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Viscosity of the Electron Gas in Metals*
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With a view toward explaining measurements of ultrasonic attenuation in metals, the coefBcient of shear
viscosity of a free electron gas interacting with thermal phonons and local crystal inhomogeneities is com-
puted. The methods employed are essentially those developed for the problem of electrical conductivity. By
means of a variational principle, a general formal solution is obtained. The effective mean free path is found
to be somewhat smaller and of a somewhat more complicated (though not qualitatively different) tempera-
ture dependence than that associated with electrical conduction. The eGect of a transverse magnetic held
is determined for the case when a time of relaxation exists.

1. INTRODUCTION

"KASUREJQE/Ts on lead and tin' ' indicate
- ~ several seemingly general features of absorption

of ultrasound in metals at the lowest temperatures:

(a) Attenuation is exponential and is qualitatively alike

for shear and compressional waves. (b) The frequency
dependence of the attenuation coeScient appears to
be quadratic at low frequencies. (c) From a flat maxi-

mum at absolute zero, the attenuation coeScient falls

rapidly with increasing temperature. (d) When a
sample is allowed to become superconducting, the
attenuation falls off sharply (though apparently not
discontinuously) as the temperature is lowered below

the transition temperature. Mason has shown, by esti-

mating the electronic mean free path from electrical

conductivity data, that the static shear viscosity of the

electron gas could account for the observed attenuation

at very low temperatures. '
This paper will investigate the static shear viscosity

of the electron gas in normal metals. The theory closely

parallels that for the electrical conductivity (as elabo-

rated, for example, in the account by Wi, lson'), the

difference lying in the second singular spatial direction

introduced when transport of momentum is considered.

All the usual assumptions of the theory for the conduc-

tion problem will be retained; validity of Soltzmann's

transport equation, perturbation treatment of the elec-

tron-phonon interaction, independent particle descrip-

tion of the electron gas, electronic energy an isotropic

quadratic function of wave number, and Debye spec-

trum for the lattice vibrations. As no simultaneously

realistic and tractable model of the polyvalent metals

has as yet been proposed, the treatment will further

be restricted to a single Brillouin zone.

trt af t'af )
m as (at),.„ (2.1)

The equilibrium distribution is given by the Fermi
function

fp exp( —— ~+ I(sr) (2.2)

where E=h'k'/2 mis the energy of an electron with
wave vector k and velocity v=hk/m, and the Fermi
energy l and velocity ep are given by

1 = sm&p'=
2m&S ) (2.3)

In a frame of reference moving with the local Qow

velocity, fp(k) becomes fp(~ k —mu/h~). If the flow

velocity is small (n((vp) the departure from thermal
equilibrium will be small, i.e., (f—fp)((fp. The Boltz-
mann equation may then be written

esp af, oaf q
k.k.

m aE E at),.„' (2 4)

and a solution found of the form

B p

2. FORMAL THEORY

If a conductor having st conduction electrons (effec-
tive mass m, charge e) per unit volume is in shear motion
with constant local velocity m in the x direction and
uniform velocity gradient p=au/as in the s direction,
the electrons will follow the lattice in the same state of
steady Row and will experience no applied forces. The
Boltzmann equation for the electron distribution func-
tion will be

(2.5)~ From a dissertation submitted in partial ful61lment of the f=fp+k.k,S(E)
Ph.D. requirements at Vale University, 1955. BE

/Now at Stevens Institute of Technology, Hoboken, New

' H. E. Bommel, Phys. Rev. 96, 200 (1954). The collision term may be put into the form
' L. MacKinnon, Phys. Rev. 98, 1181 (1955).

(af/at) cot t = —kek.z (S), (2.6)
4A. H. Wilson, The Theory of Metals (Cambridge University

where Z is a linear operator, and the transport deter-
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mined by solving
k2P Bfp

Z(S) =
nz BE

(2.7)

2m4 t
(w, +2t)e,f(v)dpi'.

h»
(2.8)

Dividing this by the transverse Bow velocity gradient
gives the coefIj.cient of shear viscosity of the electron gas:

jp
k.k,f(k)d'k

42rpmP~

4(2m') ~l ~

S(l-)
152rpk'p

(2.9)

(Terms of order kT/t are neglected. )
In the event the collision term is of the simple form

(8fi (f f»-
E at),.u ( r )

(2.10)

r(E) is identified as the time of relaxation, and one has

S=A2pr/m, (2.11)

without further computation. De6ning the electronic
mean free path l= vr and u—sing (2.3), the coeflicient is,
in this case, given by the familiar formula

g= —,'mmeol, (2.12)

where l(l) has been written simply as t. In general,
however, Z is an integral operator, the collision term
is not of the form (2.10), and one must solve the integral
equation (2.7).'

The assumptions of steady Row and of uniform ve-
locity gradient are not realized in practice when motion
of the conductor is maintained by an acoustic wave.
However, if the effective time of relaxation is much less
than the period of the wave and if the eR'ective mean
free path is much less than the wavelength, then the
static shear viscosity will be an accurate measure of the
viscous attenuation. When the mean free path ap-
proaches the wavelength —a condition which can be
met in very pure metals at low temperatures in the
upper range of practicable frequencies —the electrons
will see an alternating velocity gradient which disrupts
the transport of momentum down the velocity gradient
and brings about a relative decline in the magnitude of
p with increasing frequency. The high-frequency com-
plications will not be considered in the present paper.

'The viscosity of the thermal phonon gas may be treated in
the same way. If the mean free path is the same as for heat
conduction, one 6nds that q for the phonon gas is proportional to
T times the lattice thermal conductivity.

for the nonequilibrium distribution function S.
The kinetic shear stress due to the velocity gradient

of the electron Row is, in the observer's frame of
reference,

3. COLLISION OPERATOR FOR THE
LATTICE VIBRATIONS

The first-order transition probabilities (single phonon
emission and absorption) for an electron interacting
with the acoustic lattice vibrations may, given the
deformation of the potential seen by the electron, be
calculated by means of perturbation theory. If the
interaction produces only a small departure from ther-
mal equilibrium, the collision term is approximately
linear in the nonequilibrium part of the distribution
function. The result appropriate to the conduction
problem is given by Wilson (reference 4, p. 260). For
the viscosity problem, using the form (2.5) for the
distribution function, the collision term is

fBf~ C'6 Zq2X(q)

& 8t) „u 82rpkM~T~ v(il)

XPk,k,S(E)—k.'k, 'S(E'))
X ffp(k)L1 —fp(k ))Q(E—E'+kv)

+fp(k') [1—fp(k) jQ(E—E'—kv)). (3.1)

Here, C is the coupling constant measuring the strength
of the interaction, E' is the energy, and

k'= k+g (3.2)

is the wave vector of an electron scattered by absorp-
tion of a phonon of wave vector q and frequency v(q'I.

X(q) is the phonon distribution function, and

Q(x) —= (12/x) sin(xt/A) (3.3)
has the character of a 8 function for large t. The re-
quired constants are dered as follows: &=mass of
lattice atom, e,=number of atoms per unit volume,
6=volume per atom (A=up), v, =velocity of sound,
go= maximum thermal phonon wave number, and
0=Debye's characteristic temperature.

For isotropic metals, two integrations may be per-
formed by introducing the angles 8 and P in the q
space, with k the polar axis and 8 the angle between k
and q. The required integrations over p are

p2x (2w

J
k qA$= k,q+$=22rk. k, (q/k) cos8,

~o
(3.4)

$21l

q.q,dy =2rk.k, (q'/k') (3 cos'8 —1).
Jp

In the integration over 8, the expansion E'—E=q cos8
X (dE/dk)+2q'(d'E/dk') and the singular property of
the 0 functions determine the slowly varying function
of 8:

2g g1+—cos8+ (3 cos'8 —1)
k 2k'

3q2 3f 3q2 (kv) 3 t'kv) 2

~kv+ ~
(
—)+-( —

[ . (3.5)
2k' Sk' 4k' (E) 8 &EP
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')pgpsg = KO~

To cast this in a convenient form, put

(3.7)

Integration over 8 then produces a factor

or(m/2) &

0(E—E'&h r) sinede=
0 t|jvk

The integration over q extends from q=o to q=qo
dered by

With error of order 10 ', then, the collision operator
for interaction with the acoustic lattice vibrations, as
defined by Eq. (2.6), is given by

(m/2)&(Tq'Bfo
t
e ( e"+1 q s'ds

O'AE~ I 0~) BE~ H~r &e"+'+1) I1 e—*I

(T~' 3D'(Ty4
X ES(w) —S(w+s) E—3DI —

I
"+

&8) 2E &e)
(3.13)

and use the relations

E i —hv

KT KT

Bf, ( e"+1 y
fo(E)C1—fp(E+»)0 =—aT

BE Ee"+*+1)

Bfp ( e +1 q
fo(E—&~)P—fo(E)g = —aT- —I—

BE he~*+1)

(3.8)

(3.9)

4. "IDEAL" VISCOSITY

At suKciently high temperatures (T»O) the inte-
grand of the collision operator (3.13) may be expanded
in powers of z. The electron-phonon interaction yields,
in this limit,

(Bf) Bfo (m/2)& (T1 '
=—&'&*S(E)

( B/) „ll BE $'AE' (8)
(Tq ' 3D'(T~ 4—

(4.1)ie) 2E EO)
If one assumes for the thermal phonons the elastic

Z, is now a simple multiplicative operator and thecontinuum spectrum
collision term is of the form (2.10), with time of
relaxation

and the equilibrium (Planck) distribution'

&(ll)=(e*—1) ',

the collision term may now be written

(3.11)

(4 & ~4M~. O (m)')p'
D=—

( 3 ) 3h'CP 4muo 2&(n/N. )&

This should be compared with the analogous result for
the conduction problem (reference 4, p. 263).

The various terms in (3.12) may be ordered as
follows:

(1) For the significant energies, E~f,
(2) D(T/8)'s'~ (D'/E) (T/0)'s4~$
(3) «Ts~ (DaT/E) (T/0)'s'~a0~~10-'i,
(4) ( T)"/E-( 0)'/i-10
' It appears that the long-standing objection to this procedure,

originally raised by Peierls, has been clarified. For a self-consistent
treatment of electron-phonon disequilibria, see I. I. Hanna and
E. H. Sondheimer, Proc Roy. Soc. (Lo.ndon) 239, 247 (1957).

(Bf t

( B1) coll

(m/2)& (T)'Bfp r el ( e~+1 ) s'ds

ap~E& &8) BE~,e, (e~+1) I1—e-*I

(Tq ' (aT)'
ES(w) —S(w+s) E+aTs 3DI —

I
——

Ee) 8E

3DaT (Ty' 3D' (T~ 4

I
—

I
s'+

I
—

I
s' (3 12)

2E &0. ) 2E (0. )
with

2h'AE& (Oi Q'/E)

D(m/2)& ( T) 2&(e/e. )&

mean free path l, =sr, , and "ideal" viscosity (due to
scattering by the lattice vibrations alone) given by

g =-,'emvpl;. (4.3)
(/; is evaluated at E=t.)

The quantity r; in (4.2) differs from that for elec-
trical conduction by the factor in square brackets. For
the significant energies (E=i ) in true metals (rl/I, )ar),

this factor has a value between one and three. r;g') is
thus always less for the viscosity than for the conduc-
tivity at high temperatures, by a factor of up to 3. For
semimetals, the limit of integration 0/T must be
replaced by (2E/D)'(0/T), whereupon r; becomes
identical with that for the conductivity (see reference 4,
p. 264).

At intermediate and low temperatures, Z; remains
and integral operator and one must solve the integral
equation (2.7). If only the electron-phonon interaction
is considered, this is, when one uses (3.13),

Bfo r el& ( e"+1 ) s'dsE,~ LS(w+s}—S(w))I
BEp) L e~'+1)

I
1—e 'I

54AP (O~ ' Bfo

(m'/2)& & T) BE

Bfo air (Ty' 3D'(Ty P-+, S(w+s) 3DI —
I

BE~ el' (0) 2E LO)

( e"+1 q s'ds
x I I

. (4.4)
E.e~*+1) I1—e *I
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The homogeneous equation obtained by setting the of absolute zero, J,(O/T) J—„(oo)=const, and
right hand side of (4.4) equal to zero is solved by
$(w) =const; a solution of the inhomogeneous equation I'PAl & ]0~ '
then exists only if the inhomogeneous part is orthogonal D. .)~i.)~
to a constant, which establishes the condition

(4.10)

A4AP (0)' t" Bfo t "8fo r
8'r

E& dw = dw S(w+z)
(m'/2)&iT) ~ 8w ~ „8w e)r

)T~' 3D'(T)4

EO) 2E (Ol

( e"+1 q s'dz
XI [

—. (4.5)
&e~*+1& )1—e-*[

At suKciently low temperatures (T«O) the integral
term on the right-hand side of (4.4) may be treated as
a perturbation. A solution of the form

$(w) =So+S~(w), ~So
~

= const&) [S,[, (4.6)

may then be obtained in which 50 is determined by
(4.5) and Sq is (in principle) obtainable from (4.4).
The result is

k Af kP ~Q~q
S(w)=So=

3(2m')~D ( T)

Here, as for T))O, the temperature dependence is the
same as for the conductivity, but the magnitude of v;
is exactly o~that for the conductivity for all n/n, &4.
At Qnite temperatures, the term in J7(O/T) spoils
somewhat the T ' dependence (to the extent of about
5% at T/0= 0. 05), the ideal viscosity falling more
slowly than the ideal conductivity with increasing
temperature.

5 "RESIDUAL" FLUIDITY

If the conduction electrons are scattered only by
randomly located inhomogeneities of atomic dimen-
sions, and if the scattering is elastic, the collision term
of the Boltzmann equation may be written (compare
reference 4, p. 268)

i8f)
~Bk,o (8) ~'k"dk' sin8d8dg

& a~) ..„~ko.

X (k,'k, ' kk,)S(E)—0 (E E')8fo/8E—. (5.1)

igloo (8) is the matrix element for the scattering. The

x J,
/

—
f

— J,
]

—[, (4.v)
required integration over p is

I T 24»(~/~. )~ ( Ti
where

s~ds
J„(x)=-

"o (e' —1)(1—e
—*)

4 0

(4.8
and that over k' is

k,'k, '~=2ork, k, (1—-', sin'8) (5.2)

mS(t)
'(t) =

fPp

O'Ai& pO~q '

3(2m) &D ( T)

~ Oq (T/0)' p Oq

& T) 24~'(n/e, )& ( T]

Although the derivation does not permit such exten-
sion, (4.9) includes the high-temperature result (4.2),
for J„(x)=x~'/(p —1) when x&&1. In the neighborhood

This procedure is due to Bloch. Its justification is
discussed in the older literature on the conduction
problem. ' As the method is limited compared to the
variable principle now available, it will not be con-
sidered at greater length here.

According to Eq. (2.9), the "ideal" viscosity is now
given by (4.3) if an effective time of relaxation is
formally defined by

0(E—E')k"dk'= or (2m') ~E*'k '. (5 3)

In this case, a time of relaxation v-„exists for all
temperatures, given'by

1 (32m)'o'E5 t.
~
Boo (8) ~' sin'8d8.

4orA4 "o

(5.4)

A factor —,
' sin'8 in the integrand replaces the corre-

sponding factor (1—cos8) for the conduction problem.
Since the scattering is probably mostly in the forward
direction, and since oo sin'8& (1—cos8) for 8 less than
about 100', the time of relaxation and mean free path
,=e7, are most likely smaller for the viscosity problem.
In the neighborhood of absolute zero, the ideal fluidity
1/g; vanishes as To, leaving a "residual" fluidity 1/z„
given by

(5.5)q„= 5emeol .For example, in A. Sommer&eld and H. Bethe, Hundbuch der
I'hysik. (Verlag Julius Springer, Berlin, 1933), Vol. 24, Part 2,
p. 499. The collision operator for this residual scattering is
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where

(5.6)
Now,

6. THE VARIATIONAL PRINCIPLE

and
It is independent of the temperature.

o (E)= (m—/O'P) S(E).

F(k) = (O'P /m) k,k, a(E),

1.(F)=k.k.Z(o).

(6.7)

(6.S)

(6.9)

The variational principle developed by Kohler for
the conduction problem' is easily adapted to the vis-
cosity problem. It permits rigorous solution (to any
desired degree of accuracy) of the linearized transport
equation for all collision mechanisms treated simul-
taneously, without any assumption as to the additivity
of the associated partial Auidities. Its validity depends
only upon quite general properties of the total collision
operator.

In terms of the operator I. defined by

The integration over angles may be performed directly,
so that (F,F) is proportional to Jp"Eral(a)dE or, for
a degenerate electron gas, to «2'J „"E&aZ(a)dw. The
solution to (6.6) is therefore determined by maximizing

(6.10)

subject to the condition

~af~ k'P
L(F),

E a~),.„ (6.1)

00

(a,a)= ~ E&a dw.
O'N

(6.11)

where F(k) is the nonequilibrium distribution function
dered by

f=fp+Fafp/aE, (6.2)

and where ~Fafp/aE~&&fp, the Boltzmann equation
(2.4) is

I et
'F. GENERAL SOLUTION

o(w)=P o„w",
rM

(7.1)

1.(F)= k.k.af,/aE.

For any two functions G(k) and Z(k) define

(6.3) d„,= «T E—&w—"Z(w')dw, (7.2)

(G,H) = Gi (H)dP—k. (6.4)
n =— E''N" d'N

Ozo
(7 3)

Then the variational integral (6.10) is

(o,o) =P,g,d„a„o„
The variational principle is now stated as follows: If
F is the solution of (6.3), then of all functions G satisfy-
ing the condition

(7.4)

afp
(G,G) = )I Gk,k, d'k,

and the condition that this be a maximum subject to
(6.5) condition (6.11) requires that the expansion coefficients

o„satisfy

afp 1 afp
&(a) =

OE KT BM
(6.6)

' M. Kohler, Z. Physik 124, 772 (1948); 125, 697 (1949).

F is the one which makes (G,G), as given by (6.4), a
D1axlIIlu111.

The proof follows the same steps as for the conduc-
tion problem (reference 4, p. 301). The relations (F,G)
= (G,F) and (G,G) &0 result, respectively, from the
symmetry of the transition probability between in-
cident and scattered electronic wave vectors and from
the essentially positive character of the transition proba-
bility. Equation (6.3) and the condition (6.5) also
imply that (G,F)= (G,G). From these three relations
it follows that (G,G) &(F,F), thus proving the maxi-
mum principle.

For the case of isotropic metals, the Boltzmann
equation is

gsdrs&s or= 0.

The formal solution is now, from (2.9),

4(2m')& e" afp 4(2m')&
EV(w) dw= Q n,a,

O'N 15%' k

(7 5)

Here,

doo

10

0

d11

4(2mP)& n
(7.6)

15x~ka X)

0 nO e1
0 d 00 ~01and cQ~~=
0'1 10 11

(7.7)

are infinite determinants which are in general not
convergent except in ratio.
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Now, de6ne the 6nite determinants

doo

10

dn —1, 0

doo

d1O

x). (")=-

dn —1, 0

d01 ' do n—1

d11

dn —1, n—1

d01 '' ' don —1

d11

Qo

dn —1, »—1 &n—1

&n—1 0

(7.8)

clodoo dol ' ' ' don —2

(n—1)— 10 11
a )

dn —1, 0 dn —1, n—2 &n—1

&-'"'=—IMinors of X)~ '"
I

According to a theorem of Sylvester, if M and M' are
corresponding m-rowed minors of any determinant D
and its adjoint D', respectively, then M' is equal to
D ' times the algebraic complement of M. Let M' be
the 2-rowed minor formed by the 4 elements at the
bottom right hand corner of S 'n)'. Then D~ '=D
=S)("), the algebraic complement of M is S(" '), and
the theorem yields the relation

(n-1) Q (n-1) '

aa (n) g3 (»-1)
~ (n-1) ~(n)a

Inserting these in (7.13) and making use of (2.3)
yields, for the 6rst approximation,

1 1 1

$0 'gi

that is, additivity of the partial fluidities [Eqs. (4.3),
(4.9), and (5.5)). This is the analog of Matheson's rule
for the electrical conductivity; it does not hold in
higher approximation.

Calculation of successive approximations is straight-
forward. On the basis of Sondheimer's results for the
electrical conductivity, ' corrections to go may be ex-
pected to be quite small. Extension to semimetals and
to nonpolar semiconductors involves only minor altera-
tions in Z;. For polar semiconductors, where scattering
of the conduction electrons by the optical lattice vibra-
tions must be considered, extension of the theory could
be accomplished along the lines established by Howarth
and Sondheimer for the conduction problem. " The
validity of the useful results depends, of course, upon
the convergence of the sum in (7.11) and upon the
convergence of lim„„($ (")/5)(")) to X) /X).

8. TRANSVERSE MAGNETO-VISCOSITY

When. a magnetic field (O,H, O) exists in a metal, the
Boltzmann equation for the electron gas is

Expanding (7.9), summing over 22, and using

one obtains
(7.10)

~f f ~f ~f ) (~f1—k.—+~.l k* —k. I
=

I

—
I

m 4)s ( ()k, ()k ) ). Bt),.)) (8.1)

Q Q (n) (2 2 [~ (n—1))2
= lim =—+Q

L)(») d »=2 co(n—1)$)(n)

The coe%cient of viscosity is, therefore

4(2m«)43 ~ [~ (n—1))2
2) =2)O+

15'.2' n=2 ~(n—1)~(n)'

with the 6rst approximation

4(2m') & ((2()2 q

I

—
I

~

15)r2k2 Edoo)

(7.11)

(7.12)

(7.13)

When the collision operator 2 incorporates terms due
to collisions with both phonons [Eq. (3.13)) and in-
homogeneities [Eq. (5.6)), the required matrix ele-
ments for a degenerate electron gas are

(2O= i',

do() = «T E')[Z;(1)+—Z„(1))d2()

3(2m)&Dt' ( T) ' (O~ (T/0)' (8)
i'22K I 0) (.T) 24{2(N/22 ) & ) T)

2t.«

+ . (7.14)
(m/2) &l,

(o,= eH/mc (8.2)

is the cyclotron frequency of the electrons. Since
the operator (k,()/Bk, —k,()/Bk, ) transforms k,k, into
(k,'—k,') and vice versa, the appropriate form for the
distribution function in an in6nite metal is

f=f0+[k.k,S)(E)+(k,'—k,')S2(E)) . (8.3)
BE

Assume the existence of a time of relaxation, and small
departure from thermal equilibrium. When one neglects
small terms, but retains the terms in II, the Boltzmann
equation reduces to

(i2 p/m) k,k, —&o,[4k,k,S2—(k,2—k )Si)
= (1/2.)[k.k,S1+(k,'—k,')S2). (8.4)

Equating coefficients of k,k, and (k,2—k,') yields

(S)/r)+4(d, S2——A2p/m, —u,S1+(S2/2) =0, (8.5)

with the solution

Si= (%22 p/m) [1+4(e,22') ',
($2~ ~2P/m)[1+4~ 2~2)—1

1' E. H. Sondheimer, Proc. Roy. Soc. (London} 203, 75 (1950}.
+ D. J. Howarth and E. H. Sondheimer, Proc. Roy. Soc.

(London} 219, 53 (1953}.
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The coefBcient of viscosity is therefore the zero-6eld
value t)(0), with Stg') replacing the former SQ'):

t)(H) = t) (0)Ll+4(o,'r') '. (8.7)

The magnetic field suppresses the viscosity by fore-
shortening the mean free path in the direction of trans-
port. Apart from differences in the magnitude of r, the
term 4a&.sr' in (8.7) replaces cv,sr' in the analogous result
for the conduction problem. This is owing to charge
transport being reversed by turning through 180' while
transverse momentum transport is reversed by turning
through 90', or in one-half the time. The assumption of

a time of relaxation limits the validity of (8.7) to T)&0.
However, as shown by Sondheimer and Wilson for the
electrical conductivity, " such a formula is probably
more widely applicable than its derivation would

suggest.
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This paper presents a simple model for such processes as spin diffusion or conduction in the "impurity
band. "These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

I. INTRODUCTION

A NUMBER of physical phenomena seem to involve
quantum-mechanical motion, without any par-

ticular thermal activation, among sites at which the
mobile entities (spins or electrons, for example) may be
localized. The clearest case is that of spin diffusion";
another might be the so-called impurity band conduc-
tion at low concentrations of impurities. In such
situations we suspect that transport occurs not by
motion of free carriers (or spin waves), scattered as
they move through a medium, but in some sense by
quantum-mechanical jumps of the mobile entities from
site to site. A second common feature of these phe-
nomena is randomness: random spacings of impurities,
random interactions with the "atmosphere" of other
impurities, random arrangements of electronic or
nuclear spins, etc.

Our eventual purpose in this work will be to lay the
foundation for a quantum-mechanical theory of trans-
port problems of this type. Therefore, we must start
with simple theoretical models rather than with the
complicated experimental situations on spin diffusion
or impurity conduction. In this paper, in fact, we
attempt only to construct, for such a system, the
simplest model we can think of which still has some
expectation of representing a real physical situation

' N. Bloembergen, Physica 15, 386 (1949).' A. M. Portis, Phys. Rev. 104, 584 {1956).

reasonably well, and to prove a theorem about the
model. The theorem is that at suKciently low densities,
transport does not take place; the exact wave functions
are localized in a small region of space. We also obtain
a fairly good estimate of the critical density at which the
theorem fails. An additional criterion is that the forces
be of suKciently short range —actually, falling off as
r —+ ~ faster than 1/r' —and we derive a rough estimate
of the rate of transport in the Vcr 1/r' case.

Such a theorem is of interest for a number of reasons:
first, because it may apply directly to spin diffusion

among donor electrons in Si, a situation in which I'"cher'

has shown experimentally that spin diffusion is neg-
ligible; second, and probably more important, as an
example of a real physical system with an infinite
number of degrees of freedom, having no obvious

oversimplification, in which the approach to equilibrium
is simply impossible; and third, as the irreducible
minimum from which a theory of this kind of transport,
if it exists, must start. In particular, it re-emphasizes
the caution with which we must treat ideas such as
"the thermodynamic system of spin interactions" when

there is no obvious contact with a real external heat
bath.

The simplified theoretical model we use is meant to
represent reasonably well one kind of experimental
situation: namely, spin diffusion under conditions of

' G. Feher (private communication).


