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The irreversible statistical mechanics of incompressible hydro-
magnetic turbulence driven by external forces is treated by
methods which do not require that the system be close to a state
of detailed balance. The equations of motion are expressed in
terms of linearly independent modes formed from the wave-vector
components of velocity and magnetic fields, and the nonlinear
interaction is exhibited as the sum of individually conservative
three-mode interactions. A fundamental statistical equation is
constructed giving necessary and sufficient conditions for all
members of a distribution of time-functions to satisfy the equations
of motion; it involves only second-, third-, and fourth-order
distribution moments. A variational criterion is proposed for
specifying a distribution consistent with the fundamental equa-
tion under physically appropriate constraints. It leads to a com-
plete formal solution of the statistical problem. This solution is
not exploited. Instead, two statistical hypotheses based on the
assumption of high mode density are advanced. With their aid,
each three-mode interaction is treated as a small perturbation on
the motion due to all the three-mode interactions and the external
forces. The moments in the fundamental equation for the station-

ary case thereby are expressed in terms of the diagonal elements of
the time-covariance matrix and distribution-averaged infinitesi-
mal-impulse-response matrix of the system. Closed equations are
obtained which fix these matrix elements in terms of the covariance
matrix of the external forces. If thestatistical hypothesesare sound,
this provides a theory of unbounded turbulence (infinite mode
density) driven by Gaussian-distributed homogeneous forces which
is exact at all Reynolds numbers based on rms velocity and the
macroscale determined by the driving forces. The general theory
is specialized to obtain integro-differential equations determining
the covariance scalars and modal impulse-response functions for
stationary, isotropic hydromagnetic turbulence. In the nonmag-
netic case, the asymptotic inertial-range solution yields the wave-
number spectrum E (k) =2m¢(ev5) k% and the modal time-autocor-
relation function J1(2vok7)/ (vek7), where v is the rms velocity in
any direction, e is the mean rate of energy-cascade/unit-mass, and
¢ is a universal number fixed by the theory. This contradicts the
Kolmogorov similarity hypotheses; independent arguments are
advanced against the latter.

1. INTRODUCTION

HE turbulence problem is of considerable interest

from the standpoint of both irreversible statistical
mechanics and nonlinear field theory. A Gibbsian
statistical mechanics of turbulence may be developed
by taking the real and imaginary parts of the wave-
vector components of the velocity field as phase-space
coordinates analogous to the canonical variables of
Hamiltonian systems.'® There are crucial differences,
however, between this system and those for which
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[Bull. Am. Phys. Soc. Ser. IT, 1, 341 (1956); 2, 45 (1957)].

1 J. M. Burgers, Verhandl. Konikl. Akad. Wetenschap. Amster-
dam 32, 643 (1929); 36, 620 (1933); 43, 936, 1153 (1940).

2E. Hopf, J. Rat. Mech. Anal. 1, 87 (1952); E. Hopf and
E. W. Titt, J. Rat. Mech. Anal. 2, 587 (1953).

3T. D. Lee, Quart. Appl. Math. 10, 69 (1952).

classical statistical mechanics has been most successful,
as may be illustrated by comparison with a dilute
gas of hard spheres.

In such a gas, the particles are noninteracting
most of the time, and the interaction can be well
described in terms of transition probabilities due to
two-particle collisions which represent a small time-
averaged perturbation to the Hamiltonian of the
uncoupled particles. In the turbulent fluid, the motion
of a typical Fourier mode is strongly dependent on
simultaneous and continuous interaction with many
other modes and the effects of interaction cannot be
lumped into collision terms.

We must also note that in turbulence the mean
energy of the individual Fourier modes typically
depends strongly on wave number and varies markedly
among modes which interact significantly. In this
respect, the system is analogous to a gas of particles
in which the temperature changes by its own order of
magnitude within a mean free path. Methods of
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irreversible statistical mechanics dependent on small
departure from detailed balance cannot be used to
describe the transport of energy across the wave-number
spectrum.

The turbulence problem also may be formulated
directly in terms of the moments of the wvelocity
distribution.#® Of particular interest is the velocity
space-time covariance, which determines the spectral
distribution of kinetic energy in frequency and wave
vector. Equations of motion for various moments
readily are obtained, but as a consequence of the
nonlinearity of the Navier-Stokes equation the equa-
tions of motion for second-order moments contain
third-order moments, those for the third-order moments
contain fourth-order moments, and so forth, leading
to an infinite sequence of equations involving moments
of indefinitely high order. This situation, which provides
a central difficulty in turbulence theory, suggests that
the Navier-Stokes equation in itself does not provide a
complete definition of the problem.

It is well known that for the stationary state of a
Hamiltonian system with many degrees of freedom
the specification of mean energy leaves the higher
distribution moments highly undetermined, since the
Gibbs ensemble may be an essentially arbitrary function
of the many constants of motion. An additional
principle must be invoked to fix the physically approp-
riate distribution. If dissipation and driving forces
are introduced, the ambiguity persists unless the full
statistical distribution of the driving forces is specified.
It seems clear by analogy that the statistics of the
turbulence problem cannot be made determinate
unless the equations of motion are augmented by
additional conditions on the distribution. The equations
of motion alone fix all the solutions but do not choose a
distribution from among them.

2. DESCRIPTION OF THE PRESENT APPROACH

The present treatment is based on a probability
measure in a space of time-functions, thereby differing
from the Gibbs statistical mechanics which treats the
evolution of an ensemble of instantaneous values;
the latter appears not to provide a full statistical
description of turbulence driven by external forces
(Sec. 4.1). The Liouville equation is replaced by a
fundamental statistical equation which contains (in
the present problem) only second-, third-, and fourth-
order moments but expresses necessary and sufficient
conditions for all the time-functions in a distribution
to satisfy the equations of motion (Sec. 4.2). This
exhibits clearly the indetermination of the statistical
distribution by the equations of motion alone. The
variational criterion which yields the Maxwell-Boltz-
mann distribution in the Gibbs statistical mechanics

4 G. I. Taylor, Proc. Roy. Soc. (London) Al51, 421 (1935);
164, 15 (1938).

5 G. K. Batchelor, Theory of Homogeneous Turbulence (Cam-
bridge University Press, New York, 1953).
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is examined in the time-function formulation, and a
generalization is proposed for dissipative systems
driven by external forces (Sec. 4.3). This leads to a
complete formal solution of the statistical problem and,
alternately, provides a principle for reducing the
infinite sequence of moment equations to a finite,
complete set involving only the moments in the
fundamental equation, with the assurance that the
solutions belong to distributions which satisfy all the
moment equations of all orders.

The variational procedure is not exploited (it involves
severe difficulties) ; instead, two hypotheses appropriate
to the case of high mode density and statistically
independent modal driving forces are advanced. The
first (Sec. 5.1) states that as the mode density increases
without limit (approach to infinite domain) the
statistical dependencies among any finite number of
Fourier modes tend to zero. It is pointed out that this
hypothesis does not conflict with the observed non-
normality of the velocity-field distribution. The second
(Sec. 5.2) states that as the same limit is approached
the weak statistical dependencies among certain
small groups of modes become due entirely to the
most direct paths of interaction which link these modes;
several arguments are given for this. The two hypotheses
lead to a treatment of the dependencies (Sec. 6) in
which the individual three-mode interactions which
make up the total nonlinear interaction (Sec. 3) are
introduced as small perturbations. The diagonal
elements of the distribution-averaged infinitesimal-
impulse-response matrix of the system play an essential
role; they are introduced as unknowns and determined
simultaneously with the diagonal elements of the
time-covariance matrix (Secs. 7, 8). No assumption
is made or implied concerning Reynolds number based
on rms velocity and the macroscale determined by the
driving forces; if the two hypotheses are sound, the
theory is exact at all Reynolds numbers for unbounded
homogeneous turbulence driven by Gaussian-distributed
forces. The results for the stationary isotropic case
(Sec. 9) contradict the Kolmogorov theory, and it is
argued (Sec. 10) that the latter fails because of an
implication of the fact that the Fourier coefficients of
the velocity field are collective coordinates referring
to the entire domain.

The structure of turbulence as pictured above is
rather interesting from a general theoretical viewpoint.
Each mode is strongly coupled to the system as a
whole in the sense that (apart from external forces
and damping) its entire motion is due to the interaction.
However, very many elementary three-mode interac-
tions contribute to the motion of a given mode, and
the coupling among any few given modes is quite weak.
In part this is a consequence of the particular collective
coordinate description used; it is not true in the
x space representation of the velocity field. It would
appear that a variety of many-body and nonlinear field
problems could be formulated so as to permit treat-
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ment by methods of the type used here, in contrast
to formulation in terms of coordinates such that each
dynamic variable interacts principally with at most a
few others at any given instant. The possibility of ap-
plication to quantum-mechanical systems is of par-
ticular interest.}

3. REPRESENTATION OF THE FIELDS BY
LINEARLY INDEPENDENT VARIABLES

We shall assume that the equations of motion of
an incompressible, highly conducting, and nonrelativ-
istic hydromagnetic fluid subjected to external body
or boundary forces may be written®

7],5 (k)+ vk2ui(k) = iklPij(k)ZkIEWj (k-— k’)wl (k’)

—u;(k—k)u (k") ]+ P;;(k)F;(k), (3.1)
w,(k)+ 1_/k2w1'(k) = ikakrtui(k—'kl)‘wi(k/)
—u;(k—K)w:(k')], (3.2)

where the dots denote differentiation with respect to
time. Here #;(k), w;(k), F;(k) are related to the velocity
field #;(x), magnetic induction B;(x), and external
force field F;(x) by

(%)= Zsus(k)e™x,  Bi(x)= (4mup) Y sw.(k)e’x,
Fi(x)=pXwFi(k)e*=, (3.3)

and P;;(k)=0;;—k2k;k;. The summations range over
all wave vectors allowed by the boundary conditions.
The quantities p, v, u, o, ¢, and v= (dwus) c* denote,
respectively, density, kinematic viscosity, permeability,
conductivity, velocity of light 4% vacuo, and ‘“‘ohmic
viscosity”; they all are assumed constant throughout
the fluid. The fields also obey the divergence conditions

k{u,’(k) = O, k;w,(k) = 0, (34)

which are preserved by (3.1), (3.2), if imposed initially.
The total energy per unit mass is

=52 [ u* (K)u; (k) +w* (k)w; (k) ]. (3.5)

Energy is conserved by the nonlinear interaction of
the Fourier modes in the sense that if », 7, and F (k) are
put equal to zero, (3.1), (3.2), and (3.4) yield E=0.
In order to deal with a denumerably infinite set of
dynamic variables, and still permit the description of
rigorously homogeneous statistical distributions, we
shall adopt the artifice that all the fields obey cyclic
boundary conditions on the faces of a cube of side L.
The limit L—c corresponds to the physical case of
infinite domain. The allowed k vectors are all those

t Note added in proof.—In the context of the quantum-mechani-
cal many-body problem, the present methods represent two
principal departures from current approaches. First, no attempt
is made to diagonalize the system even approximately; instead,
a representation is sought which is sufficiently nondiagonal that
the weak dependence property holds. Second, the desired solution
is obtained by consideration of perturbations about the exact
statistical state of the system, not an uncoupled state or a state
in which the coupling is treated in a phenomenological fashion.

6 S. Lundquist, Arkiv Fysik 5, 297 (1952).

1409

whose components along the coordinate axes are
integer multiples of 2x/L. We shall further assume,
however, that there is no uniform velocity or magnetic
field, so that u(0)=w(0)=0. These conditions, and
the cyclic boundary conditions, are preserved by the
equations of motion, provided F(0)=0.

The coefficients u(k) and w(k) are not linearly
independent; assignment of their initial values is
restricted by (3.4) and the reality requirements

ui(—k)=u*k), w,(—k)=w*k).

In the statistical-mechanical treatment it is a great
advantage to work with variables for which an arbitrary
assignment of initial values is admissible. For this
purpose we introduce those real and imaginary parts
of the vector components of the u(k), w(k) which are
linearly independent under (3.4), (3.6).

The vector components of u(k), u(—k), w(k),
w(—k) comprise, for given k, a total of twenty-four
real and imaginary parts, of which only eight are
linearly independent. We shall pick from each wave-
vector pair k, —k one member, say k, and choose as
these eight variables the real and imaginary parts of
the components of the vectors u(k), w(k) along pairs
of perpendicular axes in the plane normal to k. For
the sake of notational simplicity, let all the independent
real and imaginary parts so chosen (for all pairs k,
—k allowed by the boundary conditions) be ordered in
some single one-dimensional sequence and denoted by
¢e/V2, where « is a serial index whose values label
individual variables. Then for given k, any admissible
values of u(k), u(—k), w(k), w(—k) correspond to,
and are fixed completely by, some choice of values of
eight of the ¢.. The ¢, are analogous to the canonical
variables of Hamiltonian systems, as we shall see later.

It follows from the linear relations between the
¢’s and the u(k), w(k) that (3.1) and (3.2) may be
written in the combined form

ot vele =BZAaﬂ7q;397+fa> (Aapy=Aavs), (3.7)
Y

(3.6)

where the coefficients A.s, and damping factors », are
functions of their indices (but not of the ¢’s or of time),
and the f’s are related to P;;(k)F;(k) as the ¢’s are
to #;(k). (We shall frequently denote the row-vectors
with elements ¢, and f, by ¢ and f. No summation
convention will be used for the Greek indices.) It is
readily verified from (3.1), (3.2), and the definition
of the ¢’s, that each », is positive and proportional to
either » or ». It follows from (3.5) and the definition

of the ¢’s that
E=1%Y".q.% (3.8)

It is apparent that (3.7) and (3.8) exhibit a great
formal simplicity in comparison with the original
Egs. (3.1), (3.2), (3.4), (3.5), and (3.6); they provide
formally identical equations for ordinary turbulence
and hydromagnetic turbulence. We shall derive now
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some important properties of the A.g,, thereby express-
ing in the new formalism the structure of the nonlinear
interaction among the Fourier modes.

We remarked before that if », 5, and F(k) are set
equal to zero, then (3.1), (3.2), and (3.4) yield E=0.
Therefore, setting the », and f, equal to zero in (3.7),
we have

E’=andu= Zﬁl Aopr9eq89x=0, (vay f=0). (3.9)
o a,p,y

Since any assignment of initial values to q represents
admissible fields, (3.9) must be an identity. Setting
all the ¢’s equal to zero except some particular three,
Guy O, ¢s, we deduce that

Ap)\a+A)\o'y+A A= 0. (3.10)

If the triangle interaction of the modes g, gz, ¢- is defined
by the terms 24mqzo, 24Nouq0Qu, 240agugy in the
respective equations of motion for g,, ¢, ¢, it follows
that this elementary interaction contributes zero to
E in (3.9) and is individually conservative.”

Most of the A.s, defined by (3.7) vanish; it follows
from (3.1), (3.2) that 4,70 only if ¢a, gs, gy corre-
spond to wave vectors k, k’, k"’ related by k=tk'+k"
=0, where the = signs are to be taken independently.
We also note, from (3.4) and our assumption u(0)
=w(0)=0, that only pairs of Fourier coefficients such
that k’ and k—k’ are not parallel to =k (nor, hence,
to each other) can contribute to the right sides of
(3.1) and (3.2,. It follows that

Aapy=0, (3.11)

We may also see from (3.1) and (3.2) that the triangle
interactions connect real with imaginary parts of
Fourier coefficients in only particular ways. If an even
number of the variables ¢., ¢s, ¢, represent imaginary
parts of Fourier coefficients, then Aagy, Agya; A+ep all
vanish. The coefficients describing nonvanishing triangle
interactions obey the symmetry relations

unless a, B, v are all different.

Aapryi= Aerpirr= — Aaibrrr= Aaibivi, (3.12)

where the indices o, and a; correspond to ¢’s which
are, respectively, the real and imaginary parts of a
single independent vector-component of some given

7 A rate. of energy-transfer from wave number k' to wave
number k frequently is defined as Q(k,k’)=Im{k-u(k—k")u(k’)
-u*(k)}, since (9/0)[Fu*(k)-u(k)]= ZpxQ(k k), (w,», F=0)
[see reference 57]. Conservation then is expressed by Q(kk’)
+Q(k’k)=0. Actually this representation of the complex of
triangle interactions in terms of pair interactions is nonunique.
There is a complementary term Q(k, k—k’) for each term Q (kk’)
in 2x-Q(kk’). The two terms each depend on all three amplitudes
u(k), u(k’), u(k—k’) (or their complex conjugates) and it is
capricious to call Q(kXk’) the rate of transfer from k' and
O(k, k—k’) that from k—Kk’. This is exhibited by noting that
@k k)=Q(kk)+K(kk%, |k—k'|), where K is any function
antisymmetric in each pair of arguments, may validly replace
Q) since Q(kk)+-Q(k'k)=0 and Q(kk)+Q(k k—k')
=Q(kk")+Q(k, k—k’). It may be noted that (3.10) is a stronger
statement than Q(kk’)+Q(k’.k)=0, since it does not involve
averaging over the vector components of u(k).
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Fourier coefficient, with a similar interpretation for
the other indices.

4. FORMULATION OF THE STATISTICAL PROBLEM

The dynamical variables ¢, form a denumerably
infinite set. We know, however, that in a physical flow
sufficiently high wave numbers will be negligibly
excited because of the action of viscosity. This suggests
that the truncated system obtained by removing from
the equations of motion all Fourier coefficients of
wave number greater than an arbitrarily high limit
provides a valid representation of the physical situa-
tion.® This corresponds to retaining in (3.7), (3.8) only
the terms which involve exclusively a finite set of NV
go or the associated f,, where N is arbitrarily large.
If follows from (3.10) that the nonlinear interaction
within the truncated system is exactly conservative,
as in the original system. In the rest of the present
paper we shall deal exclusively with the truncated
system; its advantage is that we can speak meaning-
fully of the dynamics and statistical mechanics of the
associated conservative system in which dissipation
and driving forces are taken equal to zero. This is not
true of the infinite system.®

4.1 Gibbs Ensembles and Time-Function
Distributions

The application of Gibbs statistical mechanics to
turbulence has been discussed by Burgers,! Onsager,!®
Hopf,> and other authors. We shall present briefly
some results of this approach and then point out its
inadequacy for the full statistical description of
turbulence maintained by external forces. We shall
consider first the equilibrium statistical mechanics of
the conservative system obtained by placing all
v, and f, equal to zero in the truncated system. Accord-
ing to (3.7) and (3.11), we have

Zaaq'a/a%:=0, (Va=0)- (41)

This is equivalent to the Liouville theorem for con-
servative Hamiltonian systems. It shows that the
motion conserves measure in a phase space with the
¢ as Cartesian coordinates, so that the time-invariant
Gibbs ensembles defined by density p(q) are those
which satisfy

_Op dp
2= 2_ Aaprgsgr—=0.
@ 0¢e @B 9¢a

(4.2)

By (3.8), (3.9), p=p(E) is an obvious solution, corre-
sponding to equipartition of energy.! More generally,

8 We may regard this as the introduction of infinite damping
(infinite resistance) for the degrees of freedom removed.

¢ The inviscid Navier-Stokes equation leads to solutions which
develop discontinuities.

10 I, Onsager, Suppl. Nuovo cimento 6, 279 (1949).

11 This artificial equilibrium case does #of describe turbulence
at infinite Reynolds number.
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the solutions are arbitrary functions of functions
X:;(q) such that the relations X;(q)=const are the
integrals of the simultaneous system

dge/ BZAaﬁvqﬁqv=dqx/ ;vaqﬁsfh- (4.3)
Y Y

According to the theory of such systems, there should
exist N—1 independent X;. This implies that there are
N—1 constants of motion, with a corresponding
restriction on the ergodicity of the system.

For £=0, whether or not the dissipation factors v,
vanish, the Gibbs density p(q), prescribed at some
instant, determines the complete structure of the
distribution of solutions. Averages of any functions of
simultaneous values of the ¢’s may be obtained directly
by integration over p, and p at later times is determined
by Liouville’s equation. Nonsimultaneous averages,
such as (g.(¥)gs(¥')), also are fixed by p, but their
evaluation is not so direct. For the example given,
gs(t") could be expanded in a Taylor series about time
¢, the various derivatives in the series expressed in
terms of q(#) by repeated use of (3.7) and its time-
derivatives, and the result integrated over p. Since
nonsimultaneous averages are of great interest in
turbulence theory, this lack of symmetry of the Gibbs
method may be considered a disadvantage.

When external forces act on the system, the situation
is more serious; averages involving nonsimultaneous
values of the ¢’s cannot be evaluated from knowledge
of p. To see this, we note that when 0, the use of
(3.7) and its derivatives to express higher derivatives
of q in terms of lower introduces the time-derivatives
of f. Thus, the evaluation of {g.(¢)gs(¢")) by the Taylor
series method requires knowledge not only of the
distribution of q at some instant, but also of the full
joint-distribution, at that instant, of q, f, and all the
time-derivatives of f. Alternately, one would have to
know the full joint-distribution, at an instant, of q
and all the time-derivatives of q. Therefore, even if
it were possible to solve the Liouville equation com-
pletely in the case 720, and obtain p as a function of
time, this would not provide a full solution of the
statistical problem.

The complete statistical description of the dissipative
system subjected to external forces requires the
determination of a probability measure ¥[q(), f()]
in the function space of all time-function pairs q(%),
() which satisfy (3.7). Nonsimultaneous as well as
simultaneous averages of any functions of q and f
are fixed thereby. In view of the difficulties just
discussed, we shall attempt to develop a statistical-
mechanical treatment directly in terms of time-function
distributions rather than in terms of instantaneous-
value distributions which evolve in time.

4.2 Fundamental Statistical Equation

Since the measure, or distribution functional, ¥
contains the entire structure of the distribution for
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all times, we cannot hope to find for it an equation of
motion like the Liouville equation. However, the
functional equation

(EaLa()La(¥))2=0, (4.4)

where

La(t)EQa(t)+Vaqa(t)_ﬂzAaﬂ*rqﬁ(t)%(t)_fa(t) (4.5)

and ()¢ indicates an average taken with measure
¥, provides both a necessary and a sufficient condition
that all the function-pairs q( ), f( ) in the distribution
(except possibly for a set of zero measure) satisfy
(3.7). The necessity of (4.4) is obvious, and it is
sufficient if satisfied for {=#. This follows from the
fact that the left side is a sum with non-negative
measure ({ )y) over a sum (2 _,) of squares of real
quantities,”® so that it can vanish only if L,()=0 for
all @ and for all members of the distribution (except
for a set of zero measure). The integral of (4.4) (with
t=1{') over an arbitrary time interval is the condition
that the members of the distribution satisfy (3.7) in
a mean-square sense within the integration interval.
Equation (4.4) is the fundamental statistical equation
of the present treatment.

Since L.(f) contains only linear and bilinear terms,
(4.4) contains only second-, third-, and fourth-order
moments of the joint-distribution of q and f. Therefore,
we need evaluate only these moments to determine whether
a given distribution satisfies the moment equations of
all orders obtained by multiplying (3.7) with arbitrary
Sfunctions of q and f and averaging. It is important to
note, however, that not every assignment of values
to second-, third-, and fourth-order moments which
satisfies (4.4) corresponds to a possible distribution.
The non-negativity of ¥ implies that the distribution
average of every functional of q and f which is non-
negative everywhere in the function space must itself
be non-negative.!

Despite the realizability restrictions, it is clear
that the specification of second-, third-, and fourth-
order moments which satisfy (4.4) must leave the
higher structure of the distribution largely undeter-
mined. Since (4.4) represents the entire constraint
imposed by the equations of motion, this indicates the
necessity of supplementing them with additional
conditions.

4.3 Variational Criterion for Specifying
the Distribution

In the Gibbs statistical mechanics of conservative
systems satisfying Liouville’s theorem, the most
probable distribution (m.p.d.) is that which minimizes
JSpInpds where the integration is over all phase
space subject to the condition /pdo=1 and to specifi-

12 Since W is a probability measure it is everywhere non-negative.
18 J, A. Shohat and J. D. Tamarkin, The Problem of Moments
(American Mathematical Society, New York, 1943).
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cation of mean values of appropriate constants of
motion. This distribution is the one which can be
realized in a maximum number of ways by arrangement
of system-points in accordance with the constraints; it
is time-invariant. When only the mean-energy is
specified, p is the Maxwell-Boltzmann (M-B) distribu-
tion.”* We shall now examine this variational criterion
in the time-function formulation and propose a general-
ization for the dissipative system driven by external
forces.

Let q(¢) and f(¢) be expanded in Fourier series with
coefficients q(w), f(w) within an arbitrarily large
interval 7'. If we adopt the artifice of removing from
the equations all Fourier coefficients such that |w| >,
an arbitrarily high frequency, the distribution may be
described by a density-function ®[q(), f()] in the
space of finite dimensionality with the independent
real and imaginary parts of the .(w) and f.(w) as
Cartesian coordinates. After computing desired
moments as averages over the finite dimensional space,
we may take the limits @— and then 7. In the
present representation, (4.4) may be replaced by the
equation

f 30 () Ru(w)BAE =0, (4.6)

where iw L, (w) is the Fourier coefficient of L.(#) and the
integration is over the entire space. All the q.(w) enter
(4.6) with a kind of equal a priori weight.

For the conservative system all the f’s and »’s
vanish, and the space collapses to that of the .(w)
alone. Let us perform a rotation in this space, trans-
forming to new Cartesian coordinates which are the
values ¢.(¢,) of the time-dependent variables at a
discrete set of instants #,. A system-point in this space
has coordinates ¢.(t1), ¢a(f2), - - - which are related by
the equations of motion. Since these are first-order
equations, all the coordinates are completely fixed by
the location of the point in the subspace corresponding
to any instant f,. The m.p.d. above is the (time-
invariant) instantaneous distribution realizable in a
maximum number of ways by arrangement of system-
points in any of the subspaces, and it therefore should
correspond to the distribution in the full space of the
0«(w) (product space of all the subspaces) which is
realizable in a maximum number of ways subject to
the constraints represented by the equations of motion.
Since (4.6) fully expresses these constraints, this
suggests the variational criterion that I'= f'® In®d2
be minimized subject to (4.6), the condition /' ®dZ=1,
and appropriate integral constraints such as prescription
of mean-energy-per-system.

An immediate complication is that the equations of
motion confine the system-points to hypersurfaces in

4R, C. Tolman, Principles of Statistical Mechanics (Oxford
University Press, New York, 1938).
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the space of the (.(w) so that the ® thus specified is
singular and I diverges. This may be handled as
follows. We may find the (nonsingular) & which
minimizes I with the constraint

3K (0) L (w)PdZ =2 (4.6")

replacing (4.6). Then we may take the limit x—0.
When the additional constraint is fixed mean-energy,
this procedure leads to the formal solution

©=lim N(\u) exp(—A/A—A/u), (4.7)

where NV is a normalization factor, A=, . %.* (&) La (W),
A=30a0c (w)qa(w), and 1/\, 1/u are real, positive
Lagrange multipliers. The limit A—0 corresponds to
x—0, as is clear from the fact that A is a sum of
squared moduli of quantities which vanish when the
constraints are satisfied for k=0. Of course, we may not
assert from the crude arguments given that (4.7) ac-
tually yields the M-B distribution.!®

For the dissipative system driven by external forces,
we now propose the criterion that / be minimized as
above, where ® now is defined over the full product
space of the 0.(w) and f,(w). In this case the appropriate
integral constraints in addition to (4.6’) and normaliza-
tion are the specification not of mean energy but rather
of those moments of f which express the known informa-
tion about the distribution of the driving forces. The
distribution chosen by our criterion is one in which
the gu(w) and f.(w) are as statistically independent as
the equations of motion and other constraints permit.

The relevance of the M-B distribution to the state
of a conservative physical system has not been fully
established in the Gibbs statistical mechanics. Our
variational criterion for a dissipative, driven system
would appear to embody a large degree of additional
arbitrariness, since the absolute measure indicated by
the Liouville theorem for the associated conservative
system is of questionable relevance and we have
presented no basis at all for establishing a probability
measure in the space of the {,(o). However, if we
consider the system to have been excited from rest in
the distant past, the entire distribution should be
determined by the distribution of f alone. Our criterion
yields a distribution whose members obey (3.7) and
which is consistent with any degree of specification of
the moments of the f distribution, expressed as integral
constraints on the variation. Its arbitrariness then
consists only in fixing the higher moments of the

15 A possible indication of the appropriateness of our procedure
is afforded by application to a linear harmonic oscillator with
equations of motion ¢=ap, p=—ag. Equation (4.7) gives a distri-
bution of the q(w) and p(w) which yields the M-B Gibbs ensemble
and whose members obey the equations of motion [iq(Z=a)=
+p(£a); q(w), p(w) vanish unless |w|=a].
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f distribution which are not explicitly prescribed.
In an actual physical situation, the f distribution will
be affected importantly by the reaction of the system
on its environment, and its a priori prescription is
unrealistic in any event. The arbitrariness associated
with our variational criterion does not seem significant
in view of this irreducible artificiality associated with
the entire procedure of treating the external forces
as parameters rather than as the interaction with an
explicitly defined environment.®

The variational criterion may be used to write down
a formal solution for the dissipative, driven case,
corresponding to (4.7) for the conservative case.
Alternately, we may choose not to apply constraint
(4.6") directly, but instead find the ® which minimizes
I with given values of all the moments which appear
in (4.4), thereby fixing all the other moments in terms
of these. Then we should be able to form from (3.7) a
complete set of equations, of which (4.4) is one, to
determine the moments in (4.4). Thus the variational
method provides a principle for reducing the infinite
sequence of moment equations derivable from (3.7)
to a finite, complete set with the assurance, since
(4.4) is satisfied, that the solutions represent distribu-
tions which satisfy all the possible moment equations
of all orders. Severe practical difficulties appear to
arise both in carrying out this procedure and in evaluat-
ing moments from the formal expression for ® given
directly by the wvariational criterion. Thus these
methods may be only of formal interest. In the follow-
ing sections we shall develop a simpler method for
determining the moments appearing in (4.4) based on
two statistical hypotheses. Once these moments are
determined, the variational criterion could be used, in
principle at least, to find the higher moments, but we
shall not attempt this in the present paper.”

4.4 Stationarity and Homogeneity

Equation (3.7) is invariant under time-displacement
and therefore admits distributions whose moments
depend only on time differences. For this stationary case
we define the moments

16 A more realistic problem is turbulence supported by a steady
shear flow so that there are no external forces as such (the param-
eters of the steady flow enter the equations of motion in terms
representing nonconservative couplings between pairs of modes).
In this case it would seem that the most probable distribution
should be one which is stable under random infinitesimal perturba-
tions, and it cannot be asserted without further investigation that
the variationally determined @ has this property. However, it
is to be expected by analogy to equilibrium statistical mechanics
that in a system with very many degrees of freedom physically
important averages may not be sensitive to the exact form of
distribution; thus, the arbitrariness of our criterion may be of
only academic importance in this case also.

17 The difficulties involved are, again, severe. It appears more
practical to find the higher moments by direct extension of the
methods of Secs. 5-8.
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Ras(1) = {ga(t+7)gs(9)),
Sova(7) = (gs(t+7)gy (t+7)4a(D)),
Ty (1) = {qu(t+7)r (4 7)gs (D)2 (1)),
Fup(r) = {falt+7) f5(2)),
Gap(1) = (fa(t+7)g5(2)),
Heogy (7) = {fu(t+7)g5() g4 (),
where the subscript ¥ on the averages has been dropped
for compactness. We shall denote these moment
matrices by R, S, T, F, G, H. It follows from station-
arity that R,s(7)=Rg«(—7), with similar properties
for F. We also note Sgye(7)=Sys.(7). Equation (4.4)
in the stationary case may be written

O’ Roe(7)
> Sym{ —————— 41 2Rea(7)+23" Aupy
a 972 By

(4.8)

2

T

- ”aSﬁva(T) +Ha87(7')]

+ Z AaﬂvAankTﬂwk(T)

8,71
3G aa(T)
+2

— 203G (7) FFoaa(7) ] =0, (4.9

ar

where Sym{g(r)}=3[g(r)+g(—7)].

Equations (3.1), (3.2), (3.4) correspond to z-space
equations which are invariant under spatial displace-
ment, inversion, and change of sign of w.!8 Therefore they
admit spatially homogeneous, inversion-invariant dis-
tributions in which u and w are uncorrelated. In
such distributions, Fourier coefficients associated with
different wave-vector pairs =k, £k’ are uncorrelated,
and the real parts of the coefficients are uncorrelated
with the imaginary parts. If we take the ¢’s as compo-
nents along suitable principal axes in the normal
planes to the wave vectors (the choice may have to
be different for u and for w), those representing the
vector components of a given Fourier coefficient will
be uncorrelated. With all the conditions stated, the
covariance matrix of the ¢’s is diagonal :

R'Iﬂ (T) = 6&BRaa (T) . (4:. 10)

The homogeneously distributed driving forces implied
by the conditions above are rather unrealistic physically.
(They may be visualized as arising from a suitably
random volume distribution of stirring devices.) Such
forces clearly are required, however, in a consistent
idealization of turbulence as a rigorously homogeneous
and stationary phenomenon.

5. TWO STATISTICAL HYPOTHESES
5.1 Weak-Dependence Hypothesis

Let us take homogeneous turbulence in which the
energy is spread over many individual modes ¢, and

( 18§, Chandrasekhar, Proc. Roy. Soc. (London) A233, 322
1955).
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in which the external forces f, for different o’s are
statistically independent. It is clear from (3.1) and
(3.2) that the various excited modes are paired dif-
ferently in the right sides of the equations of motion for
different modes. Any particular few modes appear in
only several of the many bilinear terms contributing to
the motion of a given mode. It then is difficult to see
how the nonlinear interaction could give rise to other
than quite weak statistical dependencies among any
small group of modes.

Now suppose we increase without limit the dimension
L of the “cyclic box” confining the turbulence and
adjust the driving forces to yield some given limiting
energy per unit fluid volume in any given wave-vector
range. The number of modes over which the energy
is spread will increase without limit because of the
increase of mode density,"” and we should expect, on
the basis of the observation above, that the statistical
dependencies among any finite number of modes should
decrease without limit as we approach the case of
infinite domain. Let us call those cross-moments which
necessarily vanish in a rigorously independent joint-
distribution skew moments. Then for turbulence excited
as described, we hypothesize that as L—o the normal-
ized values of the skew moments which can be formed
from a finite number of ¢’s approach the limit zero and
the values of nonskew moments so formed approach
as limits values corresponding to an exactly independent
joint-distribution of the ¢’s.

The weak-dependence hypothesis just stated does
not conflict with the well-established experimental
fact® that the two-point velocity distribution in
turbulent flow is strongly non-normal, although at
first sight the central-limit theorem might seem to
indicate a contradiction. Consider a measure of non-
normality such as  {(9%:/0x1)%)/{(0%1/d%1)?)2. If
{(8%1/9%1)*) is expanded as a sum of moments of
the Fourier modes, it readily is seen that the skew
moments included in the summation outnumber the
nonskew by a factor the order of the total number of
modes excited. As L— in the fashion described, this
number increases as L3, and the fact that the normalized
skew moments tend individually to zero by no means
indicates that their total contribution is negligible
in the limit. Thus the weak-dependence hypothesis does
not imply the neglect of cross-dependencies in the evalua-
tion of extended sums over Fourier modes.® Crudely
speaking, although individual cross-dependencies among
a large group of variables may be very small, the
effective over-all dependency may be substantial
because the number of possible cross-dependencies is
very large compared to the number of variables.

It is important to remember that the Fourier coeffi-
cients are collective coordinates which describe the

¥ Tet us adjust the labelling of the ¢’s and f’s during this
process so that given values of «, 8, etc. continue to correspond to
given wave-vector neighborhoods.

2 R, H. Kraichnan, Phys. Rev. 107, 1485 (1957).

ROBERT H. KRAICHNAN

motion throughout the entire fluid. Observation
indicates that the small-scale turbulent motion tends
to concentrate into vortex sheets and filaments. The
Fourier components of a single such disturbance neces-
sarily must be strongly correlated in phase, but in
turbulence filling a large domain there are many such
disturbances and their Fourier components must inter-
fere, giving rise to rapid and complicated oscillations of
phase with k. Again, there is no conflict with the prin-
ciple of weak dependence.

5.2 Direct-Interaction Hypothesis

Now we shall formulate a related hypothesis concern-
ing the manner in which the presumed weak cross-
dependencies are determined by the structure of the
nonlinear interaction. The two hypotheses together
provide the foundation for a perturbation-theoretic
evaluation of the skew moments which appear in (4.4).

Let ¢, g8, ¢y be modes such that the coefficients
Aapy, Apya, Aveg of their direct triangle interaction,
which we shall denote by («,8,7), do not all vanish.
Because of the three bilinear terms of which 244,95,
in expression (3.7) for ¢u+7.q. is one, (a,8,v) can be
expected to induce a contribution to the triple moment
(995'¢y""), where q=q(t), q'=q(t'),---. There will
also be a contribution to this moment due to indirect
interaction of g, ¢, ¢, through their couplings with
the rest of the dynamical system. We hypothesize
that as we approach the limit L—, for turbulence
excited as described previously, the triple moment
becomes determined by the contribution of the direct
interaction in the sense that if (¢,8,y) were removed
and the other triangle interactions left unaltered, the
value of (¢.gs'q,’") would be negligible compared to its
value with (@,3,y) present.

For the present we justify the direct-interaction
hypothesis on the intuitive ground that turbulence is a
mixing process which degrades information so that the
indirect interaction of three modes through the tur-
bulent motion as a whole should not convey phase
information among them in the limit where the mo-
tion consists of the excitation of an infinitely large
number of weakly dependent degrees of freedom.
It is possible to give some further justification of an
a posteriori nature by estimating, on the basis of the
perturbation techniques to be presented in the following
section, the contributions to (¢.gs'q,’’) from indirect
interaction of ¢, ¢s, ¢y through assumed perturbations
in classes of triangle interaction chains involving groups
of other modes. [An example of such a chain is (a,u,\)
(B\,0) (v,0,u1).] The results which have been obtained
in this way support the hypothesis.? A rigorous and
complete investigation of validity seems out of the
question at present; the difficulties involved resemble

2 Property (3.12) is important to the analysis. It results in

cancellation of indirect contributions by symmetry for the
homogeneous case.
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somewhat those connected with perturbation expan-
sions in quantum electrodynamics, with severe compli-
cations because of the essential nonlinearity of the fields.

The plausibility of our hypothesis perhaps is enhanced
by the following argument. Let us consider the distri-
bution determined by the variational criterion when the
constraints, in addition to (4.6) and normalization, are
the specification of the (diagonal) covariance matrix
of f. We have then a distribution in which essentially
the variables are as statistically independent as the
constraints permit; thus, in the case taken it presumably
corresponds closely to the weakly dependent state.
Now it is clear from (4.4) and the relation between
(4.4) and (4.6) that (g.gs'qy’”’) only enters into the
constraints multiplied by the coefficients Aagy, Agyas
Ayap of the direct interaction. If this interaction were
switched off, we might surmise that (¢.qs'q,”") would be
negligible in a maximally independent distribution since
it could not contribute toward satisfying the constraints.
The situation is complicated by the necessity of satis-
fying realizability inequalities, but it seems reasonable,
in view of the presumed weak-dependence property,
that they would not invalidate this conclusion.

We shall now extend the direct-interaction hypothesis
to the other skew moments which enter (4.4). We
assume that as we approach the limit L—« the value
of {gsqyfo"), where a, 8, v are all different, becomes
determined, in the sense stated previously, by the
contribution from the direct-interaction path consisting
of (a,8,y) and the coupling of f, to ¢.. In the case of
the skew moments {gsg,'q.”’»""’) which appear in (4.4),
the selection rules determining which triangle interac-
tions are nonvanishing establish that the most direct
paths of interaction which link all four modes are
chains involving an external mode such as (u\)
(e,B,v). The contribution of this path represents a
distribution-averaged phase relation between the
quantities ¢gg,” and ¢,”¢\""" induced by their couplings
to the mode ¢.. The selection rules permit several such
chains for each choice of 8, v, u, \. We assume that as
we approach the limit L—c the values of the fourth-
order skew moments appearing in (4.4) become
determined, in the sense stated previously, by the
contributions from these paths.

In connection with the plausibility argument just
given, we may note that {gsq, f.’") only appears in
(4.4) multiplied by the coefficients of (,3,v), while
the fourth-order skew moments only appear multiplied
bilinearly with the coefficients of the pairs of triangle
interactions which constitute the chains we have
designated as the direct interaction.

6. EVALUATION OF SKEW MOMENTS

In the limit Z—w, an excited mode interacts with
an infinitely large number of other modes; thus, the
triangle interactions which comprise the direct inter-
action in each of the cases just discussed make an
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infinitesimal contribution to the motion of the modes
involved. This suggests that the skew moments
appearing in (4.4) be evaluated by introducing the
direct interactions as perturbations on the total
motion. In the present paper we shall carry out this
program for the stationary case with Gaussian driving
force distribution. It is important to note that the per-
turbations to be considered are about the exact state of
the system, not a state in which all the modes are
uncoupled.

Let us introduce an arbitrary perturbation term
£,(t) on the right side of (3.7) for >4, If £ is small
enough, we may assume that the perturbation in
q(%) can be expanded in powers of £ in the form

5qu(t)=>; f {ux(t,t’)gx(t')dt’

t ¢
+2 f f mna (L) N () E(¢)ald" -+, (6.1)
Moty Yip

where {a(41), mae(,tt’),--+ are certain implicit
functionals of the unperturbed ¢ and f and satisfy

K‘M (t:t’) = 0>

For a linear system, #u,,--- would vanish, and
Can(8,t") (which would be independent of the unperturbed
variable values) would be the impulse-response matrix.
In the nonlinear case at hand, ¢, (¢,t") gives the response
to an infinitesimal impulse. Since (3.7) is a first-order
equation, we have {(4,f)=8,\. For a typical member
system of a weakly dependent distribution, the off-
diagonal elements of & (Z,¢) for :>¢ individually are
infinitesimally small compared to the diagonal elements
in the limit L—o, since a given off-diagonal element
represents the response of one mode to a perturbation
in the equation of motion of another to which it is
only weakly coupled.

Now let us imagine that the triangle interaction
(a,B8,7) is switched on at {={,. According to our statist-
ical hypotheses, when L is large (g.(t—7)gs(£)g,(?))
should be given to first order by

(ga(t—7)gs(t)gy (1)) = (8qa (t—7)gs(t) gy (1))
+ (ga(t—7)895 (1) gy () )+ {¢a (t— 7) g5 (£)0, (8) ),

where

t<t), na @t ¢)=0, (<t ort’),.--.

(6.2)

507() =24 108 f e au)gs()dt,  (63)
to

with corresponding expressions for 8¢.(t—7), 6gs(t)
involving 24es,qs(t') gy (), 24 pyaqy(¢')qa(t’) respectively.
The weak dependence hypothesis rather clearly implies
that ¢, is statistically independent of ¢, and ¢g in the
limit Z— 0, and for a stationary unperturbed distribu-
tion ({,,(%#)) depends only on {—#. Then, to first



1416

order,
(ga(t—7)gs(1)8g4 (1))

= 2A7aﬁ j; <§' -n(t»t,))
X (gali— a0 aa () g5 (1))t
=24, f ¢ry(5)Raals— 1) Rsp(5)ds, (6.4)

where s=¢—1¢/,

ga(s)=(Eun(, t—9)), (6.5)

and we have used (3.11) in addition to the weak-
dependence hypothesis to obtain the third member.
The matrix ga(r) gives the average response to an
infinitesimal impulsive perturbing force. We shall call
it simply the impulse-response matrix, and denote it
by g.

Working out the expressions corresponding to (6.4)
for the other two terms on the right side of (6.2),
and letting /——c to describe the new stationary
state which is reached sufficiently long after switching
on the perturbation, we obtain

Spra(r) =2 [ (5= 7) Reg(5) Rrr (s

r

+248ya f Ree(s—1)gss () Ry (s)ds
0

oA f Rea(s— ) Rap(S)gry(s)ds.  (6.6)

0

If our statistical hypotheses are well-founded, the
first-order perturbation theory, and consequently (6.6),
should be exact for the infinite domain, L—o.

When the distribution of f is Gaussian, as assumed,
we may write fo=2 fun, where the f,, are statistically
independent infinitesimals. Treating any single fun
as a perturbation, we obtain in direct analogy to the
preceding analysis,

ROBERT H. KRAICHNAN

<fan(t+7)ga(t)>=f gaa(s)Fanan(s+T)dS (6.7)
0
in the new stationary state, where
Foman (S) = <fan (t+s)faﬂ (t)>'
Summing over all #, we have
Gao(T)= f Zaa(8) Faa(s+7)ds, (6.8)
0

SINCE Foo(T) = ZFanan(T).

Again introducing the triangle interaction («,8,v)
as a perturbation, the direct-interaction hypothesis
implies that

(fat+7)g8(8) g4 (1)) = { falt-+7)895(1) g, (1))
+ (fu(t+7)gs()8g, (1)), (6.9)

where 8¢,(#) is given by (6.3) with a corresponding
expression for 6¢s(¢). Asserting weak dependence,
we find

{fa(t+7)gs(Ddg, (D))

t—to

=y f vy ()R () a1+ Da(t—))ds. (6.10)

Noting {fo(t+7)ga(t—5))=Gaa(s-+7), working out the
expression corresponding to (6.10) for the other term
on the right side of (6.9), and letting {,—— o, we obtain

Hogy(r) =2 f ds f 01 gaa(r) EApregan () Ry ()

+ A yapgyy (5)Res(5) JFaa(r+s+7). (6.11)

The skew moments Tgya (7) in (4.9) may be evaluated
by the foregoing methods if, in accordance with the
direct-interaction hypothesis, triangle interaction pairs
such as (u,\,@), (,8,y) are introduced as perturbations.
For all of the skew Tgya(7) in (4.9) except a fraction
which is vanishingly small in the limit Z—w 2 3, v,
u, and X all are different, and there are no nonvanishing
pairs of the form (u,B8,a), (e)y) or (u,7,@), (e\,6).
In this case, for L— one finds

Ty (1) =45 Aprad e f ds f 0rgs5(S) Ryr(5) Raalr— ) guulr— 7) Ron(r— 1)
@ 0 T

+3 similar terms obtained by permuting 8 with v and/or p with X

S Apyadan [ ds f 0rges() Ry (5)gua(r— ) R (r— )R (r— 1)
(3 0 8 .

—+a similar term obtained by permuting 8 with

A5 Apadasy f ds f 0rRop (1) R () a1 — ) gun (s— ) Ron (5= 7)

+a similar term obtained by permuting p with A, (8, v, p, A all different).

(6.12)

22 This fraction may be ignored in the limit L—« because the skew Tgyu(7) appear in observable expressions only in extended

sums over modes.
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Finally, for L— the weak-dependence hypothesis

implies

Toysy(7)=Reg(m) Ry (7),  (B5=7). (6.13)
By (3.11), this case includes all the nonskew gy (7)
in (4.9).

We now have expressed all the moments in (4.9) in
terms of the diagonal elements of g, R, and F.2 If the
theory is well-founded, these expressions all should be
exactly valid in the limit L—oo,

7. NONDISSIPATIVE EQUILIBRIUM

It is shown in the Appendix that when all »’s and
f’s vanish and the instantaneous q distribution is
Maxwell-Boltzmann (M-B),1

ga(r)=Ra(7)/R, (720), (7.1)
where R=R,(0) (all @) is twice the mean energy per
mode. In this case we find, using (3.10), that (6.6) may
be written

Spra()=—2

A4 afy

- f Rualr— ) Rep() Ry (9)ds, (7.2)

which shows that Sg,.(7) is an odd function of = and
goes to zero as T, provided R(7) falls off suffi-
ciently fast for large argument.

If we multiply (3.7) by ¢.’ and average over the
distribution, we find

Raa(T) ':HZAGA?‘YSB’YQ(T)) (Va; fa=0), (73)

where the dot now indicates differentiation with
respect to 7, so that, by (7.2),

[ Realr=3)R5(5)
’ X Ryy(s)ds=0. (7.4)
Finally, we may express (7.4), with the boundary

(A aﬂ'y)z

Raa(T)-}—ZZ
By

condition g (+0)=1, as the ‘“universal” integral
equation
z y
o () =125 (et [ [ 50/ 39
By 0 0
Xgos' (2)gn' (2), (£20), (7.5)

where g(7)=g’(7R?). Equations (7.5) may be solved
through step-by-step integration, starting at x=0,
thereby determining all the diagonal elements of
g(7) and R(7).2* The M-B distribution is a function
only of E and necessarily has the homogeneity and
other independence properties expressed by (4.10).
By (7.1), the off-diagonal elements of both g(r) and
R(7) then all must vanish.

2 As L— in the manner described in Sec. 5, Rya(7), Faa(7)
«1/M, where M= (L/2r)?. Then our expressions for the skew
moments give SBw("’)/ [Rﬁﬂ(O)RW (0)Ruo (0) 12 < 1/2/ M, Hapy(r)/
[Rgs(0)Ryy (0)Faq(0) 1t < 1//M, Ty (r)/[Ras(0) Ry (0) Ry (0)
X R ( 0)1 toc1/M, which supports the self-consistency of the
weak- dependence hypothe51s

2 If the present method is applied to a linear dynamic system,

the equations analogous to (7.5) become a system of simultaneous
bilinear algebraic equations under Laplace transformation.
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It easily is verified that the moments we have
determined satisfy (4.9) for =0 and therefore represent
an exact solution of the statistical problem, provided
they belong to some everywhere non-negative distribu-
tion. By using (3.10) and (7.1), it may be shown that
the skew Tgya(0) given by (6.12) vanish. Then by
(3.11) and (6.13), we have

Z Aaﬂ'y om)\Tﬂw)\(O) ZZ (Aaﬁ7)2R2

By, N

(7.6)

in the limit Z—co. Both theseresults may be anticipated
from the fact that the M-B distribution is a function
only of E=3> .0 Differentiating (7.2) (noting

R,.(0)=0), we find )

> AapSp12(0) = — 23 (Aagy)*R2. (7.7)
By By

The sum of (7.6) and (7.7) less the derivative of (7.3)
at 7=0 then yields (4.9) for =0, if all the »’s and
f’s vanish.

The conservative case we have just treated would not
appear to be of any direct physical interest, but it
will be instructive to compare the equations obtained
with those for the dissipative system driven by
stationary external forces.

8. DISSIPATIVE STATIONARY STATE

Stationary turbulence subjected to viscosity and
driving forces represents a strong departure from
equipartition and detailed balance in which the energy
of the system fluctuates. In this case, (7.1) may not
be asserted, but we can deduce a set of integro-
differential equations which determine the g..(7) and
Rao(7) simultaneously in terms of the F,. (7). Multiply-
ing (3.7) by f.’ and averaging, we obtain

- ‘aa<f)+vacaa<f>=ﬂZAa37Hm<T>+Fm<T>. (8.1)

Now let us introduce an arbitrary infinitesimal pertur-
bation 6f,, statistically independent of f, with auto-
covariance 8F,,(7). The perturbations in the terms of
(8.1) may be obtained from (6.8), (6.11) by replacing
F,. with 6F,.. With some manlpulatlon and the use
of partial integration for 8G.(7) [noting that gu.(+0)
=1 and taking §F,,()=07], we find?

5Gaa(7) = f tua(P)OFaa(r 1),
0

_6Gaa(T)=j;w gan(f)(SFaa(7+T)d?+§Faa(T), 8.2)

Hon)=2 [ [ gaalr= I Apragis VR (9)

+ Ayapgry () Ros (5) Jn (r— 8)0F aa(r+-7)drds,

% Equation (8.2) may be derived directly by the perturbation
theory by using only the independence of f and of, without
assuming that the distribution of f is Gaussian.
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where n(x) =3 (1+x/|x|). Equation (8.1) can be satisfied
by the perturbed values of Faa, Gaa, Hapy only if the
sums, on right and left sides, of the coefficients of the
arbitrary auto-covariance 6F..(r-+7) are equal. We
thereby find (making a change of variable),

gaa(7)+ Vvlgaa(T) '
<25 Auty [ funlr— ) Amagin(9Ron (5
B 0

+ Arapgry (5)Res(5) ds,

Now, multiplying (3.7) by ¢.” and averaging, we obtain
Raa(T)+VaRaa(T) =BZAaBYSﬁva(T) +Gaa(7')~ (8-4)
VY

(r=0). (8.3)

Equations (8.3), (8.4), (6.6), and (6.8) form a
complete simultaneous system which should uniquely
determine both the ge(7) and the R,.(r) in terms of
given Fuo(7), i the required conditions Re.(0)=0,
Zea(+0)=1 are imposed.?® If the distribution is known
to be homogeneous and to satisfy (4.10), this then
provides a determination of the full matrix R(r).*
To verify the consistency of the present results with
those of Sec. 7, we may set v, Fou=0 and, using (7.1)
and (3.10), find without difficulty that (8.3) and (8.4)
reduce to (7.4). In general, however, (8.3) and (8.4)
constitute a profoundly more difficult system than
(7.4). Although (8.3) could be solved for the gus(7)
through step-by-step integration from 7=0 if the
R..(7) were known, the right side of (8.4) for given
depends on g and R for all argument values. The
difference in difficulty is not surprising when we
consider that the nondissipative case could have been
handled in elementary fashion by expanding Ra.(r)
as a Taylor series about 7=0, expressing the derivatives
in terms of instantaneous averages by repeated use of
(3.7), and evaluating these averages in the M-B
distribution.

Although there may be no generally valid relation
between g and R comparable in simplicity to (7.1),
we may conjecture that in many cases a useful approx-
imation will be

Baa (T> = _v'ﬂRaa (T)/Rmx (0) )

For the conservative case treated, (8.5) reduces to
(7.1), and (since R..(0)=0) it yields gua(+0)+va
+Zax(+0)=0, as required by (8.3) in the dissipative
case. For v, very large, (8.5) implies goa(7)~exp(—vat),
(r>0), the correct result for the impulse response of
a system controlled by linear damping. For s, small

(r>0).  (85)

26 The condition Kaa(0)=0 is necessary for stationarity; by
(8.4), it is equivalent to the integral condition (8.6).

27Tt is easily seen that for a distribution satisfying (4.10) the
off-diagonal elements of geg(r) must vanish also; otherwise,
homogeneously distributed perturbing forces would induce
correlations between different wave vectors, which would be
inconsistent with the symmetry of the equations of motion.
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enough that the factor exp(—w,7) may be ignored
except for very large 7, (8.5) seems qualitatively
plausible on the intuitive ground that the time char-
acterizing the relaxation of an initial perturbation of a
mode through interaction with the rest of the system
should approximate the characteristic correlation time
of that mode.
The equation

VaR e (0) =§:Aag.,Sg.,,, (0)+Gaa(0) (8.6)

expresses the energy balance in the stationary state.
The left side is the mean rate of dissipation (per unit
mass) for the mode ¢a, Gue(0) is the mean rate of input
by the driving force f., and 24.8,58y«(0) is the mean
rate of input from the triangle interaction («,8,y).2%
Equation (6.6) gives Sgya(0)=Sya5(0)=Susy(0) [as
required from the definition (4.8)7, so that by (3.10)

AapySpye (O) + ApyeSvap 0)+ AyapSapy (0)=0, (8.7)

which shows that the present theory embodies rigorously
the detailed conservation properties of the individual
triangle interactions discussed in Sec. 3. By (7.2),
S,18(0)=0 for the equilibrium distribution treated in
Sec. 7, which shows that every triad of modes is in
detailed balance. In the dissipative stationary case,
it can be seen from (6.6) and (3.10) that if (8.5) is
approximately true the individual triangle interactions
typically transfer energy from strongly to weakly
excited modes, as should be expected.”® This will be
illustrated in the next section.

9. ISOTROPIC TURBULENCE
9.1 Nonmagnetic Turbulence

In the case of isotropic turbulence, the theory
developed in Secs. 6 and 8 can be expressed conveniently
in terms of the characteristic scalars of the moments
involved, without separating explicitly the several ¢
variables belonging to each k. Since only the divergence-
less part of F(k,) appears in (3.1), we may take it
divergence-free without loss of generality. Then we
may define the real scalar functions U, F, and G by

3P () U (k,7) = (L/2m)*(ui(k, 14-7)u;*(k 1)),
3Pij(K)F (k,7) = (L/2m)*(Fs(k, t+7)F * (k 1)),
3Pi; (k)G (k,7) = (L/2m)*Re{(Fi(k, t+7)u*(k1))},
where Re{ } denotes real part. U and F are even

functions of 7. In the limit Z—w (which is required
for rigorous isotropy),

Uk,r)= (27r)“3f U(r,r)eik-*dsy,

(9.1)

(9.2)

28 We have used Aayg=Aapy, Sysa(7)=Sgya (7).

# This may not be true, however, for triangle interactions
linking modes for which v, and Gae(0) are very large, in which
case the behavior may deviate substantially from what would
be anticipated on the basis of near-equilibrium theory.
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where U(r,7)= (i;(x-+r, t+7)i(x,t)), with correspond-
ing expressions for F(k,7) and G(k,7). From (3.1)
(with w=0), we may obtain

U(k,7)+vk2U(k,T)=S(k,1‘)+G(k,T), (9.3)
and
—G(k,7)+vEG(k,r)=H(B,7)+F k1), (9.4)

where

S(k,7)=— (L/27)* Tm{bmX s (u* (K1)
X (k=K' Dusk, i—1))}  (9.5)

and

H(k)T) = (L/ZW)3 Im{kak'<ui* (k’y t)
Xun*(k—K, )F;(k, t+7))}. (9.6)

Im{ } denotes imaginary part. These relations express
(8.4) and (8.1).

We may evaluate the summand in (9.5) with the
methods of Sec. 6 by introducing as perturbations the
several triangle interactions which link the modes
corresponding to wave vectors ==k, +k’; 4 (k—k’).3
Then, we obtain expressions [equivalent to (6.2)]
involving du;*(k',t), u,,*(k—Kk’, t), and du;(k, i—7). In
correspondence to the second member of (6.4) we find
a contribution  (u#k’ )u,*k—k’, £)du,(k, t—7)),
where

S'M',‘ (k, {— ’l')
= [ s PR (e, )
° (K k=K, ) Tydr. (9.7)

Here g(k,t') is the diagonal element of g(#') correspond-
ing to a mode of wave number %, and { } represents
the contribution to the right side of (3.1) from the
triangle interactions involved. The indicated average
may be evaluated by (9.1) upon asserting weak
dependence. Summing all the perturbation expressions,
letting {—— 0, and replacing >« by (L/2x) /S d%k
in the limit L—o, the final result for S(k,7) may be
written

0 k+k’ ©
S(k,7) =k f Kk f B'dk’ f ds
0 0

1o—F|

XLa(kk' &")g(ks)UK, s+1)U (K", s+7)

—b(kE " )g(K $)U(k, s—)U(R",5)], (9.8)
where
a(k7k,7k") = (1 —Xys— 23’222),
b(k,k B =2k7k (—2+xy+a’2+% (9.9)

+2234-2xy27),

3 As a consequence of weak dependence, the results are inden-
tical with those obtained by introducing the triangle interactions
individually, as strictly required by the direct-interaction
hypothesis.

81 As a consequence of isotropy, the distribution-averaged
impulse-response tensor has the form P;;(k)g(&,7).
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%, ¥, z being the cosines of the interior angles opposite
k, k', k"', respectively, in a triangle with these quantities
as sides.

The factors ¢ and & arise from products of the
projection operators P;;. They satisfy the identities

a(k,' k") =a(k,k" k') >0,
Bh(kE ) =% (B EE"),
b(kk' k") +-b(k,E" k) =2a (kR k"),

and express the structure of the triangle interactions
among the Fourier modes of wave numbers %, %,
and %”’. The domain of integration in (9.8) includes and
is limited to all pairs of values of £ and %" which can
form a triangle with %; the limits actually are symmetric
in &’ and "' since if |k—k'| <k <k+F, then |k—F"|
<k <Lk+R'.

The quantity E(k)dk=2rk*U (k,0)dk is the mean
energy/unit-mass lying between %k and k+dk. For
7=0, (9.3) expresses (8.6) for the isotropic case, and
it shows that S(k)dk=4nk2S(k,0)dk is the mean rate
of net transfer of energy/unit-mass by the nonlinear
interaction to modes lying between k and k2+dk. The
identities (9.10) express the conservation properties
of the nonlinear interaction. It follows readily from
them that fi°S(k)dk=0 [provided E(%) vanishes
rapidly enough as k— ] and that the contributions to
S(k)dk, S(')dk', S(k")dk" from interactions among
modes in the intervals dk, dk’, dk' add to zero in
accordance with the detailed conservation properties
of the triangle interactions.

Following the procedure which led to (6.8), we find

(9.10)

G(k,r)= f i dsg(k,$)F (k, s+7). (9.11)

Finally, following the procedure which led from (8.1)
to (8.3), we may obtain from (9.4) the relation®

§(k,7)+vEg(k,7)

0 k+k’
=—nk f Edk f E'dR"b (kB
0

le—k'|

Xfrg(k, r—5)g(® UK’ s)ds, (r>0). (9.12)

Equations (9.3), (9.8), (9.11), and (9.12) form a
complete set which should determine uniquely both
g(k,r) and U(k,7) in terms of given F(k,r), if the
required conditions U (k,0) =0, g(k,+0)=1 are imposed.
If the statistical hypotheses underlying the present
theory are well-founded, these equations should
provide an exact description of stationary, isotropic
turbulence in an infinite domain, maintained by
normally distributed driving forces. The skew fourth-

32 Equation (9.12) could also be deduced from inspection of
(9.8) by noting the relation between (8.3) and (6.6).
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order moments appearing in (4.9) for the isotropic
case can be expressed in terms of g(k,7) and U(k,7)
by the methods used above, and then the variational
principle of Sec. 4.3 could be invoked to determine all
the higher distribution moments, thus providing, in
principle, a complete solution.

The integrodifferential equations for U(k,r) and
g(k,7) are of a type which does not appear to have
been studied, and their general solution presents
formidable difficulties. However, it is not difficult to
find an asymptotic solution which describes the
inertial and dissipation ranges of turbulence at very
high Reynolds number based on macroscale and
macrovelocity. This problem will be treated in detail
in a future paper,® but we shall outline the solution for
the inertial range here because it displays important
features of the theory.

Let us anticipate that at sufficiently high Reynolds
number there exists a range of wave numbers & such
that (1) all but a negligible fraction of the total energy
lies below a wave number k.<K%, (2) driving forces
and viscosity effects within the range are negligible,
(3) mean energy transfer proceeds by a cascade process
from lower to successively higher wave numbers
within the range, with negligible direct mean transfer
from below to above the range, and (4) the times
characterizing modes in the range are very much
smaller than those for modes below k.. In the limit
where these approximations are presumed exact, let
us seek a solution within the range of the form

U(kfr) = U(k,O)g(k, [ T! )

Then it may be found that (9.3) and (9.12) each
reduce to

e | e 1= 5)g(hs)ds, (r20), (9.14)
0

(9.13)

where E is the mean energy/unit-mass. The solution
which satisfies g(k, +0)=11is

g(k,’l’) =J1 (2'00k1’)/ (‘Uok‘r),

where v¢=+/(2E) is the macrovelocity (rms velocity
in any direction).

Under the assumptions made, the energy-balance
equation within the range has the asymptotic form

(r20),  (9.15)

0 k+k’
S(k,0) ==k f 2% f Kk
0 Vk—k|
X [a(k,l K )U (,0)— bk K" U (k,0)]
X U(K"0) f g(k,s)g(k,)g(k",5)ds=0, (9.16)
(1}

3 R. H. Kraichnan, Report MH-9, Division of Electromagnetic
Research, Institute of Mathematical Sciences, New York Uni-
versity, 1958 (unpublished).
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for U(k,r) of the form (9.13). Equation (9.16) expresses
conservation in the energy-cascade process and is a
consistency condition for the reduction of (9.3) to
(9.14). The solution consistent with (9.15) is

U (k,0) = c(evo) k772, (9.17)

where the as yet undetermined constant of proportion-
ality has been expressed in terms of vy, the rate of
mean energy-transfer/unit-mass by the cascade process
¢, and a numerical constant ¢.3*

The U (k,7) given by (9.13), (9.15) has a non-negative
Fourier transform with respect to 7, as it must to he
a realizable covariance scalar. A consequence is that
the s integral in (9.16) is positive for any &, &/, and £”.
Then it is easy to see from the first and third of identities
(9.10) that the terms in (9.16) involving ¢ and b
respectively represent positive and (typically) negative
contributions to S(%,0) from the individual triangle
interactions. Since U (k,0) is a decreasing function of
k, this suggests that interactions among wave numbers
k, k', k" give a net contribution to .S(%,0) which is
positive if &/, #”” <k and negative if %/, k"'> k.

If %, is any wave number in the range, the quantity
¢ defined above equals the net energy-flow/unit-mass
to all modes £>k; due to all triangle interactions with
modes %', k& <k, plus the net flow from all modes
k<ki due to all triangle interactions with modes
k', k"’ > k1. (These two nonoverlapping classes exhaust
all the triangle interactions which transport energy
across wave number k;.) By using this fact, an expres-
sion for e in terms of g(k,7) and U(k,7) is readily
constructed, and the constant ¢ then may be evaluated
in terms of a definite multiple integral. This completes
the inertial-range solution. A calculation of the direct
transfer of energy from all modes <k; to all modes
> ka>>k; gives a result « e(ki/ks)? if %y, kg are both in
the range. This confirms the initial assumption of an
essentially local energy-cascade process and provides
a posteriori justification for using the inertial-range form
of solution over the entire &', £’ domain in (9.16).

The energy spectrum corresponding to (9.17) is

E(k)=2mwc(evo) ik 1. (9.18)

This expression contains the macrovelocity vy in
contradiction of Kolmogorov’s hypothesis®®® that the
inertial-range spectrum should depend only on e
The reason why Kolmogorov’s similarity hypotheses
are not supported by the present theory, despite its
prediction of the energy-cascade process central to
his reasoning, is that according to (9.15) the impulse
response and autocorrelation functions for modes in
the inertial range are determined by vo. Thus, although

# Identities (9.10) show that (9.17) solves S(,0)=0, where
S(k,0) is given by (9.8), if g(k,7) and U(k,r)/U(k,0) are any
functions of the single argument v¢kr with certain integrability
properties.

35 A. N. Kolmogorov, Doklady Akad. Nauk S.S.S.R. 30, 301
(1941); 32, 16 (1941).
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asymptotically there is no direct energy-transfer from
low wave numbers to modes in the inertial range, the
rates of transfer by triangle interactions within the
inertial range are dependent on vo. The physical
interpretation of this phenomenon and the breakdown
in the Kolmogorov theory implied thereby are discussed
in Sec. 10.

9.2 Magnetic Tuxbulence

The magnetic case may be formulated in close
analogy to the foregoing. We shall give only the results.
Let us define W (k,7) by

%PU (k)W(k;T) = (L/27r)3 <wi(k) t+ T)'Zﬂj* (k;t) >:

and let g,,(k,7) be the impulse response for magnetic
modes. Then,

(9.19)

W (k,7)+ok2W (k,7)=Q(k,7), (9.20)
U (k,7)+vE2U (k,7) =S (k,7)+R(k,7)+G (k,r), (9.21)
Gm(k,7)F kg m(Byr)=m(k,7), (720), (9.22)
§(k,m)+vk2g (k) =n(k,r)+ U(k7), (r20), (9.23)

where

© k+k' 0
Ok,7) =k f 2% f K’k f ds
0 | k—k’) 0

X[k k" )gm(k, W (K, s+1)U (K", s4-7)
—h(k kYW (&, s—7)gm (K ,$)U (K",9)
—j (R E VW (R, s—)g(K )W (K" ,5) ],

0 k+%’ ©
R(k,r) =k f Kk f E'dE" f ds
0 | k—K'| 0

XLa(kk K" )g (k)W (', s+1)W (K", s+7)
— (B F EU(k, s—7)gm(E )W (R",5)], (9.25)

w btk T
m(k,r)= —vrkf k’dk'f k"dk"f gm(k, 7—35)
0 | 0

bk’ |

(9.24)

XAk E E")gm(® )UK 5)

+ (B E g (R )W (K’ ,s)]ds, (9.26)

® [N
I(k,7)=—mk f EdE f Bk c(kE K
0

1 k—k’|
X j gk, 7—)gm(E YW (K" $)ds, (9.27)
0

and n(k,7) is the right side of (9.12). The new angular
factors are

c(k b By =2k"%5(1— %), (9.28)
d(k kB =2(1+4xyz), (9.29)
h(k R B =2k (14-2y+y%2—2%), (9.30)
F(k R B =2k (z—xy—a’s—2xy2?).  (9.31)
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S(k,7) and G(k,7) are given by the expressions pre-
viously derived.

10. DISCUSSION

The function g..(7) describes the relaxation of an
initial impulsive disturbance by the spreading of its
energy (apart from viscous dissipation) over many
modes; thus it describes the effect on the mode ¢,
of the mixing action of the motion as a whole. From
this it can be seen that the theory developed in Secs.
5-9 may be given the following qualitative characteriza-
tion: the direct interaction among small groups of
modes tends to establish mutual phase relations which
the mixing action of the total motion tends to destroy.
The exchange of energy among given modesis dependent
on these phase relations and thereby is affected by
the general mixing action, as is displayed clearly in
the asymptotic solution for the inertial range of
isotropic turbulence outlined in Sec. 9.1.

The present theory is quite inconsistent with the
widely accepted hypothesis of Kolmogorov?®® which
holds that at high Reynolds numbers modes of suffi-
ciently high %2 do not undergo significant direct
dynamical interaction with the strongly excited low-%
part of the motion, but are in a statistical state deter-
mined solely by the rate of energy-cascade. An inspec-
tion of (3.1) shows that the coefficients of the bilinear
terms giving interactions with wave numbers <&
actually are not smaller than the coefficients of terms
giving interactions with wave numbers ~%, but it
may be reasoned that the effect of the interactions
with low wave numbers should be essentially to convect
local regions of fluid bodily without significantly
disturbing their small-scale (high-%) internal dynamics.
A serious flaw in this argument would appear to be
the failure to recognize that the u(k,f) are collective
coordinates whose values are determined jointly by all
the local regions which compose the flow. It was
pointed out in Sec. 5.1 that in an extensive turbulent
flow the contributions from different regions should
interfere to produce rapid variation of phase with k.
The convection by the low-2 motion produces relative
motion of local regions which then may be expected
to give rise to rapid and complicated changes of the
phases with time. This should affect profoundly the
triple phase correlations which determine the energy-
transfer among the high k's 36

36 It may be seen from (3.1) that the action of the low-# part of
the motion on the high-£ part is to couple and induce energy-
exchange between modes of nearly equal but distinct k’s; it does
not couple modes to themselves., On the present theory of the
infinite domain, modes of arbitrarily close but distinct k’s are
but weakly dependent, and this action properly is described
as mixing rather than convection.

As a counter-consideration to Kolmogorov’s original argument
in the x-space representation, it may be noted that the fine-scale
structure of high Reynolds-number turbulence consists typically
not of compact blobs but of a complicated tangle of extended
vortex filaments and sheets.
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The empirical discrimination between the present
theory and the Kolmogorov theory will be discussed in
a future paper.®

It was noted previously that if the statistical hypo-
theses of Sec. 5 are sound, the treatment developed in
Secs. 6-9 should constitute an exact theory of stationary
turbulence in an infinite domain supported by homoge-
neous Gaussian-distributed modal driving forces.?”:#¢ No
assumption has been made or implied concerning the
size of the Reynolds number based on macrovelocity
and the macroscale fixed by the driving forces; it
could even be less than unity. Work in progress indicates
that the theory can be extended to provide an exact
description of some cases in which energy is supplied
to the turbulence by a steady shear flow rather than
by the physically unrealistic external forces invoked
in the present paper. In particular, it appears possible
to give an exact treatment of fully developed turbulence
in an infinitely long pipe. The present theory also can
be extended to decaying turbulence, to compressible
fluids, and to the mixing of a passive field by turbulence.
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APPENDIX

Consider any conservative systems q, p with equa-
tions of motion

Ga=0e(q,t), Pa=Pa(p)t) (A1)

371t is of interest to note that even if for some reason the
direct-interaction hypothesis of Sec. 5.2 should not prove strictly
valid, the infinite domain covariance and impulse-response
equations could still be exactly correct because the contributions
to the skew moments from the indirect interaction might be of
such character that they do not contribute, in the limit, to the
extended sums over modes in which the skew moments enter these
equations.

3 In general, the first-order perturbation theory cannot be
expected to give exactly correct results for turbulence confined to
a finite volume. It seems likely that it should give good accuracy
for sufficiently high-£ modes but might lead to substantial error
for low-%£ modes.
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such that
D a0Ga/30a=0, > .0P./0pa=0, (A.2)
and with energies
E,= %Zaqazy E,= %Zap e (A.3)

Consider a M-B distribution of the composite system;
the Gibbs density depends only on E,+E, and is
time-invariant. Let us introduce a conservative coupling
so that (A.1) is altered to

Ga=Qat GZﬁAaﬁ (t)Pﬁ: Do=Po— EZﬁAﬂa (t) s, (A~4)

where e is infinitesimal and A (¢) is an arbitrary function
which vanishes for :<0. Equation (A.2) is unchanged
and the Gibbs density is invariant under the perturba-
tion. Therefore,

5g (D ()= (g (DPr (D) + (2D ()=0  (A.5)

for all u and A, where 6q and dp are the perturbations
in q and p. Noting the statistical independence of
the unperturbed systems, we find from (A.4), (A.5),

Zﬂ Aas(t)[gua(t= 1) g (1— 1)

—Ing(t—V)Rue(t—1)1dt'=0, (A.6)
where gu(7), Ru..(7) are elements of the averaged
infinitesimal-impulse-response and covariance matrices
for the ¢’s and /g(7), Urs(r) for the p’s. This can
hold for arbitrary ¢, A and for all x and X only if

8ua(7)/ Rya(7) =Ing(7)/Ups(7) = const, (r20). (A.7)

Since (A.1) are first-order equations, ga(+0), %.a(+0)
=§,x. Then the solution of (A.7) is

g (1) =R (7)/R, ha(r)=Un(7)/R, (r20), (A.8)

where R is twice the mean energy/mode in the M-B
distribution and we note R (0)=0aR, Uan(0)=§aR.>

¥ For a linear system, (A.8) is anticipated by the work of
Callen and his co-workers, who use a different approach [H.B.
Callen and T. A. Welton, Phys. Rev. 83, 34 (1951); Callen,
Borasch, and Jackson, Phys. Rev. 88, 1382 (1952)]. The relation
between the correlation and response matrices associated with
small fluctuations of macroscopic thermodynamic variables from
equilibrium is examined by Callen and Greene [H. B. Callen
and R. F. Greene, Phys. Rev. 88, 1387 (1952)7].



