clusters,
the function itself separates into factors, each a function
of the coordinates of particles in one cluster. Corrections
to the ideal gas limit of (2.1) which account for inter-
particle collisions make up a series in powers of mo-
lecular density. Series of this type are closely related
to the cluster expansions of separable functions.

A situation of complete symmetry will be examined
first. For brevity, we designate a set of particle coor-
dinates r&, r2, ,r& by r and dr&dr2 dr& by dr~. For
each integer N, let WN(r ) specify a symmetric coor-
dinate function which is separable in the sense that if r~
divides into isolated clusters r'" and r™,22+223= X, then

We introduce a parametric function u(y) of a single

position coordinate and write u&") in abbreviation of
the product u(gl)u(y2) u(y ). A generator Glr(u) for

4 G. C. Wick, Phys. Rev. 94, 1228 (1954).
5 See, for example, Hirschfelder, Curtiss, and Bird, M'olecular

Theory of Gases and LiquQ's (John Wiley and Sons, Inc. , New
York, 1955). Also, J. deBoer, dissertation, Amsterdam, 1940
(unpublished), where the expansion of thermal averages is
obtained for the completely symmetrical case.' That is, clusters whose physical separation exceeds the range
of molecular forces.

U0 0 Ul(rl) Wl(rl)

U2(rl r2) W2(rl r2) Wl(rl) Wl(r2)

U3(rl r2 r3) W3(rl r2 r3) Z3 W2W1

+2W1(rl) Wl(r2) Wl(rl), etc.

(2.7)

We suppose hereafter that the cluster functions of
interest depend on coordinate diGerences only. When e
is sufficiently small, a connected e-particle cluster will

occupy a negligible fraction of the volume V which
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encloses the gas particles. In this case, the cluster
integral J'U~(r )dr is proportional to V. For if the
integrations over r ' are carried out with rN fixed, the
effective limits of integration are set by the range of
molecular forces rather than the size of the enclosure.
Then the result must be independent of both V and
rN, and the final integration over rN supplies a factor
of V.

We now consider separable functions W~, ~(r~, s~)
which are symmetric functions of the groups r~ and
s~ separately. A second parametric function b(e) is
required for the definition of the generator:

and 8 i, N ~ as the generalized Slater sum:

&(exp[—H(r, s~ ')/T]f;(r, s~ ') (2.12)

Functions 8'~, N with M&~ 2 remain undefined, but no
definitions are needed. The relations implicit in (2.8)
and (2.10) are still of value; one simply ignores all
terms containing a power of a higher than the first.
Utilizing the definitions above, we find that

1
G (& b) P (i(m)b(n)W (~m +n)d~md(rn

m! e!~

where t/t/'o, o=1. It follows that

W~, ~(r~,s")= Gs (()„b)
bu(r, ) &b(s~)

(Q(r))&——(1/N)(w, , N i/wo, &).

Equating coefficients of a in (2.10), we obtain

P b "w, , „=P b"u, , „exp(P b'uo, ),)
=Z b"iii, ~ Z b wo, i,

whence
N—1

wl, N 1 —p 'ii1, nwo, N—1—n
n=o

(2.13)

(2 14)

With a similar definition for the generator Gp(a, b) of
the cluster functions, we have

Gs (a b) =eo&(~ ') (2.8)

The derivation of U))r ~(r~r, s~) in terms of the W
functions closely resembles the method of the previous
case.

The relations between the integrals of the functions
at hand are also of interest. If we define

1 1
wjr, )i —— W~, ~(r~,s~)drys~,

1!d!11t!~

I U (rjr sN)drirdsK
!Ã

(2 9)

and replace a(!)) and b((r) by the constants a and b,
respectively, then (2.8) becomes

P a"b"w, =exp(P a b"I „). (2.10)

The extension to situations of still lower symmetry is
obvious.

As an application of the foregoing work, we determine
the density expansion for the thermal average (Q(r))r
of an operator function Q(r). The operator may depend,
in general, on all molecular coordinates of the X particle
assembly; the notation indicates, however, a lack of
symmetry between r and the remaining coordinates.

We define 8'o, N as the Slater sum over a complete
set of molecular states f,":

We introduce the quantities D„,

D„=(1/V)ui, „, (2.15)

which, for small e, are essentially volume independent.
The partition sums z», „are connected with the fugacity
s of the gas by'

~O, N—n= ~"~O, N. (2.16)

(Q()) =(V/&) 2D- "+'
n=o

Finally, we take advantage of the equation

(2.17)

s= (1V/V) exp —Q P„(1V/V)",
n=1

(2.18)

which expresses the fugacity in terms of the molecular
density and the irreducible cluster integrals p . The
latter are derivable from the molecular potential. With
the help of (2.18), we conclude that

(Q(r))r =Do+ 9'/V) (Di —PiDo)+ (&/V)'LDo —2PiDi
—(p2 —

opi') Do]+ (2 19)

which is the desired density series.
In terms of the molecular potential V(r, r;), the-

classical expressions for the first two irreducible cluster
integrals are

The substitution of (2.14) into (2.13) yields, in virtue
of (2.15) and (2.16),

N—Z

( 2~ q»&o
Wo, ~(s")=

~ [ Z'4"*(s )
&mr&

Xe pL —&(s")/T']4, (s ), (2.11)
'We omit consideration of quantum statistics in this paper.

The Slater sums require an additional factor of X! if the wave
functions represent Bose or Fermi systems.

P,= f(r)dr,

p =k ~f(r)f(r —s)f(s)«d»

where f(r) =e ~(')r —1.

(2.20)

(2.21)
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whose higher terms are successive commutators of A
and B. The terms given here may be verified by
substitution into (2.24).

To illustrate the principle, we examine a two-particle

Xexp( —II(r r' s&—2)/T7p, .(r r' s&—2) system with the Hamiltonian

( 22r ysN12

Wl, L& 2
——

( mr)

(2.26)II= (p12+p22)/2M+ V(rl —r2).Additional functions Wp, y, N y and H/"~, p, N yare inferred
from the assumed separability of S'~, ~, N ~. The cluster
expansion of 8'~, ~, N 2 is obtained using generators
which depend on three parametric functions, and
integrals wl, l, z 2, etc. are defined in analogy to (2.9).
The equation corres ondin to (2.10) is

The corresponding classical Hamiltonian H, is formed

by replacing the operator momenta in (2.26) by
c numbers ql and q2. Let Z(rl, r2) denote the generalized

Slater sum' over a complete set of states,
p g

27r 3

Z(r„r,)=~
~
P, y, (r, r,)

&Mr)

XQ(rl, rs, pl, ps)e '"g, (rl, r2), (2.27)
N—2 7L

W1, 1, K—2 Z ul, l, n+ 2 ul, om uol, —n m W, oNOsn. —-
whose integral, properly normalized, represents the
thermal average of the operator Q. If a suitable classical

analog Q, (rl, rs, ql, q2) of Q can be defined, we expect
(2.27) to reduce, at high temperatures, to Z, (rl, r2)

where

With the definitions

I„=(1/V)ul, 1, „,
I &"= (1/V)ul, o, „, I "&= (1/V)uo, l, „,

Z, (r, ,r,) = (2~MT) 'Q, (rl, rs,—ql, qs)e ' dqldqs.

For later use, we compute the thermal average then Cis given by a series,

(Q(r, r'))r where no symmetry is assumed between r
and r' or between these coordinates and the others. t =A+~+2LA»7+r'rLA»LA»77
We define Wo, o, & by the expression (2.11),and Wl, 1, z 2

—(1/24)L»LA LA/777+" (2 23)

by

we get

(Q(r r ))
=kN(N 1)7 wl, 1, 10' 2/w—o, o, x

N—2

therefore,

Since the complete set of states P; is arbitrary, we choose

plane waves,

$01, 02 (rl r2) V exp (sql
' rl+sq2 'r2)

and replace the summation in (2.27) by V2 (2m) 0J'dqletq2

in the usual way. In virtue of the translation property,

e '&0 2'1p, e~~«''«&=p+q;, 3=1 2.

To arrive at (2.23) from the preceding line, we have
equated N/(N —1) to unity.

The generator equations and the process of functional
differentiation were, of value in proving the cluster
property of the U functions. We observe, however,
that for the calculation of terms in the density series,
the simpler relations among integrals, as expressed by
(2.10) and (2.22), are sufficient.

At high temperatures, the thermal averages and
Slater sums approximate their classical analogs. In
concluding this section, we show how the Baker-
Hausdorff theorem may be used to effect the passage
to the classical limit in an elementary way. The quoted
theorem is an operator identity which states that

X Q(rl, r2, pl+ql, p2+qs)e dqldqs, (2.28)

where

8= —(p,+ql)'/2M T (ps+ q22)/2M T —V/T. —

The operator momenta appearing as arguments of Q
in (2.28) are now to be commuted to the extreme left
where they disappear, leaving a function Q, (rl, rs, ql, q2).
The occurrences of p~ and p2 in the exponential are to
be commuted to the extreme right with the aid of

(2.24). Thus if we set A =II,/T, then'

The expansion (2.30) has been obtained by other methods by
J. G. Kirkwood, Phys. Rev. 44, 31 (1933); see also J. E. Mayer

(2.24) snd W. Band, J. Chem. Phys. 15, 141 (1947).eri gB —gC
)

(Q (r,r')) 2 = (1/V) Io+ (N/U') (Il—2P1I0)+
+Iso)I0(2)+ (N/V) [Io(1)I1(2) Equation (2.27) assumes the form

+I 1 "Io'@—2P1I0+Io"'7+ ~ (2.23)
1'l,r2
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—V2V (7'V)2 i(ql —q2) VV
vB ~ iran/T—exp +

2MT' 3MT' 2MT'

where x is evaluated with k=kp. Then the elastic
interference cross section per molecule is given by

—g
—Ho/T

V'2V

2MT'

l:(ql —q2) ~j'V
+

6M'T'

(~V)'

3MT'

(2.29)
~'-2'"(0) = 2 ~1..(t/)

n=2
(3.2)

We suppose that molecular interaction is due to a
spherically symmetric two-particle potential V(r;—r,).
We shall frequently write r;, for r;—r; and V;, for
V(r;—r;). Averaging classically, we have

2MT' 6M2T'

L(ql —q2) VV]'

8M'T4

i(ql q2) '+V L(ql q2) VjV

(2.30)
(Xl 2)T

PV;;
J expl +ill'r»

lr
2 V'/~

expl r )

(3 3)

The gradients are with respect to r1.
In the calculation of the bracketed series in (2.29)

via (2.25), each additional commutation supplies
another gradient applied to V. Thus, e is equal to
exp( —H,/T) multiplied by a series of powers of the
gradient. Each gradient carries with it a factor of A,
although this is not explicit in our notation. Then the
series proceeds in powers of A. The use of (2.30) in
(2.28) yields the classical limit with quantum correc-
tions. Since, however, Q, may itself contain a depend-
ence on A, the so-called quantum corrections are not
always smaller than all contributions from the leading
term, even in the limit of large T. (Compare the
treatment of interference scattering in Sec. 4 where
these corrections cancel against other terms. ) The
effects of quantum statistics may also be computed by
this formalism without difhculty.

3. ELASTIC SCATTERING

In the absence of extensive experimental information
on neutron scattering by imperfect gases, we shall be
content to mark out the general features of the problem
rather than essay an exhaustive treatment of diferent
examples. For this purpose, we neglect the role of
internal degrees of freedom which formed the priricipal
concern of ZG. A temperature sufficiently high to
permit an approximately classical evaluation of thermal
averages (including lowest order quantum corrections)
will be assumed.

The initial term arising from the time expansion
procedure is treated in the present section. This forms
the static approximation which is valid when the
scattering is predominantly elastic. The direct scatter-
ing is then found to be independent of molecular
coordinates. Accordingly, imperfect gas corrections to
elastic scattering must be sought in the interference
terms.

Let 01, 2(8) represent one of the two terms of the
elastic cross section due to interference between mole-
cules (1) and (2):

01,2(0) + (Xl, 2)T &'(expfi20 (rl —r2) j)T (3 1)

Quantum corrections to (3.3) are considered together
with inelastic corrections in the next section. Equation
(3.3) leads to the Zernike-Prins formula' and the final
result below can be obtained from the known density
expansion of the pair distribution function. The treat-
ment here illustrates the methods of Sec. 2 and serves
as an introduction to the work of the next section.

The first two terms in the density series for (3.3)
will be determined. We define the separable functions:

W1,, 0, Q(11) = exp(ix rl), WQ, 1, 0(12) = exp( —ix r2)

W1, 1, 0(rl, r2) =8 12/ exp(i20'r12)

W1, 0, 1(rl,r2) =e—"' exp(i20. rl),

WQ, 1, 1(r2 r2) = 8 22/ exp( i'K 1'2)

Wl, l, l(rl, r2,r2)=e '+v'+v T exp(jx'r12) ~

The I integrals are now deduced from (2.22). Thus,

+1, 1, 0 ~1, 1, 0 ~0, 1, 0~1, 0, 0

=~~(e v»/T —1) exp(zx r12)drldr2 (3.4)

N1, 1, 1 ~1, 1, 1 ~1, 1, 0~0, 021 ~1, 0, 1~0, 1, 0

22 0, 1, 120'1, 0, 0+ 22//1, 0, 02//0, 1, 02//0, 0, 1

[g—(V12+V22+V21)/T —~
—Vl /T 2g

— 8 V2/T

—e "' +2) exp(ix r12)drldr2, etC. (3.5)

The terms I„&"and I„&"are seen to be proportional
to the integrals

respectively, and may be dropped. For when the
volume of integration is macroscopically large, one

9 J. deBoer, in Reports on Progress in Physics (The Physical
Society, London, 1949), Vol. 12, p. 305; N. S. Gingrich, Revs.
Modern Phys. 15, 90 (1943).
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readily confirms that for scattering angles diEering
even minutely from the precise forward direction, the
integrals (3.6) are vanishingly small.

We get, by (3.4),

Is= f(r) exp(ix r)dr.

Further, by (3.5) and (2.20) we have

Ii
J

e v'&' fr(r —s)f(s) exp(ix r)drds+2PrIs.

It follows from (2.23) and (3.2) that

o;„,&'&(tt) =2'
~

—
~ f(r) exp(ix r)dr

I &V&&

t'cVq' ~

+~ —
~

e "&' &trf(r s)f(s—) exp(ix r)drds+
kV) &

Using the notation

and the definitions (2.20), (2.21), we obtain for the
interference cross section in the present approximation:

- '"(e) =~'((&/V)P (f(r)).+ (&/V)'(20 +0 ')
X(e " f(r—s) f(s)),+ }. (3.7)

The expressions in angular brackets above are
essentially weighted averages of exp(ix r). They are
equal to unity for K=O (forward scattering) and
oscillate with decreasing amplitude as ~ increases. For
molecular potentials of the Lennard-Jones type, these
functions can be computed, for example, by the method
Kihara employed for the virial coefFicients. '

Quantitative statements are more easily made if the
molecules are assumed to be hard spheres. In terms of
the hard sphere diameter d, we have Pi ———(4w/3)d',
4= —(Sm'/12) d'. The coefficients of the angular
brackets are conveniently expressed in terms of the
ratio 0/V where Q=(4~/3)I&td' is the total "inter-
action volume. " If a hard sphere is introduced into a
rare gas of E hard spheres, Vo is essentially the volume
from which the first sphere is excluded in virtue of the
particle interactions. The coefficients of the first and
second angular brackets are then —(0/ V) and
(17/32)(Q/U)', respectively. The first term of (3.7)
is simply the Debye formula for the outer e8ect. The
second bracket is reducible to the form

(e ""'f(r—s)f(s)).

(s
(sd) ' sin(gds) (s4—12s +16s)ds,

2S~,

which, if desired, can be integrated in terms of ele-
mentary functions.

The terms which appear in the density expansion for
the cross section are quite similar to the cluster integrals
and the virial coefficients. Their evaluation presents
difficulties of a comparable order of magnitude and the
domain of convergence is probably equivalent to that
of the virial expansion.

4. INELASTIC CORRECTIONS

We have observed that apart from the first term the
terms of the density series for the expectation values
(x.,)z yield only inelastic corrections to the direct
scattering. To investigate the relative importance of
the succeeding part we examine the portion which is
linear in (X/ V) and compute the leading terms obtained
by the time expansion method.

The development of (y„„)z in powers of t gives rise to
terms of two types. From the classical evaluation of
the thermal averages, we obtain spatial integrals of
V'-V, (VV)', and higher derivatives, multiplied by
certain powers of t. The latter cause the appearance of
inverse powers of 80, the energy of the incident neutron,
in the cross section. In addition, we have the quantum
corrections to the classical averaging process which
contain similar integrals over derivatives of the po-
tential, divided by powers of T. Since the two kinds of
terms may be of comparable magnitude, it is necessary
to consider them together in a consistent calculation.
It is then natural to order the various quantities
according to the number of derivatives applied to the
potential that they contain and to study, in a first
approximation, the initial terms of the resulting series.
This ordering is, in fact, an arrangement in powers of
5 and so constitutes a semiclassical expansion.

This procedure is quite analogous to the familiar
method for approximating the partition function which
was discussed earlier, and may be expected to have the
same validity; that is, the series in powers of 7'V/hs,
V'V/T, etc. , is presumably asymptotic, and its leading
terms yield an adequate approximation when bo and
T are not much lower than ordinary thermal energies.

YVe consider now the direct scattering by a gas
particle specified by the coordinate r&. We seek to
determine the linear term in the density expansion of
the thermal average of the operator

e'~' exp(wc r,)e ' ' exp( —iv. ri) =e'~'e '~~'&' (4.1)

The operator H(~)', as defined in ZG, is obtained from
H by replacing the momentum pi with p&

—x. If the
particle at ri is free, we have, simply, II=pp/23&I and
(4.1) reduces to a quantity we denote by x&(t):

ys(t) =exp[it(2yr v.—z')/2M(. (4.2)

But if the first particle interacts with a second through
a potential, then

"T. Kihara, J.Phys. Soc. Japan 5, 265 (1948);6, 184 (1951). H =Prs/2M+Pss/2M+ V(ri —rs), (4.3)
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whence

H(1)'= (y1—2t)'/2M+ p2'/2M+ V(r1—r2).

In the latter case, (4.1) is a function of greater com-
plexity which we shall call X1(t). Hereafter, the symbol
II will be reserved for the two-particle Hamiltonian
(4.3) and we shall write Hp for (P12+P22)/2M.

Following the prescription of Sec. 3, we have

where
c2' ——(t('/18M'T) 'U1 —(t('/24M'T') 'U2,

cp'= —()(2/9M2)'U + (t(2/12M2T)'U2,

c4 (t(2T/1 8M2) g (t(2/24M2) ~2

e "«)/ V'V«, ~ = e (~)/ (VV)'dr.1 2 J

(1) ( 22r

&V& &MT) J

Xexp) — (f;(r1) «1,( p
2

2MT

As was shown in ZG, the exponential in (4.6) produces
corrections to the cross section of relative order (m/M)
and n') where

(22= mT/Mhp.

(11 (22r )' ('
~ „' {&4'*(rtr2)

E V) &MT) &

XLX1(t)e ' —xp(t)e " ]$,(rt, r2)}«1«2.

Then the latter equation can be rewritten

(1) (2~~2 (.
D1=&1Dp+~ —

lI I {~u'*(rt, r2)r X1(&)e ~"
(, V& «MT) ~

Although their calculation involves no special difhculty,
they are best omitted in a first estimate of inter-
molecular effects. Accordingly, we replace the expo-
nential by unity.

Let us write oq;,("(0) for the part of the direct cross
section under calculation. Then, by (2.19) and (ZG I,
4.7),

f
~;,'"(t)=B'()('/V)) J (t/2grk)e '"(D, (tD)ttt—

(1+P1)xpe " ])P"(rl r2) }«ldr2, (4 4)

where)81 is the quantum version of the first irreducible
cluster integral:

(1) (2m-)2 I.
I J

{Z'4;*(rt,r2)
~V) (MT) J

82(E/V) (m d q"
&-I ——

I
(&c-')

&u dpi
(4.7)

where 82, apart from a factor of kr, is the incoherent
cross section for a gas particle. Consequently, we obtain

X[e ~/'r e~«—]$,(rt, r2) }«,dr2

The identity (2.25) allows us to express xt(t) as the
exponential of a series in ascending powers of t. A factor
of xp(t) can then be separated from )(1(t) by a second
application of (2.25) so that

7T2q p=8'(2'—
f

1——
V E 8 g,2) i18MT2 24MT2)

In order to estimate the magnitude of (4.8), we choose
for V the Lennard-Jones potential

()I)
—e+tH te iH (1)'t-
=Xp(t) L1+c2(—it)2+cp( —it)'

+c4( it) '+ ], (—4.5)

"(r q12 (r )2-
V(r)=Vo I

—
f

—
f

—I, (4.9)

where
c2———21i(2t VV)/M,

cp ——L
—2(tt V)2V+(tt V)(y1—y2) VV]/6M',

c4———-'(2t V V)'/M'.

—it K' t'T~'4

D1—p1Dp ——Q c„'(—it)" exp
n=2 2' (4 6)

2M

The gradients occurring above are with respect to r~.
In computing the coefficients c;, we have discarded
terms containing more than two derivatives. We now
insert (4.5) into (4.4), use momentum eigenfunctions
for the p;(rt, r2) and reduce e ~'r to the form (2.30).
Upon integration over momentum and space coor-
dinates, we find

and suppose the scattering to be performed at room
temperature. The values rp= (3.5)X10 ' cm, Vp

——0.05
ev are typical of the magnitudes assumed by the
Lennard-Jones parameters. One may show, very ap-
proximately, that. 'U&=100V0~0 '02=40~0'~0. For bo

=T, (4.8) becomes

(rp
(') (0) =82(1V/V) (m/M)'(10 —"cm'). (4.10)

Equation (4.10) is to be compared with the leading
term in the direct cross section which is of the order of
8'. Thus, the calculated correction is too small to be
of importance at standard conditions of temperature
and pressure where, for a gas, cV/V=3X1012 cm ', but
it may be of significance under other circumstances.



DIFF RACTION OF NEUTRONS

Our methods are not powerful enough to analyze in
detail the convergence properties of either the density
expansion or the time expansion. But it is probably
safe to assert that for gas densities which are not too
great and neutron energies which are not too small,
the development presented here is valid. Equation
(4.8) contains the largest imperfect gas corrections to
the direct cross section in this development.

We turn now to a consideration of inelastic effects in
the (X/V) part of the interference cross section. Again,
only terms having fewer than three derivatives applied
to the potential are to be retained, and quantum
modifications of the classically computed thermal aver-
ages are included to this order. As in the previous
section, we may drop all interference terms involving
I„"' and I„('&. The latter are identical to their time
independent analogs and do not contribute noticeably
to the cross section.

We observe that

e' ' exp(i««r, )e ' ' exp( —i««rp)
=e'"'e—'"&»' exp(i««r, p)

=)(&(t) exp(i«& r)p).

Proceeding as before, we obtain for the cross section
o;„«(8), including presently calculated corrections,

o; «(8) =A'(X/V) (tt/2mkp)e *"Ipdtdp,

where

( 1 p ( 2)r q
'

&.

{PP;*(r),rp)
(V) (MT) ~

XLx)(t) exp(i««rq2)e N(r

—exp(i««r~p)e N" r)P, (r~,rp))dr, drp. (4.11)

The reduction of (4.11) will yield a single spatial
integral whose integrand contains the factor e ~'~

Xexp(i««r). Since

V [e "(r exp(i««r)]=L —(VV)/T+i««]e "I exp(i««r),

it follows that by an integration by parts, factors of x
can be replaced by derivatives of V inside the integral.
Accordingly, such factors of ~ are to be counted equiva-
lent to derivatives for the purpose of determining
which terms in the expansion are to be retained or
rejected. Hence, from (4.11), we derive

Ip= (e r(')t —1) exp(i««r)dr

with

dp= (V V)'/12MT (7—'V)/6MT',

dg
——(««v V)/2MT i«—'/2M,

dp = i—(««V V)/2M TK—'/2M. ,

(~V)P q2V
Xexp(i««r) 12'T' 635T'

dr.

Nothing remains of the inelastic corrections, to the
order considered. Thus, in neutron diGraction by
imperfect gases as in diR'raction by free molecules,
inelastic eBects are much less prominent in the inter-
ference terms than in the direct scattering.
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APPENDIX

For a given integer X, consider the proposition P(E)
that for all r«(X, each U defined by Eq. (2.5) is a
cluster function if and only if each 8'„ is separable.
The truth of P(N) for the smallest values of X is
inferred directly from (2.7). Assuming P(E), we shall
prove P(X+1) and so establish, by mathematical
induction, the fundamental relation between U and 8"
functions for clusters of arbitrary size.

Let r~ be composed of two clusters r~' and r~",
1P+I&t"= I&/, with the coordinates of rN" labeled
r~+&, ~ ~ ~, rN. Then

eQo(s) —ego(u) pr, (rN')
ba(r)) ba(rN. )

1
+ '

a(8N") U' (rN' 8N")d~N"

+other terms . (A.1)

But when the suggested integrations by parts are
performed in (4.12) the t and t' terms disappear. All
that remains is the term representing the quantum
correction to the classically evaluated o; «&') (8):

t lVq
o; «(8) =o; «("(8)+2'] —

)
e "'r

(V)S

We note that the right side of (A.1) reduces to WN. (rN')
when a=0.

+ e v(r)IT exp(i««, )Ldr+dp&t+d tjdppr(4 12) Let (A.1) be differentiated with respect to each ofj the functional variables a(r~) with 1P+1&&i &~1)&', and
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the parametric function then set equal to zero. We find
that

~N (rN) P N, (r¹)g ~„(rN")+O'Ar (r N)

+other terms, (A.2)
/

where the "other terms" in (A.2) consist of certain
products containing functions U„with e&cV. At least

one U„ in each product has arguments drawn from
both the groups r~' and r~". If r~' and r~" are now
isolated from each other and the inductive hypothesis
I'(X) is invoked, the "other terms" vanish. The
validity of P(1V+1) follows immediately.

The extension of this proof to cases of lower symmetry
requires only notational changes.

P H YSICAL REVIEW VOLUM E 109, NUM B ER 5 MARCH 1, 1958

Microwave Spectra of the Tl, In, and Ga Monohalides*

A. H. BARRETTt AND M. MANDELf
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A high-temperature spectrometer has been used to study the rotational spectra of the gallium, indium,
and thallium monohalides. The molecular constants are

Tl205F
Tl205CP5
Tl205B r?9

Tl205I127

Inll5Cl35
In"'Br?9
n"5I1

Ga69Cl35
Ga69Br79
Ga69I127

8, (Mc/sec)
6689.97 &0.06
2740.05 &0.02
1293.89 &0.01
814.479a0.015

3269.47 +0.14
1670.14 &0.02
1104.95 %0.45
4493.73 &0.19
2481.99 +0.04
1706.86 +0.04

a, (Mc/sec)
44.97 ~0.08
11.90 %0.01
3.927~0.005
1.985+0.005

15.35 &0.15
5.706+0.01
3.117a0.015

23.27 &0.12
9.74 +0.03
5.67 &0.15

r, (A)
2.0844+0.0001
2.4848&0.0001
2.6181&0.0001
2.8135+0.0001
2.4011&0.0001
2.5432+0.0001
2.7539+0.0009
2.2017&0.0001
2.3525+0.0001
2.5747+0.0001

The quadrupole coupling constants determined in the present experiment are related to the molecular
bond and the role of s-p hybridization in the molecular bond is discussed.

INTRODUCTION
"
ICROWAVE spectroscopy of molecules in the

~ gaseous state has provided a large amount of
accurate information about molecular structure. ' ' Of
all the molecules studied, the diatomic one is the
easiest to interpret in terms of a theoretical model. The
number of diatomic molecules which can be studied by
conventional microwave spectroscopy is severely limited

by the small fraction of such molecules in the gaseous
state at room temperature. The development of the
high-temperature spectrometer'4 made it possible to
observe the pure rotation spectra of most of the alkali

* Work supported jointly by the Signal Corps, the OfIice of
Naval Research, and the Air Research and Development
Command.

$ Present address, University of Michigan Observatory, Ann
Arbor, Michigan.

f. Present address, Physics Department, Stanford University,
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' C. H. Townes and A. L. Schawlow, Microwave Spectroscopy
(McGraw-Hill Book Company, Inc. , New York, 1955).

2 W. Gordy, Microwave Spectroscopy (John Wiley and Sons, Inc. ,
New York, 1953).' Stitch, Honig, and Townes, Rev. Sci. Instr. 25, 759 (1954).' P. A. Tate and M. W. P. Strandberg, Rev. Sci. Instr. 25, 956
(1954).

halides' and its use has been extended to the molecules
reported here.

Diatomic molecules in the gaseous state have been
investigated by the techniques of electron diAraction, 6 '
molecular-beam magnetic and electric resonance, ' "
and microwave spectroscopy. Electron diffraction ex-
periments yielded internuclear distances but with an
accuracy far below present standards. Early magnetic-
resonance experiments gave information concerning the
nuclear ma'gnetic moments and the interaction of the
electric quadrupole moment with the rotating molecule.
Electric-resonance experiments have been of two kinds.
In the first of these, d,m, =&1 transitions are observed;
these yield, in addition to the molecular hyperfine
structure, information concerning the electric dipole
moment and moment of inertia of the molecule. How-

ever, the last two quantities are not determined with

' Honig, Mandel, Stitch, and Townes, Phys. Rev. 96, 629 (1954)
6 W. Grether, Ann. Physik 26 (1936).
7 H. Brode, Ann. Physik 3?, 344 (1940).' J.B.M. Kellogg and S. Millman, Revs. Modern Phys. 18, 323

(1946).
9 D. R. Hamilton, Am. J. Phys. 9, 319 (1941).
's H. K. Hughes, Phys. Rev. 70, 570 (1946).


