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Cyclotron Resonance in Grayhite

PHn. zI pz Nozzkzzs*
Bell Telephone Laboratories, 31erray Hill, Sem Jersey

(Received October 2, 1957)

The model of the bands recently proposed by Slonczewski and Weiss for graphite single crystals is described
in some detail. It is then applied to a study of the cyclotron resonance absorption in graphite, taking into
account plasma eAects. This theory is then compared to the recent experimental data of Gait et al. The
comparison leads to the conclusion that the charge carriers consist of holes with eR'ective masses ranging
from 0.066m to 0.054m, and electrons with effective masses from 0.054m to 0. The present information on the
band structure of graphite is gathered in the conclusion.

I. INTRODUCTION
' 'N 1947, Wallace published a tight-binding theory of
~ - the energy bands of graphite. He restricted his
study to x electrons, taking into account only the
nearest neighbor interactions. Later, more involved
calculations were made by Coulson and Taylor, '
Lomer, ' and Corbato. 4 All of them tried to obtain the
band structure quantitatively from first principles,
with different approximations. Because of the very
nature of the approximations involved, their results
agree only qualitatively with one another.

Recently, Slonczewski and Weiss' (hereafter referred
to as S.W.) have proposed an alternative approach.
They erst make a detailed group theoretical study of the
crystal, thereby obtaining the "topology" of the bands.
Then, since the layer spacing is large (3.37 A), they
treat the interlayer interaction by perturbation theory.
They are thus led to a model of the energy bands de-
pending only on a small number of parameters. Rather
than trying to calculate the latter theoretically they
proposed to obtain them from experiment. In Sec, II,
we sketch a somewhat altered version of their method.

The problem of 6tting this model to experiment has
been considered recently by McClure' and Heaiing and
Wallace. ~ McClure, using the S.W. model, gives a very
detailed interpretation of the de Haas-van Alphen
effect, but appears at first sight unable to account for
the very large static susceptibility. The parameters he
thus obtains are in fair agreement with the theoretical
estimates. Hearing and Wallace propose a completely

*Now at the Laboratoire de Physique de l'Ecole Normale
Superieure, 24 rue Lhomond, Paris V, France,' P. R. Wallace, Phys. Rev. 71, 622 (1947).' C. A. Coulson and R. Taylor, Proc. Phys. Soc. (London) A6S,
815 (1952).' W. M. Lomer, Proc. Roy. Soc. (London) A227, 330 (1955).

4F. J. Corbato, Solid State and Molecular Theory Group,
Massachusetts Institute of Technology Quarterly Progress Re-
port, No. 21, 1956 (unpublished), p. 23.

5 J. C. Slonczewski, Ph. D. thesis, Rutgers University, 1955
(unpublished). J. C. Slonczewski and P. R. Weiss, Phys, Rev. 99,
636{A) (1955) and to be published. (Their model will be hereafter
referred to as the S.W. model. )' J. W. McClure, Proceedings of the Third Carbon Conference,
Buffalo, New York, 1957 (unpublished); Phys. Rev. . 108, 612
(1957).

7R. R. Hearing and P. R. Wallace, J. Chem. Phys. Solids
(to be published).

different explanation of the de Haas-van Alphen effect,
which yields the correct static susceptibility. To do so,
however, they have to choose values for the band
parameters quite different from the theoretical esti-
mates. In Sec. III, we propose a detailed interpretation
of the cyclotron resonance data by Gait, Yager, and
Dail, ' which yields one of the parameters. In Sec. IV, we
correlate this result with experimental information
available from de Haas-van Alphen effect (McClure'),
oscillatory magnetoresistance (Soule'), and infrared
optical properties of graphite single crystals (Boyle and
Nozieres"). We then discuss the present situation with
regard to the band structure of graphite near the Fermi
level.

II. THE ENERGY BANDS OF GRAPHITE

Graphite has an hexagonal lattice, with layers stacked
in the order 1—2—1—2 (Fig. 1). The spacing between
layers is much larger than the spacing between neigh-
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Fio. 1.The graphite lattice layer 2, represented by dashed lines,
is 3.37 A above layer 1, represented by solid lines. The unit cell
contains atoms A1, A2, B1, B2. The neighborhood of A1A2 type
atoms is different from that of B1B2 type atoms.

Gait, Yager, and Dail, Phys. Rev. 103, 1586 {1956).
D. E. Soule, Proceedings of the Third Carbon Conference,

Buffalo, New York, 1957 {unpublished).
'0 W. S. Boyle and P. Nozihres (to be published).
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CYCLOTRON RESONANCE IN GRAPHITE

Fxo. 2.Half the Brillouin zone
for three-dimensional graphite
(k, ranging from 0 to m/Cp).
Note that there are only two
independent edges of the zone,
ICH and E'B'.

K

"In what follows, we choose the s direction along the c axis of
the crystal."See for instance S. Flugge, in 7Iandhuch der I'hysr'h (Springer-
Verlag, Berlin, 1957), Vol. 30, p. 274.

'3 E. Taft and L. Apker, Phys. Rev. 99, 1831 (1955).

bors in the same layer. The unit cell contains four
atoms and has a height Co= 6.74 A. Note that the atoms
belong to two classes: those which have neighbors just
above them and those which do not. The Brillouin zone
is a thin hexagonal prism, represented in Fig. 2."

Because of the large distance between layers, it is a
reasonable first approximation to neglect their inter-
action. We shall put this oG for a moment, and consider
just the single-layer problem. This problem has been
studied by various authors, and we merely sketch their
results. According to their behavior with respect to
reflection about the layer plane, the electron eigen-
states are rigorously divided into o. (symmetric) states
and x (antisymmetric) states. Although the various
calculations disagree on many points, they agree on one:
the Fermi level (Er ) lies at the corners E and E' of the
two-dimensional zone, in a m band, on a doubly di-
generate level, E3 . At this point of the zone, the closest
levels to this one are o- levels above and below Ep
(Fig. 3). The distances between the latter and Es are
not known with certainty: Lomer gives a value ~1 ev,
while Corbato proposes 6 ev. Recent measurements"
of x-ray absorption and emission of graphite both show
a definite shoulder in the observed spectrum, which
does not appear for diamond. These shoulders probably
correspond to the above 0 band edges. Because of
various broadening eBects, it is not possible to locate
with precision the Fermi level on the x-ray spectrum,
or to measure the above 0 —m band gaps. We can, how-
ever, assert that the latter are larger than 2 or 3 ev,
thereby contradicting Lomer's result. This conclusion
is consistent with that derived from photoelectric
emission data. "

In o1der to obtain the energy in the neighborhood of E,
we use a standard method: a change k in the wave vec-
tor is equivalent to a perturbation (Ak. p/m+sA'P/m)
on the Hamiltonian at E. It is then straightforward to
show that, to 6rst order in k, the wave function near E
is a linear combination of the eigenstates at E3 . There
are two of these, which we will call 8 and f. As a result,
the energy surface E(k,k„) is a circular cone with its
axis along. the E direction.

Since the interlayer interaction is small, we expect
the above energies to be only slightly changed when we
go to the actual three-dimensional crystal; the de-
generacy at E3 will, however, be lifted, and this will

Fzo. 3. The energy vs k„meas-
ured from the corner of the zone.
The Fermi level lies at a doubly
degenerate x level, E3 . The
closest levels are o- levels E1+
and E2+.

result in a profound change in the shape of the bands
near the Fermi level. Even though the effect is small,
it will modify drastically all the properties of the
electron gas. Now, since the energy shift due to the
layer interaction is small, the admixture of single-layer
wave functions other than 0 and f will be small. This
suggests an approximation which is the basis of the
S.W. model: let us take as a wave function of the total
solid a linear combination of the single-layer wave
functions 0 and P on each of the two layers in the unit
cell; this leads to a fourth-degree secular equation which
can readily be solved. We thus neglect the coupling of
the E3 level with other two-dimensional levels, es-
pecially with the nearby E&+ and E2+ a. levels'4: this
may result in a slight change of the parameters entering
the secular equation, which we discuss later. To sum up,
the S.W. model considers a wave function of a tight-
binding type for the k, direction, and treats the change
of k, and k„by perturbation theory.

Let us sketch briefly the method used to obtain the
secular equation along HE."For each of the two layers
of the unit cell, we consider the wave vector groups G~
and G2, including a set of rotations centered, respec-
tively, at 0& and 02 in Fig. 1.We then consider the wave
vector group G of the total crystal which includes rota-
tions around the axis A &A & eventually followed by trans-
lations along 0,. It is straightforward to express the
operations of G in terms of those of either G~ or G2,
followed by nonprimitive translations. We then de6ne
the single-layer wave functions 8& and f, on layer 1,
es and Ps on layer 2, as the basis of the same representa-
tion of Gi and Gs (namely the representation in which
the rotations by 2~/3 and 4'/3 are diagonal).

The next step is to choose a value of k, . We then can
build four three-dimensional wave functions Ci(k,),
C's(k.), %'i(k,), +s(k,) valid for any specific value of h„
de6ned as

4 s(k,) =p„e'&"+»" o08s(r —NCs),

"The cr and 7r wave. functions are decoupled when they lie
on the same layer, but no longer so when they are on different
layers.

"The group-theoretical techniques used in this paper are
described by Bouckaert, Smoluchowski, and Wigner, Phys. Rev.
52, 731 (1937).
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in which we have limited ourselves to nearest layer
interactions. We have indicated at right the labeling of
rows and columns, which we shall keep in the following;
c=(%'&lC») is a small quantity which we can neglect in
our approximation, for it aGects only the nondegenerate
levels.

Using the symmetry of the wave functions, we then
find easily the matrices of V+——V,&iV„

kz
7r

Gp

FIG. 4. The energy levels vs k, along the line IIE in the Brillouin
zone. At right is a section of the energy surface as cut by an
(E,k,) plane for an arbitrary k„showing the hyperbolic shape of
the bands.

0

0
V+=-

&2 0

0 di+83* 0

~3+di &s—di 0

and similarly for %&(k,) and %&(k,). These wave func-
tions form the basis for a representation of G whose
matrices we can form from the symmetry properties of
0 and f. With our particular choice of 0 and P, this
representation is reduced easily into a two-dimensional

representation, with basis C~ and %2, and two one-
dimensional representations, with basis (1/~2(C'2+'ki)
and (1/~2 (C»—4'i) (except at k.=n./Co, in which case
the two one-dimensional representations merge into a
two-dimensional one). In this reduced representation,
we may easily build the normalization matrix S and the
Hamiltonian H. Each of the matrix elements is a
Fourier series in q =-,k,CO in which only cosine terms

appear. The coeKcient of 1 involves overlap of wave
functions on the same layer, that of cosy overlap of
nearest layers, and so on: the series converges very
rapidly, so that we keep only the lowest order terms.
This yields the following energies along HE":

Ei=6+2/i cos(p,

82=6 2py cos+) (2)

E3= 2+2 cos p)

(where we have chosen arbitrarily the origin of the
energy scale as E3 for &p=~/2). The corresponding level

scheme is pictured on Fig. 4.
In order to obtain the secular equation for points of

the Brillouin zone near the line HE, we must find out
for each k, the matrix of the perturbation (Ak p/m
+-',A'k'/m). Since it will finally turn out that the effec-

tive masses of the carriers are very small, we may
neglect the term i~A'k'/m, and concentrate on the matrix
elements of the momentum p. Furthermore, we must
first make sure that the wave functions we are using are
orthonormalized. In the above reduced representation,
the normalization matrix may be written as

o o o: (e,+c,)/v2

0 1—c 0 0: (Ni —C g)/V2

0

i 0 0
V =—

V2 dr+53 di —53

0

(4)
di+83*

H

Hg3 —Hga*

Hps* E3
(6)

-Hg3 —Hg3 H33*

in which
1 5'dgk

Hga= — e',

in which the constants d~, 82, 83 are defined as

d.=(c.
l
v-l~.),

s,=(c,
l v, lc,),

~ =&c.lv-lc )
The quantities d& and 82 may be shown to be real, while
63 is complex. In first approximation, d~ is independent
of k„while 52 and 53 are proportional to cosy, and much
smaller than d~. Since 8~ arises as a small correction to dy

in matrix elements connecting nondegenerate states,
we may neglect it. On the other hand, 5&, even though
it is small, arises in matrix elements connecting the two
components of a degenerate level: close enough to the
symmetry point, these matrix elements will determine
the band structure; let us therefore keep 82 and set it
equal to d2 cosy.

Ke are now able to write down the Hamiltonian
matrix for any wave vector in the neighborhood of HE.
I,et us describe the wave vector in cylindrical coordi-
nates (k„k,a), around the axis HE. Using (2) and (4),
we obtain

0 0

'«c g,dopt the notation of McClure (reference 6).

i A'd2k
H33=— --e' cosy.
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This is essentially the Hamiltonian proposed by S.W.
and McClure. In determining it, we neglected several
things. One is the eGect of the spin-orbit splitting. S.W.
have shown that this is completely negligible. More
important is the coupling with the nearby 0 bands.
The matrix element of the Hamiltonian between x
and a wave functions involves overlap of nearest layers,
and is proportional to sing. This eGect will therefore
yield an energy shift of all the levels proportional to
sin'p, and will simply result in a change of y~ and 6,
with no further alteration of the Hamiltonian (6).

Before trying to solve the secular equation of (6),
let us discuss in some detail the 6ve parameters 6, y~,

y~, d~, and d~ which enter it. The parameter y~ corre-
sponds to the main splitting between the singly de-

generate bands, and involves overlap integrals between
nearest layers. Johnston" estimates 0.3 ev from theo-
retical arguments. From a study of the magnetic proper-
ties, Hearing and Wallace' argue that y~ is of order
0.005 ev, in contradiction with the theoretical estimate.
These two attitudes lead to completely different models
for the energy bands, and a direct experimental meas-
urement of p& is highly desirable. Recently, Hoyle and
the author" have studied the infrared emissivity of
graphite single crystals. This yields a value of p& of
order 0.2 ev, in accordance with theoretical estimates.
In what follows, we shall assume that p& is eGectively
of this order of magnitude.

The parameter p& describes the slope of the doubly
degenerate level, and determines entirely the band
overlap. It arises both from the next nearest layer inter-
action, and from the O.-m- coupling. A very rough theo-
retical estimate of the first effect yields a value of order
0.01 ev. The effect of the o.-m coupling depends essen-
tially on the proximity of the r bands. If we use the
Corbato results, it is relatively weak, also of order 0.01
ev. The two effects compete, and the sign of y~ is
doubtful. McClure's study of the de Haas-van Alphen
eRect yields a value of order +0.02 ev. Our interpreta-
tion of the cyclotron resonance data confirms this sign,
while the optical properties" around 20@, seem to support
a value of IV~I of this order of magnitude.

The parameter 6 describes the separation of the two
levels at k, =m/Co. It comes from the fact that the
neighborhoods of A and 8 atoms are different. It also
involves next-nearest-layer overlap integrals, and
Carter and Krumhansl" estimate it to be around
0.01 ev. McClure obtains 0.02 ev, in fair agreement
with the above estimate.

Our parameter d& describes essentially the behavior
of the energy away from the line HE as we shall see
later. It is related to the po of Wallace and McClure by
y0=2h d~/(VSetao), where ao is the primitive vector in
the layer plane. (See Fig. 1.) Various theoretical esti-
rnates give values of yo ranging from 1 to 4 ev. From a

'7 D. F. Johnston, Proc. Roy. Soc. (London) A227, 349 (1955).
J. L. Carter and J. A. Krumhansl, J. Chem. Phys. 2I, 2238

(&953).

calculation of the magnetic susceptibility, McClure"
obtains 2.6 ev. Using cyclotron resonance and infrared
data, we obtain 2 ev.

Finally, d& involves matrix elements of the momentum
between nearest layers, and gives rise to the anisotropy
of the bands in the x, y plane. It is related to the y3 of
McClure by y3=2A'du/(%3mao). Johnston estimates ya
to be 0.1 ev. In any event it is small, and the anisot-
ropy affects only a very narrow energy range.

I.et us now turn to a study of the energy bands, and
solve the secular equation (6). Since H3& is very small,
we may neglect it for energies E such that (E—E,) )y, .
Within this approximation, (6) breaks down into two
second degree secular equations. [The component
(C»e ' +4'&e* ) of level 3 is coupled only to level 1, while
(C &e

' —0'&e' ) is coupled only to level 2.) The energy
is independent of n, given for every value of k, by

El+E3 (El E3$ 2 @4d 2k2- $—I+)
E2+Ea (E2 Ea) 2 @4d 2k'- g

2 ( 2
I+

m2

As Slonczewski pointed out, the surfaces E(k„k„)are
two circular hyperboloids (Fig. 4). For k large enough,
they are asymptotic to the single-layer energy cone,
E=+A'd&k/te. For k small enough, we may approxi-
mate them by paraboloids, yielding two k, dependent
eRective masses m*(k,) in any direction perpendicular
to the C axis.

my*(k, ) =
m'(E3 —Eg) m'(E3 —Eg)

mg'(k, )= . (9)
2A dy 2A dy

For energies E very close to E3, we must take
into account H». But we may then use the fact that
(E&—Ea)))(E—Ea), and solve the secular equation by
perturbation theory. This gives the following energy:

5'k'dp (2E3—Eg—Eg)

2m' (E~—E3) (E~—E3)

A'kd~ cosy ( k k') &

+ I
1+2—»n3~+ —,I, (1o)

m & k, k;)
2md2(E3 Eg) (E3 E2) cosp

k, =
h'd P (Eg—Eg)

Except when k, is very close to m/CD, one has

(E3—E~) = (Ei—E3)=2yi cosy. (11)

Equation (10) then simplifies, and yields the anisotropic
warped energy surface shown in Fig. 5. There are four
conical points, one at k=0, and three at k=k„at the

"J.W. McClure, Phys. Rev. 104, 666 (1956).
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kx 16 m'ygy2E=-
9V3 n-'COA4dp

(13)

the following approximations to the band structure
near E3. we neglect 6, and replace the hyperbolic
bands by parabolic bands with an efkctive mass
m*=m'y~ cosy/(A'dP). We furthermore neglect the
warping of the bands (letting d, =0). We are then left
with only two parameters, y~/dP and 7,. This model is
completely wrong near k, =m/Co, where m* goes to 0.
As long as we do not deal with phenomena in which
those very-low-mass carriers govern the behavior, this
is nevertheless a good approximation, since it concerns
only a few carriers. "

In this simple model, it is trivial to calculate the
position of the Fermi level, the number of free carriers,
etc. It is found that for pure graphite, the Fermi level
crosses the level Ea for a value of cosy equal to (-,')&.
The total number of free carriers of each sign is in
this case"

Kith the above estimates of the parameters, S turns
out to be of order 10"/cm'. If y2 is positive, the holes
are heavier than the electrons, which as we shall see
is confirmed by experiment. For energies E((2p&, the
density of states per unit energy for holes and electrons
are as follows:

FzG. 5. The anisotropic energy surfaces near E3, for an arbitrary
k, . The lower part shows the constant energy contours in k at
various values of the energy while the upper part shows the func-
tion E(k) in the direction +=0. The surface E(k,k„) has four
"feet,"which merge together when E increases.

corners of an equilateral triangle. For k))k„ the warp-
ing fades away, and the energy is again given by (8).
The range of tt' and 8 in which the anisotropy is im-
portant is given by k, and E~ (Fig. 5).

Ãh, &e 4m'y& dX, ) 4m'yg
f(E)

dE s'COA4dP dE m'Cph4dP

f(E)=1 if E&0.

(=
I

1—
(

if 0&E&2q, .
2p, P

=0 if E)2y2.

(14)

21Ã82py cos p E~= py cos p.
A dy 2dy

(12)

These quantities are plotted in Fig. 6.
An important feature of the present model is that the

carriers do not have one effective mass, but rather a
continuous distribution of masses. The density of

With our present estimate of the parameters, E~ is of
order 0.002 ev for k, =0, which is very small. Further-
more, when cosy becomes small enough that (11) might
be wrong, I-'~ is so small that the warping is altogether
negligible. In any event, the warping is a secondary
feature of the bands, which may be dealt with as a
perturbation upon the main band structure arising
from (8).

For pure graphite, the Fermi level will be very close
to E3 (see Fig. 4), in such a way that there are an equal
number of holes and electrons. Since y~&)y2, the eGec-
tive-mass approximation will therefore be very good
near Ep except for 0, very close to n./Co. Now, the latter
range of k, is very narrow, and furthermore yields
energies rising very steeply with k, . It therefore con-
tains a very sma11 number of electrons. This suggests

dN I)
dE

EF 27

Fro. 6. The density of holes and electrons per unit
energy vs the energy.

20 This model would, for instance, be very bad for dealing with
optical properties at energies around h. As was pointed out by
McClure, it does not describe the diamagnetic susceptibility
correctly.

2' In evaluating (13), one must remember that there are two
independent corners of the zone.
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T,(E,k,) =

dN l)
cf ITI

FiG. 7. A sketch
of the density of
carriers of a given
effective mass vs the
mass.

ELECTRONS HOLES

"See, for instance, McClure, reference 6."B.Lax and H. J. Zeiger, Phys. Rev. 105, 1466 (1957).
s4 See for instance J. W. McClure, Phys. Rev. 101, 1042 (1956);

J. M. Luttinger and R. R. Goodman, Phys. Rev. 100, 673 (1955);
Zeiger, Lax, and Dexter, Phys. Rev. 105, 495 (1957).

carriers of a given mass ~s the mass is plotted in Fig. 7.
Any model which attempts to assign discrete masses to
the carriers is therefore somewhat unrealistic, although
in some cases it might be a fair approximation to define
an average mass for holes and for electrons, as may be
seen in Fig. 7. In a certain class of experiments, such
as the de Haas-van Alphen effect, or the oscillatory
magnetoresistance, one only samples carriers located on
the Fermi surface at points such that the cross section
of the latter by a (k,k„) plane is maximum or mini-

mum. " In the present model, this occurs at y=0 for
holes, and &p

=arc cos (a+2/3) for electrons. The above
experiments should therefore show up holes with a mass
m'yt/(A'drs) and electrons with a mass %2m'yt/(3A'dts).

III. APPLICATION TO CYCLOTRON RESONANCE

In this section, we use the model of the bands de-
veloped in Sec. II to treat the problem of the cyclotron
resonance in graphite single crystals. We propose an
interpretation of the recent experimental data of Gait
et al. ' which yields a value of the mass parameter

p y/ 8y in excellent agreement with that proposed by
McClure. In the light of what we know about the band
structure, we compare the present work with the recent
explanation of Gait's results by Lax and Zeiger. " In
what follows, we consider the geometry used by Gait,
with the dc magnetic field directed along the c axis, and
a circularly polarized wave propagating in the same
direction.

We assume that there is no anomalous skin effect
present: this point has been discussed by Lax and
Zeiger, who concluded that in Gait's experiment, one is
probably close to the anomalous range, but still far
enough for a classical calculation to be meaningful, at
least qualitatively. Let us furthermore neglect for a
while possible quantum effects. It is well known'4 that
under these conditions, each electron travels in k space
along an "hodograph" C, characterized by constant
E and k, . Assume that this contour is closed (Fig. 8)
enclosing an area S(E,k.). The time T,(E,k,) needed
for a complete revolution is then given by

chs r)S(E,k,)
(15)

eH BE

CONSTANT E NE RGy
SURFACE

FrG. 8. In a magnetic Qeld along O„each electron travels on
a contour in k space like C, called the hodograph. The action
variable is then proportional to the area S enclosed by C.

r)oi, (E,k,)
A

BE
(16)

This will occur at high magnetic fieMs, and will lead to
resonance lines at fields H which do not depend linearly
on the microwave frequency &u. Now, even when (16) is
not satisfied, one may still have quantum effects arising
at the touching points of two bands (as Luttinger and
Kohnss have shown). Generally, the cyclotron level
spacing is not proportional to IJ, except if the two
touching bands are parabolic. These effects extend over
an energy range of order A~, in our case 10 4 ev.
Now we know from Sec. II that within this distance of
the touching points in k space, the energy surfaces are
essentially conical. Quantum effects for such energy
surfaces have been studied by McClure" and again
they yield a nonlinear dependence between field and
frequency. Gait, Yager, and Merritt" have performed
a cyclotron resonance experiment on graphite at 24 000
Mc/sec and 72000 Mc/sec, and they find that the
absorption spreads linearly with frequency (Fig. 9).
This affords experimental evidence of the absence of
quantum effects of any kind in graphite, and justifies a
classical treatment of cyclotron resonance.

We may then define an effective mass no*(E,k,) for
each carrier, such that ce.(E,k.) =eH/ [m*(E,k,)cj. This
defines no* for orbital motions of the sort relevant to
cyclotron resonance. In the most general case, it does
not have to be the same as the effective mass defined
for other phenomena (for instance conductivity in the

2' J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
~~ Gait, Yager, and Merritt, Proceedings of the Third Carbon

Conference, Buffalo, New York, 1957 {unpublished).

This classical result Inay be affected by two kinds of
"quantum" effects. The first arises when the frequency
c0,(E,k,) varies appreciably over an energy range of
order Ao&, (E,k,), i.e., if
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FzG. 9. The observed dP/dH plotted against H at two di6erent
microwave frequencies co (taken from Gait et al.").The H scale
for the 72 000 Mc/sec is reduced by a factor 3, in order to empha-
size the linear relation between H and co.

27 For a derivation of (17), see, for instance, P. W. Anderson,
Phys. Rev. 100, 749 (1955).

gy plane). If, however, the energy contours, in the k,k„
plane are circular, the above m* is the same as the one
occurring in the conductivity in the layer plane. Let
us restrict ourselves to this simple case.

In fact, because of the exclusion principle, resonant
absorption will only occur for carriers near the Fermi
level Ep, so that one only samples the frequency
ED, (Es,k,). In the general CaSe Where ED, VarieS With E,
one needs a complete quantum treatment of the ab-
sorption process in order to describe correctly the ob-
served phenoemnon. However, if co, is independent of E,
one may neglect the exclusion principle, and, perform a
classical calculation of the conductivity 0 of the elec-
tron gas. In our simplest model of the bands, ms~ is
precisely independent of E, so that the classical ap-
proach is justified.

Let us now describe any circularly polarized motion
around the c axis by an algebraic frequency ED (00 and —

&0

corresponding to opposite circular polarizations). Let
r(E,k,) be the relaxation time for each electron. The
total conductivity of the system for a circularly polar-
ized electric field at frequency co is"

1 t' e'd (ts,E)k
0=—~I— (1&)

i~ m*(E,k,) LEd
—i/r(E, k,)7—eH/c

From 0, we can easily get the complex dielectric con-
stant, 2=1 42rio/ED —In the p.resent case, e will always
be much larger than 1, giving large refraction and
extinction indices. The reflection coeKcient E at the
surface of the sample is then given by

. (400$ ) f
1—m=4 Re(1/g. )=Re

t t
. (1&)

(1 E—) measures the power loss P at the surface of the
sample (through absorption and transmission), and
is the quantity measured experimentally.

For high fields H, o. goes to

o= (ec/iH) Pe, t res—7,

where m, i and e~ are the total number of electrons and
holes respectively. " If however e,&=ez, the first non-
zero term of the expansion of o. is proportional to 1/H'.
These two possibilities result in quite diferent behaviors
of P es the field H. In the first case, P Re(QH); the
absorption curve P(H) is then completely asymmetric,
going to zero for one sign of II and to infinity on the
other. "On the other hand, if n, t ms, P——

t
H t, and one

has a symmetric absorption curve. The experimental
results show clearly that the power absorption coeK-
cient is symmetric about H=O in graphite, and we
therefore conclude that in this case N, t tss L——Fig. 1(a)
of reference 8J. This conclusion is quite independent of
the model chosen for the bands. This proves that the
sample used by Gait was very pure, a suggestion which
is confirmed by the reproducibility of the data from
sample to sample, and by x-ray observations.

In order to make a really quantitative analysis of
Gait's data, we should know the distribution of relaxa-
tion times, r(E,k,). Unhappily, this is quite outside the
scope of the present study. Certainly, r depends strongly
on k„and probably also on E. We may, however, de-
fine an average r for the whole group of carriers (the
"majority" carriers). As was pointed out by Lax and
Zeiger, the broad variation of dP/dH vs H suggests that,
at 24 000 Mc/sec, r is such that 02r=2. The sharp lines
observed on Pig. 9 must then be due to "minority"
carriers with a much longer relaxation time. Further-
more, the lines at 22 000 Mc/sec have the same frac-
tional width as at 24000 Mc/sec and are therefore
wider as measured in oersteds (Fig. 9); this suggests
that their width is not due to a relaxation process, but
rather to the width of a distribution of the effective
masses of the minority carriers. The following treatment
will confirm this point of view. Because of the com-
plexity of the problem with a finite r, we shall erst
carry out a calculation of 0. and P for 7.= , and discuss
the relevant features of the results. We then shall try
to plug in to the problem some average relaxation time
for the majority carriers, in order to'see qualitatively
how 0. and P are modified by a finite r.

Let us use the simple model described at the end of
Sec. II with parabolic energy bands for any given value
of k, . It is then a straightforward matter to calculate
dts(E, k,) and m*(E,k,), and from this to calculate the

"As has been shown by J. A. Swanson jphys. Rev. 99, f799
{19SS)g, the motion of carriers in high magnetic Geids depends
only on the topology of the bands, and not on their detailed shape.
Our result for g is just a special case of this'inore general treatment.

29 The sign of H describes the orientation of the 6eld with re-
spect to the frequency co of the circularly' polarized electromag-
netic wave.
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Se'ys t
"' (cos'y c—os'y )scosy

dp
j~2jpggg cosy —0.

t' I' (cos'ys —cos'y) cosy
dy, (19)

cos y+cr4 go

conductivity o(H), using (17) with v = eo. We obtain I

2e~T p2 p
ITQ7~5~ CO

5.0

'g= 0
Q4

in which e is a parameter defined as

eH eB h'd~'
CL=

~ggx C07 C 1S pyM
2

(20)

iver'O'Cga
I= o-

Se'y2
we find that

I(n) = sin ye cosye+ (-,' —cos'ys+n') (2 ye ——',ir)+n

n(n' —cos'ys) f 1+n(1 cr') —& tanyo&
+ in[

(1—trs)& 41—a(1—n') & tanys)

(21)

The function I(n) for cos'ye=-s is plotted on Fig. 10.

LO'

and ye= are cos[(ss)&] is the value of sr% Cp at the point
where Ep crosses the level E3. n is simply the ratio of B
to the resonant magnetic field for the holes at q =0.
The integral (19) may be calculated analytically (using
principal parts when it is necessary). If we define

2.5

lf

r~

Fro. 11. The rate of power absorption P, in units of (s.+sit'C, /
2e'yu)&, plotted against the magnetic field H, in units of cm'~&u/
eh'd&', for two values of the relaxation time v, characterized by
g = (~dr) ' =0, 0.4.

We remark that the function I(n). has only four singu-
larities, at n =0, +cosys, +1.This has a simple physical
origin. We have seen that we have a continuous dis-
tribution of eGective masses. D we choose a Geld such
that some carrier in the middle of the distribution is at
resonance, we do not expect any singularity in 0. The
infinite negative reactance of carriers slightly lighter
than those at resonance cancels the infinite positive
reactance of those slightly heavier (that is what we
mean by the use of principal parts). Singularities can
only occur at the edge of the mass distribution: the
singularity at n=2 arises from holes with k, =0, those
at n=&cosqo arise from holes and electrons at the
crossing of E3 and EI, and that at n= 0 comes from the
electrons at k, =s./Cs. The latter is in fact spurious,

. being a consequence of our poor treatment of the elec-
trons near k, =ir/Cs, those carriers do not have in fact
a zero mass, and the singularity at a=0 would disap-
pear in a correct treatment. " We shall therefore dis-
regard it.

Since we neglect the relaxation processes, the im-
pedance cr is purely reactive and the power loss I' from
the cavity occurs only through transmission. Using
(18) we obtain easily I', which is given by

7l GPPPCO

Re(—I)—
&.

2e p2
(22)

The quantity Re(—I) & is plotted ris n on Fig. 11.
We note that perfect reQection occurs in the ranges

-1

H

FIG. 10. The conductivity 0, times i at frequency co for an
infinite r vs the magnetic field H, in suitably normalized units.
)The abscissa a is equal to (eh'dis/cmsyica)Z, and the ordinate I
is equal to (iw'O'Cga/Se'ym)0

"In fact, the picture is somewhat changed when one takes
properly into account the splitting of the levels at &p=ir/2. On
Fig. 4, one sees that the free electron range stops at the intersec-
tion of Eg and E2, for a value of cosa- equal to &(6—Eg)/y1.
Qne should therefore expect a very weak singularity at a very
low, but nonzero, magnetic field on the electron side. This is
probably smoothed because of the large E dependence of the
effective mass in this range of k, .
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from n= —0.52 to n=+1. In this range the wave does
not penetrate into the sample, and I'=0. Because of
this effect, the singularity at n =+cosy 0 is washed out.
The singularities at n= —cosy 0 and +1 are still
present, however. In addition, we have a new singu-
larity at 0.= —0.52. The latter cannot be assigned to
any carrier in particular; it arises from the accidental
fact that the conductivity goes through zero at this
point.

Now consider the case in which the relaxation time
is finite. The sharp singularities of P(H) are then
smoothed. I,et us assume the same relaxation time 7-

for all carriers, and set q= (cur) ' The .conductivity of
the system is now given by

(23)

where n and I(n) are defined by (20) and (21). From
this, we may compute the power loss P(H). The results
are plotted on Fig. 11 for g=0.4. We remark that the
singularity at o.= —0.52 has completely disappeared.
This is always true, even for very small q, and shows
that there is a fundamental diGerence between g=0
and p very small. We also note that the singularity at
H=O is not removed by the inclusion of a finite v.
Since it is in fact spurious, we may forget about it.
In the range from a= —0.52 to n=+1 we no longer
have complete reRection. Nevertheless, the penetration
of the wave into the sample is smallest in this range.
Any singularity superimposed on the absorption curve
will be less intense in this range than outside, increasing
in magnitude when g increases.

As we have mentioned, the sharp singularities ob-
served by Gait, Yager, and Dail can only be explained
if we assume minority carriers with a much longer
relaxation time than that of the majority carriers. Let
us therefore assume that the carriers near the crossover
of E3 and Ep (with p very close to po), have a very
long r, which, in fact, we shall take to be infinite. This
assumption is plausible if the collision time is mainly
determined by phonon and ionized impurity scattering.
In both cases, most of the scattering will involve small
changes of k, . On one hand, there are no phonons with
large k, at helium temperature. " On the other, the
screening in the s direction is rather inefficient, yielding
a small s component of the Fermi Thomas wa, ve vector:
therefore the scattering by ionized impurities involves
mostly small changes hk, , Now, if the change hk, is
bound to be small, the density of states around the
carriers at the cross-over is much smaller than around
the other carriers, which justi6es our assumption con-
cerning the relaxation time. Under these conditions,
the singularities at 0.=&cospo will not be smoothed,
and will be superimposed on the smooth curve of

"For an estimate of the Debye temperature along the s direc-
tion, see J. Krumhansl and H. Brooks, J. Chem. Phys. 21, 1663
(1953).

Fig. 11.Their shape is somewhat uncertain, since they
arise from a complicated complex expression. The
singularity at +cos&po will be much smaller than the
one at —cosy 0, for the reason mentioned in the pre-
ceding paragraph.

What is observed experimentally is the derivative
dP/dH. This is plotted against H in Fig. 12, for g=0.4,
neglecting the change due to the longer 7. of the carriers
at the cross over. The latter will show up as sharp
singularities in the derivative curve, the one on the
positive side being much less intense than the one on
the negative side. At this stage, we may compare these
results with the experimental data of Gait, Yager, and
Dail. However, we will erst discuss the resonance of
minority carriers in more detail.

In deriving (23), we have neglected the warping of
the energy surfaces near E3. But the minority carriers
which we are considering are precisely in the region
where this warping is of importance, so that this point
calls for further investigation. It turns out that it is
possible to evaluate the area S(E,k,) defined in (15)
for these warped bands, and thereby to calculate rigor-
ously the cyclotron period T,(E,k,). Let us define:

i C

cosp g(6),
t.H

(25)

dp
dH

FIG. 12.The derivative dP jdB' vs H, plotted with the same units
as in Fig. 11, for g =0.4. The two arrows mark the positions of the
singularities due to the minority carriers at the crossover of E3
and E~. To take account of the fact that the singularity at o;=(}
is spurious, we indicate by a dotted line what we expect in the
absence of this singularity.

E E3= 2(d2 —/di )ri6 cos p. (24)

For each k„we must distinguish between three kinds of
carriers (see Fig. 5): for

~
e~ (4, we have those in the

central foot of the energy surface on one part, and those
in the outer feet on the other. For

~
e~ )~, we have only

one kind of carrier, moving along contours which have
a trigonal symmetry. Using (10) and (15), we obtain
T, (e, p), which is given by
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where g is a function de6ned for the three kinds of
carriers as follows:

!
~1 ~

gcentrsl 3gouter

8e (1—(1—16e')«)
I, (26)

1+(1—16e')«( 1+(1—16e')«)

!e!),'. g=-,'Z/. .

Co C5 '7p di dN-

dE eH gi dP dT

0.5

E(x) is the complete elliptic integral of the 6rst kind.
The function g(e) is plotted on Fig. 13. For e))st, T, is
practically constant, equal to the period obtained when
neglecting the warping. On the other hand, when
& &4, T, varies considerably, and we may wonder how
to get a sharp peak from the corresponding carriers.

It is no longer possible to calculate directly the con-
ductivity; this would require a complete knowledge of
the dynamics of the carriers on the warped contours
and lead to very complicated calculations. We may
avoid this difhculty as follows: let us consider the
carriers in a narrow energy range dE around the Fermi
level Er. They have a cyclotron period T, (y) deter-
mined by (25), in which we must choose e such that the
energy is equal to Ep. This leads to

-1.0 -0.5 0
h d,

2~i ~' C

(a)

0.5

m~C, Ch' y, d, dN

cl
eH giddy dT

its
7jClp TOWARD y = +4

2/

100

i.o

cos p

ys dt t'cos y —cos (ps)

)p, d,s l
(27)

75

50

dX= (2ws) 'dk, (8S/BE)dE. (28)

6
g(~)

It is possible to calculate the number dX of these
carriers having a cyclotron period between T, and
T,+dT, . If the density dE/dT, peaks for a certain
value of T„we can explain the presence of sharp peaks
in the spectrum.

Let us consider carriers in the neighborhood of a
given contour in k space, enclosing an area S. The
number of carriers in an interval dk, dE is

0
h~d, 'eHT,

2/i fTI~C

(b)

FIG. 14. The density oi carriers dlV/dT, in an energy range dE
around the Fermi level and resonating with the period T„vg T„
plotted (al for the carriers in the feet of the warped energy sur-
faces, (b) for the carriers outside these feet, but in the neighbor-
hood of y= q 0. (The arrows indicate how the curve continues out
of the range q —qo.)

But BS/BE is related to T, by (15). We therefore ob-
tain easily dN/dT, as a function of qr (which we take
running from 0 to s/2). The result is

dX 2 eII d y
T; dK

dTc 7r Cp t"A dTc
(29)

3
OUTER FEET

0
0 0.10 0.20 0.30 0.40

FIG. 13.The cyclotron period T, vs the energy for a given value
of k„ for electrons on the warped energy surfaces near E3. The
units are de6ned by Eqs. (24) and (25).

Equations (25), (27), and (29) give a parametric repre-
sentation of the curve of dX/dT, vs T,. In evaluating
d q /d T„we must remember that T, depends on q both
directly, and indirectly through e. In Fig. 14(a) we give
a plot of dX/d T, vs T., in suitable units, for the carriers
lying in the feet of the energy surface. In Fig. 14(b),
we give the same plot for the carriers immediately out-
side the feet on both the electron and the hole sides.
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TABLE I. Calculated and observed fields for harmonics of
minority carrier resonances.

Harmonic Calculated H(oe) Observed H(oe)

Electrons

Holes

+1
+4
+7

+10—1—5—8

+1
+4

—115—66—46
+230
+92
+57

+115—230

—460—120—65—45
+240
+91
+62

+460
+120—230

We may then draw the following conclusions: the
carriers inside the feet have a very broad distribution of
T„and very small values of dX/dT. . They would give
rise to a very weak and broad variation in the absorp-
tion, which would certainly be hidden by the broad
variation due to majority carriers. On the other hand,
the carriers outside the feet show a very sudden drop
of dÃ/dT, The co. rresponding values of dN/dT, are
about 100 times larger than those of Fig. 14(a). If we
neglected completely the warping of the bands, the
drop would occur at the same T„but would be rigor-
ously vertical. The warping just smears it slightly.
Therefore, the anisotropy of the bands near E3 does not
modify at all the singularities occurring at o, =&cospp.

Although the warping does not shift or broaden the
minority carrier absorption line, it has an important
physical eGect: it gives rise to harmonics. Because of the
trigonal symmetry of the energy bands outside the
feet, the motion of the carriers contains only harmonics
at frequency cv. (1+3m), where n is any integer, positive
or negative. If IIp is the field at which the fundamental
resonance of minority carriers occurs, we expect to see
also absorption lines at Acids Ho(1+3m) '. Note that
there would no longer be such a selection rule for the
harmonics if the observed minority carriers were
lying in the outer feet of the energy surface.

Let us now compare the preceding theoretical results
with the experimental data of Gait, Yager, and Bail
obtained at 24 000 Mc/sec (Fig. 9). The broad varia-
tion of their derivative curve agrees fairly well with the
dI'/dH curve of Fig. 12, for g=0.4, and therefore may
be assigned to the absorption by majority carriers.
One cannot ask for much more than a qualitative agree-
ment, since our assumption of a constant r is only
approximately valid. (We must furthermore remember
that we are not very far from anomalous skin e8ect
conditions. ) We have shown in Fig. 12 the position of
the two discontinuities due to minority carriers, for
0.=&cospp. This agrees with experiment if we choose
as the fundamental singularity for n= —cosy» the peak
at —460 oe. We then expect a much weaker singularity
at &=+460 oe. There is faint evidence of it on the
24 000 Mc/sec data, but it shows up better on the 72 000
Mc/sec curve. "The remaining lines of the observed

m*(yo) =0.054m, (30)

where nz is the free-electron mass. From this, we get
easily the maximum mass of the holes, for p=0, which
is 0.066m. In short, the hole mass varies from 0.066m
to 0.054m, that of the electrons varies from 0.054m to 0.

It is worth mentioning that in the light of our band
model, there is in fact very little choice in interpreting
the data. There are so many lines in the experimental
spectrum that most of them are almost certainly
harmonics. But in order to have harmonics, we must
have warped energy surfaces near Ep,' the only place
where this may occur is at the cross-over of E3 and E~.
this fixes the nature of the minority carriers. The
selection rules arising from trigonal symmetry then
fixed unambiguously the choice of the fundamental
line. The weak point of this interpretation is the
following: the minority carriers are very few, because
of the very small extent of the anisotropic region in k
space. It is therefore surprising to see as large minority
lines as in Fig. 9. In this respect, it must be recalled
that the cyclotron resonance is a very sensitive method,
especially when one uses a derivative technique. This
objection is therefore not very important.

Finally, let us compare our interpretation with that
of Lax and Zeiger. "They assume the existence of four
groups of carriers: a majority and a minority hole plus
a majority and a minority electron, each group having
a well-defined discrete mass. They choose the same
relaxation time for all carriers. Their majority carriers
are taken to be 5 times as many as the minority ones.
They identify the peaks at +240 oe and —120 oe with
the minority holes and electrons, respectively. The
peaks at +120 oe and +91 oe are then attributed to the
second and third harmonics of the minority holes, those
at —65 oe and —45 oe being second and third harmonics
of the minority electrons. (They do not consider the
possibility of negative harmonics. ) From the presence

spectrum are all ascribed to harmonics of the preceding
two minority lines, as shown in Table I. We thus ex-
plain all the observed lines.

Furthermore, the intensity of the harmonic lines
essentially depends on the penetration of the corre-
sponding frequencies into the sample. Since the har-
monics propagate by exciting an electron motion at the
fundamental frequency, their penetration will depend
mainly on that of the fundamental. We therefore expect
the lines at —230 oe and 120 oe to be much weaker than
those at 230 oe and —120 oe, which is indeed verified
experimentally. The agreement between theory and
experiment is therefore quite satisfactory.

Let us summarize the information on the band param-
eters given by this interpretation. First, the main
singularity (n= —cos&po), occurs on the electron side.
This confirms our choice of the sign of y2. the holes
are heavier than the electrons. Furthermore, the posi-
tion of this singularity yields the mass of the carriers
at p= pp
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of third harmonic, they conclude that the energy sur-
faces around Ep cannot have trigonal symmetry. Al-
though simple and suggestive, their analysis is purely
phenomenological, and does not seem consistent with
the present knowledge of the band structure of graphite.
First we have seen that the distribution of eRective
masses was in fact continuous. Furthermore, the only
region in which the bands do not have trigonal sym-
metry is in the outer feet of the warped energy surfaces
near E3 and we have seen that the carriers in these feet
cannot give rise to sharp absorption peaks.

yo'/yi ——25 ev, (31)

'2 D. Shoenberg, Trans. Roy. Soc. (London) 245, 1 (1952).

IV. CONCLUSION

Let us now compare these results with those obtained
by other methods. From our maximum mass 0.066ns
for the holes, we can obtain the masses for holes and
electrons at the section of the Fermi surface whose
area is a maximum. They are respectively 0.066@1 for
the holes and 0.031m for the electrons. These must be
compared with the masses obtained from de Haas-
van Alphen eRect, 32 0.070@xand 0.036m. The agreement
here is well within the possible error in both the theory
and the experiments. Recently, Soule' has reported
similar masses derived from the oscillatory magneto-
resistance. It should be noted that the ratio of the elec-
tron mass to the hole mass constitutes a check of our
band model.

From the carrier masses, we obtain the parameter
di'/yi. We find it more convenient to express the result
by replacing d& with the equivalent parameter po intro-
duced by Wallace, defined by yo ——2A'd, /(VSmao). We
then obtain

which is just the value quoted by McClure. ' Further-
more, note that our sign of y2 is also in agreement with
that of McClure. As Dr. McClure has kindly pointed
out to us, it would be possible in theory to obtain the
parameter ys (describing the anisotropy), from a study
of the relative intensity of the harmonics. This, how-
ever, is a very involved calculation, and will not be
attempted here.

Let us now summarize what. we presently know
about the band parameters. From the emissivity of
graphite in the near infrared, "one can obtain directly
yi which is roughly 0.14 ev. Equation (31) then gives
F0=1.9 ev. For y2 and 6, we can take the values of
McClure, ' and we are thus led to the following model
of graphite:

7i——+0.14 ev, ys ——+0.016 ev,
(32)6=+0.025 ev, yo ——1.9 ev, ps= P (—0.1 ev).

Equation (32) disagrees sharply with the values pro-
posed by Hearing and Wallace. ' We may point out
that there are in fact two pieces of evidence which seem
to contradict their model. One is the value of p~ ob-
tained from infrared measurements. The other is the
fact that the cyclotron absorption curve P(H) supports
strongly the assumption of an equal number of holes
and electrons.

ACKNOWLEDGMENTS

The author wishes to thank Dr. J. K. Gait of Bell
Telephone Laboratories for many useful discussions
and constant encouragement, Dr. J. W. McClure for
kindly communicating his results prior to publica-
tion, and Dr. C. Herring for a critical reading of the
manuscript.


