
KINETIC EJECTION OF ELECTRONS

that this condition prevailed except for the possibility
of ions being trapped in the lattice. An additional
electrometer placed in the circuit showed that the
trapping probability is (0.2+0 in the energy range
over which measurements were made (300—1200 ev).

Retarding potentials show that both ion and electron
energy distributions are of the order of a few ev;
hence small bias potentials are sufficient to provide
satisfactory collector eSciencies without unduly dis-
turbing the optics. The adjustment of these potentials
to maximize the readings of the electrometers permitted
a direct calculation of y, without additional corrections.
(See Fig. 2.) The possibility of negative cesium ions
being formed seems unlikely, since the ions apparently

come into thermal equilibrium with the lattice before
being re-emitted. Using the Boltzmann factor, we
obtain for the ratio of negative ions to positive ions
~10 ".The ratio of ions to neutral atoms leaving the
target is 10'.
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Atanasoff and Hart made a series of elaborate experiments in order to determine dynamically the elastic
constants of quartz. However, they reported that in the evaluation of the elastic constants from the experi-
mental data, there was a small but not easily explained discrepancy between theory and experiment. Lawson
pointed out later that the piezoelectric effect could not be neglected in the dynamic determination of elastic
constants. The present writers became aware that in the case of a plane elastic wave in a piezoelectric crys-
talline medium, only the component of piezoelectric polarization in the direction of wave propagation pro-
duces a restoring force against mechanical strain, as far as the piezoelectric effect is concerned. Thus the
writers could derive the equation of a plane wave in a piezoelectric crystalline medium in general and could
further determine the elastic and piezoelectric constants, together with their temperature coeKcients, from
experimental data. Various experimental results reported by the foregoing authors, including Atanasoff and
Hart, can now be adequately explained, even at high temperatures, so that there is no longer any discrepancy
between theory and experiments.

I. INTRODUCTION

A LTHOUGH several authors have tried to deter-
mine dynamically the elastic constants of quartz

from experimental data on the thickness vibration of a
quartz plate, their results have not been in satisfactory
agreement with each other. AtanasoG and Hart' found
that, in the evaluation of the elastic constants from the
expreimental data, there was a small but not easily
explained discrepancy between theory and experimental
results. Lawson' pointed out that the piezoelectric
eRect could not be neglected in the dynamic deter-
mination of elastic constants, but he did not clarify the
question that Atanasoff and Hart had raised.

Needless to say, piezoelectric polarization is produced
whenever an elastic wave is transmitted through a
crystalline medium; but it is important to note that, in
the case of a plane wave, only the component of piezo-

' J. V. Atanasoff and P. J. Hart, Phys. Rev. 59, 85 (1941).' A. W. Lawson, Phys. Rev. 59, 838 (1941).

electric polarization in the direction of wave trans-
mission produces a restoring force against the strain, so
far as the piezoelectric eGect is concerned. Keeping this
in mind, the present writers derived the equations for
the plane wave in the following way.

2. GENERAL THEORY OF PLANE ELASTIC
WAVE IN A PIEZOELECTRIC

CRYSTALLINE MEDIUM

As the medium here is piezoelectric, the stress is
composed of "electrical stress" as well as "mechanical
stress. " If the former be denoted by X„,the latter
by X, , and the displacements along the rectangular
coordinate axes x, y, s by I, v, z, the equations of
motion should initially be as follows:

B B B B2R—(x,+x.)+—(x„+X„)+—(x,+x,) =p, (1)
Bx By Bs BP

etc.
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Now, suppose that the plane wave is progagated in
the direction $, so that

s=lx+tsy+sz, (2)

Bx BXy BX, 82

+ + = (Lu—+Hv+Gw),
Bx Bp Bs 8$

then, as one of the present writers' has already shown
the mechanical restoring forces on the left-hand sides
of (1) can be transformed as follows:

The proof is as follows. In general, electrical stresses
(X„),equivalent electric 6elds (E, ), electric
polarizations (II„)and mechanical strains (e„, )
are related by

(Xg) Yvq ' ' ' Xv) = (61Ee+62Ev+ 63Eg) (elq 62) ' ' ' 66) )

(E*,Ev,E.)= (Vl,V2,»)(V11I.+V21Iv+V31I.), (9)

(II„II„,II,) = (61,62, 63)

X (pie„+62e»+ +ppe, „). (10)

where

BI', 0F'„8Y, 82

+ + = (Hu+M—v+Fw),
Bx 8p Bs 8$

t3Zx l()lZy c)Zz
+ + = (G—u+F—v+Nw),

8$ Bp' Bs 8$

Now, since, in the present case, all the displacements

(3) are functions of s only, the second factor of (10) can
be transformed as follows:

pie +62e»+ +66e 3

8
561lu+ 62tsv+ 63sw+ 64(tsw+sv)

8$
I.=PP,
F=QR,

M =QQ,
6=RP',

%=RE,
H=PQ,

P= lcl+tscp+scp,

Q = lC6+ tSC2+ SC4,

R= lcp+tsc4+ sc3.

(4)

Although c~, c2, etc., have no physical meaning, c~c~ is
supposed to stand for ch~, the adiabatic elastic stiRness
constant, when PP, QQ, etc., are expanded.

Next, the electrical restoring forces on the left-hand
sides of (1) can be transformed as follows:

+ 66(su+lw)+ 66(lv+tsu)]
8

$(61/+ 66ts+ 66s)u+ (ppl+ 62ts+ 64s) v

8$
+ (66l+64ts+63s) w]. (11)

Therefore, the electric polarization produced in the
direction of propagation is

II =/II, +tsII„+sII,

8
(Au+Bv+Cw)—,

8$

c7X OX' 8X,
+ + =—(ApAu+ApBv+ApCw),

Bx Bp Bs 8$

where A, B, C are as shown in (7). Also, as is pointed
out in the introduction, since the equivalent stresses
X, etc., depend only upon I, the component of electric
polarization in the direction of wave propagation, and

(5) do not depend upon the other components, which are
perpendicular to the said direction, they should be
represented as follows:

Introducing, at first, (9) into (8), and replacing II„
II„, and II, by lII, mII, and eII; and subsequently
introducing (12), we obtain

(X*~I v~' ' 'Xw) = ('1'Yl+6272+'3 Y3)'
X (y,l+72tS+ypS) (61 62 ' ~ ' 66)II. (13)

8F 8Fy 8F,
+ + = (BpAu+BpB—V+BpCw),8$8$ Bs 8$

BZ BZy 8Z 8
+ + = (CpAu+CpBV+CpC—W),

Bx Bg Bs 8$

where

~p
Bp (61Y1+62Y2+ 63Y3) (Yll+Y22S+ Y3S)|."p Thus relationship (5) is now obvious. Consequently,

combining (3) and (5), the equations of motion (1)
(6) become

l61+tS66+S66

X lpp+tS62+S64,
l66+tS64+S63

Cl2 82N—DL+A pA)u+ (H+A pB)v+ (G+A pC)w] =p
8$ BP

(7)

and
l61+tS66+S66

B = (l61+tS62+S63) l66+tS62+S64
C l66+tS64+S63

in which e~eI, is supposed to stand for ey,~, the piezo-
electric stress constant, when the right-hand sides are
expanded. 82 82M—[(G+CpA)u+ (F+CpB)v+ (N+CpC)w] =p

8$2 BP' I. Koga, Phil. Mag. 16, 275 (1933).

82 82'V

((H+BpA) u+ (M+BpB)v—+ (F+8pC) w] =p , (14)—
8$ BP
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$=) tt+ttv+ vrv,

one obtains the following equation:

c(~'5/»') =p(~'5/~t').

(16)

(17)

This is the diGerential equation of a plane elastic wave
in a piezoelectric crystalline medium. The values of the
c's in (17) can be determined as the roots of the following
determinant, which is obtained by eliminating ), p, v

from (15):

L+A pA —c H+BpA G+CpA
H+A oB M+BoB cF+—CpB =0, (18)
G+A pC F+BpC tV+CpC —c

where L, M, E, ~ ., Ao, 80, Co, A, 8, C are given by
(4), (6) and (7).

As all three roots of (18) are real, it is to be noted
that there are always three kinds of plane waves in
any direction (l,m, n), and the propagation velocity of
each wave is given by (c/p)'.

In the case of quartz, 4

o3$ 0, ass(h/k) =0, and y»= y22=4rr/E, (19)

E being the dielectric constant in the direction per-
pendicular to the principal axis s. Hence, upon com-
paring (6) and (7), it is seen that

kr
(A p,Bp,Cp) = (A,B,C). —

E
(20)

Also, since the following relations hold in quartz,

Multiplying each equation by indeterminate coeK-
cients ), p, v, respectively, summing, and putting

X(L+A pA)+ts(H+BpA)+ v(G+C pA) =Xc,

),{H+AoB)+tt (M+BpB)+v(F+CoB) =ttc, (15)

X(G+A pC)+ts(F+BpC)+v(1V+CoC) = vc,

3. DETERMINATION OF THE ELASTIC AND
PIEZOELECTRIC CONSTANTS OF QUARTZ

From the foregoing theory, the authors determined
the elastic constants of quartz using quartz-crystal
vibrators.

The resonant frequency f, of the thickness vibration
of a very high harmonic order q of a thin quartz plate
with thickness a satisfies the following relation

fo 1(ci'
lim —'=—

(

—
) (=f, say),4-"

q rt I 4p)
(25)

and hence c/4p can be determined from the values of af
for specimens of various orientations.

The specimens were so 6nished that the orientations
of the principal planes coincided (within an error of 20
seconds) with a crystal lattice plane which gave com-
paratively intense x-ray reAection.

The axial ratio of quartz was taken as i:i.i0000 at
20'C by referring to various authors' results. ' ' Thus,
the direction cosines (l,m, n) are given by the indices
of the lattice plane (pq s) as follows:

p+2g ( s
I pa m= D n] )D,

v3 &11)

and moreover, all other elastic constants vanish, it
follows from (4) that

L=Pcll+m'coo+n'c44+2mncl4,

M =Pcoo+m'cll+n'c44 —2mncl4,

X= (P+m') c44+n'c33,

F= (P m2—)cl4+mn(cl3+ c44),

G =2lmcl4+ nl (cl3+c44) ~

H= 2nlcl4+lm(cll cpb—)

Equations (17) through (24) will prove fundamental
in the subsequent discussion.

&12 ally 625 614p &26 611) (21)

and since, furthermore, all other piezoelectric stress
constants vanish, it follows from {7) that

s—= 3 (&'+P~+V')+
ID' &1.1)

(26)

A = {I' m') el 3 m—nol4, —
B= 2lmell+lnel—4,

'

C=O.
(22)

Concerning the elastic constants, since the following
relations hold in quartz,

The specimens used were all rectangular plates with
side lengths from about 28 to 40 mm.

The thickness, that is, the distance between the two
principal planes, was from about 2.9 to 4.9 mm, and
was measured by means of an optical interference com-
parator based on the six wavelengths (in microns) of
helium light,

C22= Cll, C33= C44q Cpo= 2 (Cll C12),
1/

—C24= Cg6 = C14~ C2g= C13y
(23)

0 447 . 0.47 i 0.492

0.50i, 0.587, 0.667
(27)

The s and x axes of a right-handed coordinate axes are taken
respectively in the direction of the principal axis and one of the
three digonal axes of right-handed quartz. Left-handed quartz,
associated with the left-handed coordinate axes, is nothing but
the image of the right-handed sets.

3A. J. Bradley and A. H. Jay, Proc. Phys. Soc. (London)
45, 30/ (1933).

4 P. H. Miller and J.W. M. DuMond, Phys. Rev. S7, 198 (1940).
r R. W. G. Wyckoff, The Strttetttre of Crystals (The Chemical

Catalog Company, Inc. , New York, 1931),p. 239.



1470 KOGA, ARUGA, AN D YOSH INAKA

TABLE I. Example of the relation of thickness versus frequency
of a plate. The last column shows the residuals, in units of 10 ',
for relation (28).

or
c=m (c66+ 611 )+n'c44+2mnc14

—m'n'( ell —e14')+2m'ne, li, 4 . (31)
~ (mm)

5.0052
4.4961
4.0023
3.6117
2.9980
2.5066
2.4857
2.0040
2.0017
1.5090
1.5042

f (Mc/sec)

0.33374
0.37154
0.41738
0.46253
0.55729
0.66658
0.67213
0.83383
0.83474
1.10752
1.11109

Res.

1.5
1.4—3.6—4.5
9.3
6.4—8.2
3.3—6.8—1.4
3.2

or

(2) For an X-cut plate, l= 1, m=n=O, so that'

c=L+ (4'/E) A' = c11+(4'/E) el p,

C Cll+ ell (32)

(3) For those plates parallel to the y axis, m=0, so
that the sum of three values of c (say cs, cM and cL, to
indicate smallest, medium and largest values, respec-
tively) for any direction (l, m, n) is

The order of harmonic, q, was generally at least 30,
and the resonant frequency was determined by a pre-
cision frequency meter with the help of a crystal clock.

The surfaces of the principal planes were finished to
a milky white luster, but since the writers felt that
there was a question as to whether or not the measured
thickness could be taken as an effective thickness, they
assumed tentatively that the latter a is a certain amount
n less than the former a and checked to see if the con-
stancy of af could be further improved. Table I shows
an example of the measured thickness a ~ersns fre-
quency f for a plate in the neighborhood of r'(01 1).
If it is assumed that the following relation holds:

(a —n)f= k, a constant, (28)

The other two vibrations cannot be excited electrically, be-
cause the corresponding c s are independent of e, that is, inactive
piezoelectrically.

the values of constants n and k are determined, by the
least-squares method, as

u=0.00108 mm, k= 1.670063 mm Mc/sec. (29)

The last column of Table I shows the residuals obtained
from (28). This result shows that it is reasonable to
take the effective thickness of the specimen to be
0.0011 mm less than the measured thickness. The
thickness a shown hereafter is this effective thickness.

In order to separate the individual values of c~g, and
~~~, the following four relations were used. As c, c~~ are
always associated with 4p, the writers gave prime
importance to c/4p, c»/4p, etc., instead of c, c», etc.,
themselves. Thus, the following nomenclature will be
used occasionally hereafter.

c=c/(4p), c»=c»/(4p) 6»= (4~/E)'»/(4p)' (3o)

(1) For those plates parallel to the electrical (di-
gonal) axis of the quartz, l=O, so that from (18) a
root c corresponding to the vibration, ' which can be
excited piezoelectrically, is

c=L+ (4'/E)A'
=m'c66+n'c44+2mnc14+ (41r/E)m'(mell+ n614)',

cs+CM+CL= L+M+N+ (4rr//E) (A2+B6)
=P (cl1+c66+c44)+n'(2c44+ c66)

+ (41r/E) [(Pel)l' +(lne14)'),
or
CS+CM+ CL= P(C11+C66+C44+ 611 )

+ n'(2c44+c 6)6—Pn'(ell 616 ). (33)

(4) The sum of the squares of cs, cM, and cL in the
aforementioned plates is

c8 cM cL

= (cs+ cM+ cI ) —2 (cscM+ CMcL+ cLcs)

4' y
' ) 41r

=I L+—A' [+I m+—B [+N'
E ) ( E )

4~
+2F'+2G'+2~ H+ AB ~, (34)—

E )

c~~=81.957~0.014,

c33=99.99~0.11,

cg4 = —17.0501+0.0036,

~gg'= 0.728~0.017,

c44 54 9861~0 0061) i]4 0 040~0 017)

c66 ——37.632+0.017) ~] &6/4 0 &696+0 0076)

c16+c44 =66.250+0.020, (35)

(ell ———2.696, 616
——0.626. (units: 10' cm/sec))

Table IV shows the calculated values of c or c4p at
20'C based on (30), (31), (32), and (35) in order to
compare with the values at 20'C given by Atanasoff
and Hart' in their Tables I and III (their a' stands for
c here). As they gave the values at 35'C, the present
writers reduced their values to those at 20'C by using
the temperature coefficient of r,2 given by them. The
value of p is taken as stated in the next paragraph. It is
easily seen that the calculated values by the present

where G only contains c16+C44. Hence, introducing all
the values of cy,~ obtained from the foregoing relations
and the measured values of c, c16+c44 can be determined.

Measurements were made with the specimens shown
in Tables II and UI, and the following values were
obtained at 20'C. (Units: 10' cm' sec ', confidence
coefficient: 90%%u~.)
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writers are very close to the measured values by
Atanasoff and Hart.

If the density p of the quartzg at 20'C is taken as
2.6487 gram cm ' (4p=10.5948) and the dielectric
constant E as 4.50, then the adiabatic elastic stiHness
constants c», in 10" dynes cm ' and piezoelectric
stress constants ebs, in 10' cgs esu at 20'C are (con-
fidence coefficient: 90/o)

cii——86.832&0.015, cis+c44 ——70.191&0.021,
c33—105 94~0 12) . c14= —18 0642&0 0038)
c44= 58.2567&0.0065) &1]= -5.25,

c66——39.871+0.018, ~14
——1.22. (36)

The values of e» and ei4 given in (36) are very close
to those, —5.2 and 1.2, given by Cady, "respectively.

The adiabatic elastic compliance constants s~~ in
10 " cm' dyne ' and the piezoelectric strain constants
d~~ in 10 ' cgs esu, both at 20'C, derived from the

TABLE II. Experimental data on plates parallel to the x axis.
The erst column shows the indices of principal planes, and the
second column the eifective thicknesses. (Y), (R), and (r') mean
Y-cut, R-cut, and r'-cut plate, respectively.

Orientations

(01 0)(Y)
(Ol ~ 1)(R)
(01 1)(r')
(02 3)
(02 3)
(OI 2)
(01 2)

a (mm)

3.3788
3.9590
3.6104
3.6110
3.0418
4.4310
3.1590

kc/sec

579.667
625.048
462.507
704.752
578.731
577.777
588.743

values of (36) become

sii 12 ~ 77ls& sls — 1.23s&

sss ——9.71s, sic —— 4.52e,
37

s44
——19.97i, d» = —7.11,

$66 29 18]) 814 2 31

The value of s» is very close to the value 9.71
measured by Perrier and de Mandrot, " but the value
of s11 is not so close to their value of 12.69.

The adiabatic elastic stiGness constants c~,I,
* referred

to by Lawson, ' containing not only thermal but also
electrical parts, when divided by 4p (say c»*) are:
(unit: 10' cm' sec ', confidence coefficient: 90%)

cii*=cii+ eii' ——82.685&0.022,
c33~= c33= 105.94+0.12,

(38)
c44*——c44+ ei4'= 55.0256+0.0181,
c13 = c13——11.264&0.024)
ci4*=ci4+ eii ere = —17.2197&0.0084,
css*=css+ eii'= 38 3602&0 0.024.

s R. B.Sosman, The Properties of Silica (The Chemical Catalog
Company, Inc, New York, 1927), p. 295.

"W. G. Cady, Pieeoeleclncily (McGraw-Hill Book Company,
Inc. , Neer York, 1946), p. 219.

"A. Perrier and B.de Mandrot, Compt. rend. 175, 622 (1922);
reference 10, p. 137.

TABLE III. Experimental data on plates parallel to the y axis
The 6rst column shows the indices of principal planes, and the
second column the effective thicknesses. (L), (M), and (S) mean
the largest, medium and the smallest value of f, respectively.

Orientations

(21 1)

(42 3)

(2T.2)

(2T 3)

(2T 0)
X-cut

a (mm)

2.7724

3.4803

3.4718

3.6726

4.9395
4.9390
3.6510
3.6500

kc/sec

(L) 1152.575
(M) 767.881
(S} 662.310

(L) 945.675
(M) 586.587
(S) 546.311

(L} 959.466
(M) 616.960
(S) 530.730

(L) 906.869
(M) 626.653
(S) 500.494

(L) 582.097
(I.) 582.212
(L) 787.545
(L} 787.790

s11*=S11—dpi = 13.38g,

S33*=s33 ——10.296,

S44 = S44—d14 =21.144,

where

s13 = s13= —1.308)

Si4 = Sl4—diidi4 ——4.74s, (39)

s66 = S66—611 =30.32g)

4m

d11 d11 4P)
E

47t.

d14 — d14 4P.
E

The propagation velocity of the longitudinal elastic
wave along a thin 61ament in the direction perpendicular
to the principal axis of quartz should be gs» instead
of Qs», if the 61ament is electrically isolated. However
if the filament is covered with metal along its length so
that electrical stress does not appear, the propaga-
tion velocity will be equal to gs». As the measured

TABLE IV. Values of c's at 20oC by Koga et ul. compared
with s' at the same temperature by Atanasoff and Hart. (L),
(M), and (S) mean the largest, medium and the smallest values
of c, respectively. (Units: 10'o dynes cm '.)

Orientations

AtanasoG and Hart
sc2 at Bs;2/8T
35oC in 10 &

«2 at
20'C

Koga et al.
cat

20oC

(2T 0}
X-cut

(01 0)
Y-cut

(01 1)
R-cut

(L) 87.55
(S) 28.82

(S) 40.74
(L) 95.35

(M) 64.92
(S) 42.67

(L) 117.81
(M) 50.2'7

(S) 35.42

—4.35
0.72

6.93—3.87

1.92
1.06

—18.23—3.24—2.64

87.615
28.809

40.636
95.408

64.891
42.654

118.083
50.319
35.460

87.603
28.795

40.642
95.576

64.877
42.726

117.969
50.441
35.496

The elastic compliance constants multiplied by 4p
(say s~,&*) derived from the above are: (unit: 10 "
cm ' sec')
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TABLE V. Linear expansion coefIIcients at 20'C
adopted in the present paper.

a/a

7.48X10 '
13.74X10 '

~sa/a

0.860X10 s

1.204X10 8

II
'a' /a

g10—11

assumed (10 "

4. DETERMINATION OF THE TEMPERATURE
COEFFICIENTS OF THE ELASTIC AND PIEZO-

ELECTRIC CONSTANTS OF QUARTZ

value j.2.79 of s» by Mason" is very close to the value
given in (37), he must have apparently placed the
electrodes very closely to the specimen in order to
excite it piezoelectrically.

expansion coefBcients of aJJ and a& have been given by
many authors, but the mean value of Benoit, Fizeau,
and Lindman's results were taken" and reduced to
the value at 20'C as shown in Table V.

Table VI shows the measured values of the tem-
perature coeKcients of the frequency of the plates at
20'C for various orientations of principal planes.

In order to determine dcj,s/d T, relations (31) through
(34) may be used again by differentiating with respect
to temperature. The results thus obtained are tabulated
in the second column of Table VII.

Differentiating relation (40) with respect to tempera-
ture again, and introducing the values of (1/c)dc/dT,
d/a and a/a derived from (42), one obtains d'c&I, /dT'
and d'eos/dT'. The quantities d'c~o/dT' and d'cod/dT'

The present authors determined further the tempera-
ture coeS.cients of the elastic and piezoelectric con-
stants, i.e., explicitly of c» and 6».

Differentiating the relationship c= (af)' with respect
to temperature T we obtain

where

1 (dc/dT
I
= (ala)+ (flf),

2E c )

d/a= [e'a„/a, ~j+[(1—ts') a,/a, ),

(40)

(41)

because of the relation

a2 a 2+a 2 (42)

TABLE VI. Frequency temperature coeKcients of quartz
plates in various orientations at 20'C. For the meaning of (Y),
(R), (r'), (L), (M), and (S), refer to Tables II and III.

GJ J and a& being the projections of a along the principal
axis and its perpendicular direction, respectively.

Equation (40) shows that dcldT for various orienta-
tions can be determined if a/a and f/f are known. The

LLl~ 375
X-Mt(S)

3'70-

0 100 200 300 400 500
TEMPERATURE ('C)

~640

cr) 630

0 't00 200 300 400 500
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FIG. 1. Frequency-temperature relations of X-cut and Y-cut
plates. The full lines are the reproductions of Atanasoff and
Hart's results, while the broken lines show the computed values
based upon (43), (44), and (45).

are also obtained by a similar process. These results are
shown in the third and fourth columns of Table VII.

From these results the frequency temperature char-
acteristic of a quartz plate of any orientation can be
calculated from the following relation:

fr = (cr)'/ar, (43)

where fr, cr, and az denote the values of f, c, and a at
a temperature rise I above 20'C.

The value of cr is a root of c in (18), where all of
the values of c» and e» have been replaced by the
values of c» and t.» at a temperature rise T above 20'C
in accordance with (30) and by means of the following
relation,

yr=yso+ psoT+s gooT + o 3'&oT,

'o W. P. Mason, Bell System TechJ. 22, 178 (19,43). "Reference 9, p. 387, Table XX.
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TABLE VII. The first, second, and third derivatives of ch, I, and
~),J, with respect to temperature at 20'C; confidence coe%cient:
90'%%uo.

On the other hand, the thickness a& is quite closely
given by

First de. coeft. in
106 cm'- sec ~ 'C 1

One-half of the
second diff. coeff. in

104 cm2 sec 2 "C 2

One-sixth of the
third di6. coe&. in
102 cm~ sec 2 'C 3

~r= tt&sr 1+sts(7 48X 10 X T+0 86sX 10 X T')

+ (1—rt') (13.74X 10 'X T+ 1.204 X 10 'X T') $ (45)

C11

&a3

&44

&6C

Cia

&14

611

&14
At JV

—0.77 ~0.46—15.32 +0.60—7.529+0.038
8.076+0.096—5.15 +0.51—2.273+0.019

—0.23 &0.10—0.018&0.020
0.065&0.041

—3.2 &2.1—14.0 &2.8—1.17 &0.10
0.85 +0.26—0.67 +0.52—0.015+0.051

—0.33 &0.26—0.013&0.045
0.07 %0.11

—0.32 +0.45—0.30 &0.59—0.113+0.078
—0.29 +0.19—0.63 +0.81

0.107+0.038
0.55 +0.21
0.018+0.035—0.103+0.084

where yz starids for each of the values of c~l, and ~I,~

at a temperature rise T above 20'C, and y~o, j20, etc.,
for its value and its first, second, and third differential
coeKcient with respect to the temperature at 20'C,
respectively. All the necessary data for these calcula-
tions are given in (35) and Table VII.

As Atanaso8 and Hart' reported experimental re-
sults on the frequency-temperature relations of X-cut
and Y-cut plates up to very high temperatures, the
present writers tentatively computed them up to tem-
peratures above 100'C, where (44) is not necessarily
valid any more, because all terms of the fourth and
the higher powers of temperature T have been dropped.
The full lines in Fig. 1 are the reproduction of AtanasoR
and Hart's results and the broken lines show the com-

puted values. It is rather surprising to discover that
the computed values are very close to the measured
results up to about 200'C in the case of X-cut plates,
and even up to temperatures above 300 C in the case of
V-cut plates.
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Energy Storage in ZnS and ZnCdS Phosyhors~f
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The deficiency area above a rise curve of Ruorescence due to
excitation by high-energy electrons is a measure of the total
amount of energy stored in traps. In order to investigate the rate
of decay of this energy, rise curves were taken for six phosphors
of various luminescent properties and activation after various
dark decay periods following excitation to equilibrium and after
de-excitation by exposure to infrared light and heat. For all
phosphors the trap concentration was found to be of the order of
10"/cc independent of the type of activator. In addition, the
rates of decay of stored energy were determined and were found
to be similar; from 20% to 60% of the energy remained in the
phosphors after 1 week. This slow rate of decay is explained by
predominant retrapping in traps of various depths.

The areas under curves of phosphorescent emission were com-
pared to the deficiency areas above rise curves taken immediately

after the end of decay. For four of the phosphors these two areas
are nearly equal to each other. One phosphor, especially activated
with Ni and with practically no phosphorescence exhibited,
however, a rate of energy decay similar to the phosphorescent
phosphors. This means that the decay of stored electrons can
take place radiatively and/or nonradiatively and that the rate
for both processes is of the same order of magnitude.

The areas under curves of visible light stimulated by infrared
irradiation were compared with areas above rise curves taken
immediately after the end of stimulation. If all stored electrons
were released radiatively, these two areas would be equal. For
only one phosphor (specially Pb activated ZnS) was this the
case. All others exhibited only from 0.6% to 5% radiative recom-
binations. Thus the light sum under a stimulation curve does not
give a true picture of the trap population.

I. INTRODUCTION

LECTRONS which are stored in traps can be
~ removed by the addition of thermal energy or

infrared irradiation. The resulting recombinations are
often radiative so that a correspondence has been
made between the area under a glow curve' ' or under

*Part of a dissertation submitted in partial fulfillment of the
requirements for the Ph.D. degree (E.S.) at New York University,
New York, New York.

f This work was supported by the Signal Corps Engineering
Laboratories, Evans Signal Laboratory, Belmar, New Jersey.' J.T. Randall and M. H. F. Wilkins, Proc. Roy. Soc. (London)
A184, 366, 390 (1945).' G. F.J.Garlick and M. H. F. Wilkins, Nature 161,565 (1948 .

3 R. H. Bube, Phys. Rev. 80, 655, 764 (1950).

a stimulation curve' ' and the total number of electrons
which were originally in the traps. Both of these
methods suGer from the fact that nonradiative transi-
tions are induced along with the radiative ones so that
determinations of trap population can be in error.
Several investigators have found, for instance, that the
area under a stimulation curve is many times greater
than the corresponding area under a glow curve. ' 6

Information about electrons stored for long periods of

4 R. T. Ellickson, J. Opt. Soc. Am. 36, 264 (1946).
5 G. F. J. Garlick and D. E. Mason, J. Electrochem. Soc. 96, 90

(1949).
e C. Bull and D. E. Mason, J. Opt. Soc. Am. 41, 718 (1951).


