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The nucleation field for an infinite circular ferromagnetic cylinder, with the field applied along its axis,
is rigorously calculated by exploring the whole eigenvalue spectrum of Brown’s equations.

The nucleation fields for cylinders with “large” radii are found to be those of the magnetization curling.
For “small” radii the nucleation field is found to be somewhat smaller than that for the magnetization
buckling. However, the difference is only about 1%, and the exact mode of reversal is very close to the
buckling. The transition from exact buckling to curling is abrupt. These two modes are shown to be the
only modes for nucleation for any radius, the other modes giving higher nucleation fields.

It is shown that the magnetization reversal occurs in one jump, which means that the magnetization

curve for the cylinder is a rectangular loop.

I. INTRODUCTION

T has recently been found that the reversal of
magnetization in a ferromagnetic cylinder does not
occur by “rotation in unison.”*? Much more compli-
cated modes have to be considered for the reversal.>~7
In particular, for a cylinder whose axis is parallel to
the field, the reversal starts when the initially saturated
state along the axis ceases to be stable, at a certain
negative field intensity. This field is called the “nucle-
ation field” and was shown by Brown’ to be the
smallest eigenvalue of a certain set of partial differential
equations. The modes of deviation from the initially
saturated state are the associated eigenfunctions.”

Frei et al. have calculated the nucleation field of an
infinite cylinder for three modes, namely : spin rotation
in unison, “magnetization curling,” and “magnetization
buckling.”? However, it has been pointed out by Brown?
that of these postulated modes, the buckling is not an
eigenfunction of his equations, so that the calculation
in this case is only approximate. Because of this, a
rigorous solution of Brown’s differential equations is
undertaken and the eigenvalue spectrum is calculated.
This calculation will be given in Part II.

In Part IIT the behavior after the nucleation is
considered. Only the modes which are associated with
the most positive nucleation field need be treated in
this respect. As will be shown in Part II, these modes
are the curling and the “exact buckling” which is the
eigenfunction approximated by the magnetization
buckling calculated previously.? The equations which
govern the behavior after nucleation were already given
in 1940 by Brown.? For curling, these equations reduce
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to an ordinary nonlinear differential equation with
boundary conditions, the numerical solution of which
is given in Part ITI. The case of exact buckling however,
leads to a complicated set of nonlinear partial equations;
therefore, only a Ritz approximation,!® equivalent to
the approximate buckling, is made. This will be justified
in Part IIT.

II. THE NUCLEATION FIELD
A. Eigenvalue Equations

Consider an infinite circular cylinder of radius R,
which does not possess magnetocrystalline anisotropy.
Let the field H be in the direction of the cylinder axis
which is chosen as the z axis in a Cartesian coordinate
system. Let the direction cosines of the spin be a,, ay
and a,, respectively. According to Brown,” the nucle-
ation field H, is the least eigenvalue H of the set of
equations:

— (24/1,)V?a,+ U/ dx+ He, =0,
— (24/1,)Vay+ U/ dy~+ He, =0,

VU = 4n ] (das/ 02+ day /D), ®
for a>4+9?°< R,
and
V2U=0 for «*+y*2R% (2)

with the following boundary conditions at x?>-y*=R?:
Ao,/ In=day/dn=0,
Uin=Uus, 3)
—0Uin/0n+4mwln=—90U out/On.

Here A is the exchange constant,? U is the scalar
magnetostatic potential associated with the free poles
of the magnetization in the cylinder (and does not
include the external field), and # is the normal to the
cylinder.

In a cylindrical coordinate system (r,¢,3) in which
the axis ¢=2=0 coincides with the x axis, Egs. (1)

0 H, Margenau and G. M. Murphy, The Mathemalics of

Physics and Chemistry (D. van Nostrand Company, Inc., Prince-
ton, 1956), second edition, p. 377.
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are transformed into:

2sing da,  CcoSe
—24 (cos<pV2a,— _— a,
7 do 7
2 cose da, sing
—sineVa,— — p)
do 72

41, cospdU/dr—Ir'singdlU/d ¢
+HI (o, cosp—a, sing)=0, (4a)

sine
Oy

2 cos¢ da,

—24 ( sin pVa,+
7 do 72
2 sing da,

CoSp
+cospViay— ——— — — a,,)
7 do 7?2

+1,sinpdU/dr+I7 cospdU/d ¢
+HI (e, sinp+a, cose) =0,
V2U =4xl {da,/Or+r(a,+da,/d¢)},

(4b)
(40)

for »< R. The boundary conditions at =R become

da,/dr=0da,/dr=0, (5a)
Uin= Uout, (Sb)
4]0, =03U;n/0r— AU out/9r. (5¢)

Here a., a,, and «, are the direction cosines of the spin
in the cylindrical coordinate system.
Let the notations

t=r/R, h=H/(2xI,), Ro=A4%/I,, ©
u=U/(2rI.Ro), S=R/R,, p=2/R,
and the operator
? 19 18 92
Vi= — 4 -—+ + @)

- tat £l P

be substituted in (4). Multiplying (4a) by cose and
(4b) by sine and adding, yields
V2, —a =290,/ 8 o —mSOu/dt—1S*ha,=0. (8a)

Multiplying (4a) by —sing and (4b) by cos¢ and
adding, one obtains

V2=t +2t200,/d

—wSt710u/d o—nS?ha,=0. (8b)
Substituting (6) and (7) in (4c) yields
V2 —25{da,/dt+t (vt 0a,/00)} =0.  (8¢c)
The relations (8) are valid for
<1, (8d)
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Using the same substitution, one obtains
V2u=0 for ¢>1. 9)
The boundary conditions at i=1 are
da,/ 0t = da,/9t=0, (102)
Win="Uout, (10b)
28a,= 0tin/ Ot — Otous/ Ot. (10c)

The complete regular solution of Egs. (8) is a linear
combination of functions of the type

ar=A,(t) cos(kp—po) cos(meo— @), (11a)
ap=A,(t) cos(kp—po) sin(me—¢g),  (11b)
w=U () cos(kp— po) cos(meo— o). (11¢)

Here A,, A,, and U, are independent of ¢ and z. The
parameters &, po, and ¢ are real constants, while m is
an integer.

Substituting (11) in (8), adding and subtracting
(82) and (8Db), respectively, one obtains

@& 1d (m+1)?
{—k2+ —_— -~ —7rS2h|(A,+A¢)
ag t dt [
U, dU;
+1rS(m-— — —)=0, (12a)
¢ dt
@& 1d  (m—1)3
{ -t - — -—7r.5'2h| (4,—A4,)
e t dt 7
U: dU,
—rS(m—- +—)=0, (12b)
t dt
@& 1d w?
{—k2+———+—— - *)Uz
ae t dt #
A,+4, A,—4,
=] )" — )
¢
+ “+ =0, (120
dt dt
It can be shown by substitution that
A,— A ,=a] p1(iut), (13a)
Ut=b]m(1:/~‘t)) (13b)
A+ A ,=cT i1 (iut) (13¢)

is a solution of (12), if the following equations are
satisfied.

tumSb+ (u— k2 —mS?h)c=0,
(u*— k2 —7S*h)a—iuwSh=0,
tuSa+ (W2—k)b—1iuSc=0.

(14)
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Here J,, is Bessel’s function of the first kind and of the
mth order. In order that at least one of the constants
a, b, and ¢ be nonzero, the determinant of the coeffi-
cients in (14) should be zero. This implies for u either
the value

wi= (B247nS%h)?, (152)
in which case one gets by substituting in (14)
b1=0, a1=Cy, (15b)
or one of the two values
po,3=[F+7S*(3h+1)
+S2rk2+m2S2(3h+1)23]E,  (16a)
in which case
2iSps, 3
Co,3=—as,3; by 3= as, 3. (16b)
B—p,, 2

Since there are three values for u, Eq. (13) is the
general regular solution of (12). (The other three
solutions are the associated Neumann functions.)

Up to now the calculation has been done for any
value of m. However, though it is possible to write the
general solution, this is not actually necessary for m>#1,
so that the complications involved in the straight-
forward solution can be avoided in these cases by some
other treatment. Therefore only for the case m=1 will
the direct method be applied (in Sec. D). In the
following two sections (B and C) the cases =0 and
m>1 will be treated, using different considerations.

B. Case m=0

Returning to Egs. (12) and substituting m=0, one
sees that the variable 4, can be separated, yielding

#? 1d 1
(—k*-l— —_—t 1rS2h)A¢=0, 17)
de? tdt 2

and

d? 1d 1 aU,
(—kz-l— +-——-- wSzh)Ar—WSd—= 0, (18a)
t

e tdt 2
A, A,
( +——)=o. (18b)
dt 4

@& 14
(—k2+ —+-—)U.-—-2S
d t dt
The general regular solution of Eq. (17) is
Ao=CJ1(ipad),

with u; given by (15a).
Using (11a) and the boundary condition (10a), one
obtains the eigenvalue equation

(19)

dJ1(ip1)/d (ipr) =0. (20)
The smallest root of this equation is??
tu=1.841. (21)
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Substituting this value in (15a), one obtains
h(k,S)=—1.085"2—F%/ (xS?).
The least negative value of % is therefore
ha(S)=—1.085"2 (22)

This is the same result as obtained earlier? for the
magnetization curling, and in fact the mode associated
with (22) is identical to the magnetization curling.

The eigenvalues of (18) are more difficult to evaluate
rigorously. However, they can be estimated by the
following reasoning.

If the self-magnetostatic energy is neglected, it is
certainly easier to reverse the magnetization than when
this energy is taken into account. Now, it is seen from
the derivation of the basic equations’ that neglecting
the self-magnetostatic energy is equivalent to inserting
U,=0 in (18a) and discarding (18b). The solution is
then the same as (19), and the nucleation is therefore
given by (22). Since assumptions were made to facilitate
the reversal, the actual nucleation field for this mode
is certainly more negative than that given by (22).

One can therefore conclude that for =0 the mode
for nucleation is the magnetization curling and that
the nucleation field is given by (22).

C. Case m>1

By a similar reasoning to the one that led to the
estimation of the eigenvalues of (18), it will be shown
here that the magnetization reversal is more difficult
for m>1 than for curling, for any value of S. To see
this, the self magnetostatic energy is neglected again,
so that in (12) one has to write U;=0 and discard
(12¢). The solution is then

A7+A¢,=(1Jm,+1(iu1t), (233.)
A=A g=bJ 1 Gipl), (23b)

with u; given by (15a). The boundary condition (10a),
with (11a) and (11b), then leads to one or both of the
following equations for the nucleation field,

BArSh=—Xm 1, (24a)
B4+rS%hy=—Xm1? (24b)

where X, is the smallest solution of
Jn (X)=0. (25)

Since m>1, and since X,, is a monotonous ascending
function! of m, it is seen by comparing (24) and (22)
that the nucleation field for the case discussed here
cannot be more positive than for curling. Therefore
when the magnetostatic energy is not neglected, the
nucleation for m>1 is more difficult than by magnet-
ization curling.

11 G, Petieu, La Théorie des Fonctions de Bessel (Centre National
de la Recherche Scientifique, Paris, 1955), p. 467.
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D. Case m=1
1. General Case

As has been remarked before, in this case one needs
the general solution of (12), and the eigenvalues have
to be evaluated numerically, using the boundary
conditions (10).

According to Sec. A, the general regular solution of
(12) for m=11is

3
A, — A= anJo(inad), (26a)

n=1

3. Qnfin
Ui=2SY J1(ipat), (26b)
2 B— 2

3

Artd,=2 (— 1)%n("_})anj2(il‘nt)7 (26¢)

n=1

where the u, are given by (15a) and (16a). If all the u,
are different from zero, Egs. (26) involve 3 arbitrary
constants a;, @2 and a;. [The other 3 independent
solutions are the Neumann functions which are infinite
at t=0 and are therefore not included in (26).] Here
it will be assumed that all the u, are different and
nonzero, the other cases being treated later.

Equation (26b) describes the potential for 1< 1. The
potential for /> 1 is the solution of (9):

u=CH,© (ikt) cos(kp— po) cos(mo— o). (27)

Here H,® is the Hankel function of the first kind and
order. The constant C is evaluated from the boundary
condition (10b) which gives, when one uses (11lc),
(26b), and (27),

218 i Gnlin TG
C= Thn).
H O (k) n= B2—p,? !

(28)

In a similar way, one obtains from the boundary
condition (10c)

2J1(tp) s, Fan . :
at+ Y [ []0(141:7») _]2(“‘”)]
1 =2 P —pa’
Mn Jl(ill-n)

[H,® (ik)— H,® (ik) ]} =0.  (29)

kE H,® (k)

Similarly one obtains from the boundary conditions
(10a)

3
Y tpa1(ipn)an=0, (30a)

n=l

i (= 1) Dip, { J1(iun) — T5(ipa) }an=0.  (30b)

n=l

Since at least one of the a, should be different from
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zero, the determinant of the coefficients of (29) and
(30) should be zero. This implies that

2]1 y 1 k? k?
.(W ) Q1 (u2) Q1 (us)
11 R —p? kP —us®
=0, (31)
it 1(ip1)  duad 1 (ue) i3 1 (ips3)
) —Q(u2) —Q2(us)
where
Q1 (un) = Jo(ipn) — Jo(ipn)
MKn ]1(1:.“7»)
— Y W (k) — HaO (iF)),
O (ik){ (tk)—H W (ik)}, (32a)
Qo (n) = in{ T 1 (tan) — T3 (i) } (32b)

For every value of S the nucleation field %, is the
least negative value of % satisfying (31). A numerical
solution of this equation was therefore undertaken
using tabulated Bessel functions.? [The necessary
transformations of the functions involved in (31) for
the use of these tables can be found in ordinary text-
books.3]

In a previous paper? the nucleation field for the
magnetization buckling was calculated. This mode is
not an eigenfunction® of Eq. (1), but it is an approxi-
mation to the case m=1 (with the assumption 4,=4,
=const). The search for zeros of (31) could therefore
start with the buckling solutions, which proved to be
a good approximation. In fact, for S=1 and S=2 the
magnitude of the exact nucleation field was found to be
only about 19}, smaller than the approximate solution.
For this reason it was not found worthwhile to compute
ha for other values of S. The approximate solution was
believed to be close enough in the “interesting region’”?
S§<1.1. For $>1.1 the exact buckling is not important
since the values of %, are close to those of the approxi-
mate buckling which are more negative than those of
the curling. (In particular, for large values of S the
exact buckling nucleation field need not be calculated,
since it is certainly more negative than that of the
curling, because of the magnetostatic energy involved
in the buckling mode.) These facts also suggest that
the exact buckling eigenfunction should be approxi-
mately independent of ¢, and that A,=4,. Actually
for S=1 it was found that 4, and 4, were different
by less than 19,. The function 4, (for S=1) is plotted
os ¢ in Fig. 1, and it can be seen that it does not vary
much.

12 Annals of the Computation Laboratory of Harvard University
(Harvard University Press, New York, 1947), Vols. IIT and IV;
British Association for the Advancement of Science, Mathematical
Tables (Cambridge University Press, New York, 1950), Vols.
VI and X.

13 See, for example, N. W. Maclachlan, Bessel Functions for
Engineers (Clarendon Press, Oxford, 1954).
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FiG. 1. The reduced radial component of the direction cosine
4, as a function of the reduced radial distance ¢ for the case
R=Ro, and for the “exact buckling” mode. It is seen that the
mode does not differ much from the approximate buckling for
which 4 ,=const.

2. Special Cases

In the general treatment of Sec. 1, it was assumed
that Eq. (26) is the general solution of (12). This is
not the case whenever at least one of the u, is zero or
at least two of them are equal. These special cases will
therefore be treated separately here.

2.1. Case yy=0.—From (15a) and (16a) it is seen
that in this case s is also zero. In this case the general
regular solution of (12) is

Ar—A P 27rSza1t2—|—az— a3J0 (iﬂt), (333.)
215#3
U¢= 4Sa1t— (13]1 (’i[.lt), (33b)
2_#32
. h A,+A¢= - (k2+7TSz)dllz+(13J2('ip.t), (33C)
wit
= (B+2mS?)3. (33d)

(The nonregular solutions in this case, besides the
Neumann function, are 4,4+ A4 ,=aid?; 4,— A ,= a5 Int;
U t= 0.)
Using the boundary conditions (9a), one obtains
47 S%a;+iut 1 (ip)a;=0,
—2(kB4-nS?) a1+ 5iu{J1(ip) — T 3 (i) }as=0.
Suppose first that a;=a3=0. In this case (33) yields
A,=%a,, which is in disagreement with U,=0 unless
a2=0. Therefore either a; or a3 must differ from zero,

so that the determinant of the coefficients in (34) must
be zero. This yields

(B4-2wSM)iud 1 (iw) = wS%ut 3 ().

(34)

(35)

A. AHARONI AND S.
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According to the power series expansion for Bessel
functions, Ji(iu) has the opposite sign to that of
J3(iu) for real u (which is the case here). This means
that (35) does not have any root except u=0 which is
of no interest.

¢ +2.2. Case pa=0.—From (16a) it is seen that either
p1=0, which has been treated in the former paragraph,
or k=0. In the latter case the regular solution of (12) is

Ar—A p=dljo(iﬂ1lf)+dg+d3jo(’ip3t), (363)
Ut = —%Shdzt— (21:5(13//.1.3).]1(1';130, (36b)
A, A = aT 2 (Gurd) — asT 2 (ipst), (36¢)
with
= (S}, py={xS*(h+2)}*. (36d)

From the boundary condition (10a) one obtains two
linear homogeneous equations in ¢; and a;. If at least
one of them is not zero, the determinant of the coeffi-
cients is zero, which yields

S 1(ipa) {2 (tps) — tust 1 (ps) } = —pat 1 (bus) J 2 (ipes),

ie., ) )
Je (1#3) J (i)

iuaT1(ips) a1 (ip)

37)

The nucleation field for rotation in unison is? z,= —1,
as will be seen in the following. Therefore one is inter-
ested only in 2> —1. This means that us is real, and!??
left-hand side of Eq. (37) is larger than 0.75, so that
iu1>3. According to (36d), this means that % is more
negative than the nucleation field for magnetization
curling given by (22).

If (37) is not fulfilled, ¢;=a3;=0, in which case (36)
gives rotation in unison. The potential for 21 is, in
this case,

U= —%Shast™,

and the boundary condition (10c) gives
Sdz= '—Shdz, i.e., h=—1.

This value is more negative? than the nucleation field
for magnetization buckling.

2.3. Case p3=0.—Since k is real and S>>0, it is seen
from (16a) that u; can be zero only if A< —2.

2.4. Equal Values of p..—According to (15a) and
(16a), w1=p2 or us implies that

w2k S (h+1)} =0, h<—1.

In the same way one obtains from (16a) that pe=yp
implies that

ie.,

2k 4-rS*(3h4-1)2=0,
which cannot be satisfied for any real value of .

III. HYSTERESIS CURVE

As is proved by Brown,”® the equilibria after the
nucleation are characterized, in general, by a set of

1 See reference 10, p. 113, Eq. 3-63.
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nonlinear partial differential equations. Actually one
needs to solve these equations only for modes which
reduce to the curling or to the exact buckling for small
angles, since these two modes were found in Part II
to be the easiest modes for nucleation. Yet even this
is complicated so that simplifying assumptions are made.

A. Magnetization Curling

For the calculations of this case, the magnetization
curling in the sense of reference 2 is assumed throughout
the whole process. It is possible in principle (though it
does not seem conceivable in this case) that the reversal
is thus restricted to an unfavorable mode, so that when
complete freedom is allowed, the jump will bring the
spins to some other state than that calculated here.
However, because of mathematical difficulties, one kas
to assume the curling throughout the process, thereby
reaching the following equation? for the magnetization
equilibria:

w/di4-t"dw/dt— (7St cosw) sinw=0, (38)

with the boundary conditions
(0)=0, (39a)
o’ (1)=0. (39b)

Here w is the angle between the spin and the z axis,
assumed to be independent of z and ¢, and ¢ is defined
in (6). The boundary condition (39a) is somewhat
different than that assumed previously? when freedom
was given inside the cylinder. This freedom has been
removed here, since it was not found to be necessary.?
Equation (38), with the boundary conditions (39),
was solved by the trial and error method.!® For this,
(39a) was preserved and instead of (39b) various
derivatives were tried at (=0, in search for a solution
converging into (39b). The calculation was done for
the nucleation field w5% = —3.39 using a fourth-order
Runge Kutta method!® on the WEIZAC—the electronic
computer of this Institute. The computer was pro-
grammed to stop each solution at =1 or when «’<0.
This enables the choice of small enough intervals
without waste of computer time to print unwanted
results. Some of the solutions are plotted in Fig. 2. It
is conceivable from this figure that there is no other
solution of (38) which satisfies (39) except w=0 and

w=0 for
=7 for

t=0

1£0. (40)

That (40) is a solution of (38) may be seen by substi-
tuting in (38)
w= lim 2 arc tan gt.
gq—r0
1BW. E. Milne, Numerical Solution of Dzﬂerentzal Equations

(John Wiley and Sons, Inc., New York, 1953), p.
16 See reference 15, p. 72.
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F16. 2. Some of the solutions of Eq. (38) with the initial value
w(0)=0 and w’(0) as a parameter.

It has already been proved® that for A<k. the
equilibrium state w=0 is unstable. This, together with
the results given here, shows that at nucleation the
jump is to the state (40). If one removes the restriction
of curling only, the central line of spins at =0 will
rotate “in unison” to w=m without a further change in
the field. This instability of (40) may be seen from the
fact that the exchange energy is finite and decreases
monotonically during the rotation, while the self-
magnetostatic energy is zero throughout the rotation.

It should also be noted that the solutions of (38)
shown in Fig. 2 are equilibria for

=t

with the new coordinate ¢ =i{/t, substituted for ¢.
Here !, is the value of ¢ in Fig. 2 for which »'=0.
However, these equilibria are not stable since they
yield negative susceptibilities.

It has thus been shown that the nucleation field in
this case is identical with the coercive force, and the
hysteresis curve is a symmetrical rectangular Ioop
This result has also been found by Brown.? !

B. Magnetization Buckling

The exact calculation of the magnetization curve is
much more complicated here than for the magnetization
curling. Even the choice of a mode which reduces to
the exact buckling for small angles was not found
possible. However, since the exact buckling gave
nucleation fields which were very close to those given
by the approximate buckling, the latter mode was taken
as the basis for the calculations. The following mode,
which gives energies that are easy to deal with and
nucleation fields identical to that of the approximate

17W. F. Brown, Jr., J. Appl. Phys 29, 470 (1958).
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Fic. 3. The reduced nucleation field, k,=H,/(2xI,), as a
function of the reduced radius of the cylinder. The actual magnet-
ization reversal will be carried out by buckling for R/Ro<1.1
and by curling for R/Ro>1.1. The previous assumption of
“roltation in unison” is plotted for the sake of comparison of the
scale.

buckling, was chosen.

az=sine coskp, -
(41)

ay=sine sinkp,
Q= COSE,

where p is given by (6).

The energy per unit volume is calculated in this case
analogously to the buckling case.? This yields

k2
E=xI 3[ sinze[———«l—m'] 1(k) H,® (ik) ]—— 2k cose } . (42)
mS5?

Here the self-magnetostatic energy is only that of the
surface charges o, since in (41) diva=0. These surfaces
charges are

o=0,+10,=1, sine coskp cosp+I, sine sinkp sine.

The self-magnetostatic energy is composed of the self-
energy of o, and that of ¢, which are given in Appendix
V of reference 2, and of the interaction energy of o,
and ¢, which can be shown to be zero in this case.

By comparing (42) with Eq. (6.2.3) of Kittel,8
the hysteresis curve in this case too is a rectangular
loop, and the nucleation field (which is equal to the

18 C. Kittel, Revs. Modern Phys. 21, 575 (1949).
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coercive force) is

k2
—h=— +7iJ1(ik) H,V (ik), (43)
w52

which is the same as given in Eq. (29) of the former
paper for the nucleation of the approximate buckling.

One remark is needed here. In principle the transfer
from one equilibrium to the other should be studied
by means of dynamic equations of motion. It is believed
however, that for the infinite cylinder there are no
stable equilibria except for saturation parallel to the
axis so that at nucleation, the magnetization reverses
completely.

IV. CONCLUDING REMARKS

The results obtained in this paper confirm the
conclusions of the former paper? that the hysteresis
curve of an infinite cylinder with the field parallel to
its axis, is a symmetrical rectangular loop so that the
nucleation field is identical with the coercive force.
The magnitude of the nucleation field of the exact
magnetization buckling was found to be somewhat
smaller than that considered before, but the deviation
was about 19, at most. In view of the results obtained
by Brown,” the transition from exact buckling to curling
(at S=1.1) is abrupt (as is seen in Fig. 3) contrary to
the former suggestions.? It should be especially noted
that a critical size for spin rotation in unison does not
exist for the infinite cylinder.

All the calculations here were carried out by neglect-
ing the magnetocrystalline anisotropy energy. If this
energy is introduced, with the easy direction coinciding
with the cylinder axis, the only difference is that one
should substitute A4 (K/wI*) for k throughout the
whole calculation of the nucleation. Here K is the
anisotropy constant, assumed to be positive. The
nucleation field is thus given by the same formulas
with the added term. As for the hysteresis curve, it is
conceivable that it will remain rectangular, at least for
anisotropy energy of the type K cos*w. This is because
the energy after nucleation will decrease faster than for
the case K=0 discussed before, and because w=m will
remain a stable equilibrium for fields past the nucleation
field.
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