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Covariant Quantum Statistics of Fields*
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Relativistic formulas are derived for energy, momentum and number densities and distributions for
systems of bosons and fermions from a covariant formulation of the statistics of fields. Charge, spin, and
angular momentum statistics are discussed.

1. INTRODUCTION

COVARIANT statistical mechanics of fields,
to our knowledge, has not been developed. This

work was undertaken to formulate the Fermi-Landau
statistical theory of multiple boson production in
relativistic covariant form by using the formalism of
the fmld theory. Such a formulation brings some
promising improvements into the theory and also
provides a bridge to the more direct deld-theoretical
treatment of the problem. Since an exact treatment of
the phenomena does not exist owing to the difficulties
in meson theory, it seems worthwhile to develop the
statistical theory to its logical end and to try to find
approximation methods from there on. The present
paper, however, is devoted entirely to a convariant
field-theoretical formulation of statistical mechanics,
which in itself is of some interest. ' We derive the
covariant form of the Stefan-Boltzmann law and the
energy and angular distributions for a system of
bosons and fermions. This includes as a special case a
new derivation of the relativistic form of the blackbody
radiation. It seems that the field theory is the more
logical framework for this kind of problem rather than
the ordinary statistical mechanics. Further we discuss
spin, charge, momentum, and angular momentum
statistics by introducing corresponding "temperatures"
for these quantities. The angular momentum statistics
is of some importance in the theory of superQuidity. '

2. GENERAL THEORY

We start from a general covariant formulation of the
field theory, consisting of an invariant Lagrangian
density J. constructed from the field operators it"(x)
and of an invariant dynamical principle. The invariance
of L with respect to general transformations defines the
constants of the motion of the system. These constants
(charge, energy-momentum, total angular momentum,
number of heavy particles, strangeness, etc.) determine
the statistical behavior of the system in equilibrium,
for a system with no constants of the motion cannot
reach any sort of equilibrium. In general there will be
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an equilibrium state associated with each constant of
the motion.

The general form of the Boltzmann factor in the
presence of many constants of the motion has been
already given by Bergmann. ' The meaning of the equi-
librium in the relativistic case and the conditions under
which a relativistic system reaches equilibrium are by
no means obvious. These conditions are discussed in
Appendix I. The density operator of a system of 6elds
corresponding to the aforementioned constants is taken
to be (Appendix I)

p= exp(aQ P;P&'+X;,J"—+. ), (i,j=0,1,2,3), (1)

where Q is the operator of the total charge, P& is that of'
the energy-momentum four-vector, J'& is that of the
total angular momentum tensor, etc ot, P;., X;;, are
constant c numbers. p is constant in time and invariant
under Lorentz transformations. The partition function
of the system of fields is

Z= Trp=g, (v( p) v), (2)

where f ~ v)) is any complete orthonormal basis of the
underlying Hilbert space. The probability of any
situation corresponding to eigenvalues u' of a set of
operators A is (a'~p~a')/Z and the expectation value
of the set A is given by A= Tr(Ap)/Z. In particular,
the expectation values of the constants of the motion
in equilibrium are

8
Q=—lnZ Pi =—

c&

8
lnZ, J"= —lnZ, (3)

H;,

LQ P'7= LQ ~"7=0

t
Pi Ps7=0

(4)

(3)

[Pi Jjk7 —e(gitPk gikPi') (6)

[Jij Jk ts7 —e (g gkJim+ gr mjkc+g
ctaJkj+g

ikJjm) (7)

(g;k. 1, —1, —1, —1).
3 P. G. Bergmann, Phys. Rev. 84, 1026 (1951).

Equation (1) is valid for arbitrary interacting fields
since the constancy of Q, Ps, J't follow from very
general requirements like gauge invariance, Lorentz
invariance, etc. These constants of the motion satisfy
the following commutation relations:
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Therefore we can always disentangle Q from the
exponent in Eq. (1), but in general it is not possible to
disentangle other operators from the exponent. In this
case one has to use one of the expansion forms of
exp(A+B). J'&' is composed of a spin and an orbital
part: J;;=7 "b"+J '&'" If the average value of' the
orbital angular momentum is zero, we need only to
take in Eq. (1) the spin angular momentum which
commutes with P. From Eqs. (6) and (7) it follows
that in a reference system in which the total system
is at rest, I"commutes with the total angular momen-
tum. These are the cases which can be treated without
invoking the commutation relations.

To evaluate Z in Eq. (2) it is convenient to choose
as basis the eigenvectors of Q, P', and spin for free
fields which are states with definite numbers of bure

particles having definite momentum and spin. In the
case of interacting fields the eigenvalues of Q are again
integral multiples of e and that of the total angular
momentum are integral or half-integral numbers. In
particular, if the interaction Lagrangian density L'
is invariant under the gauge transformation, Q is
identical with the charge operator of free 6elds. How-
ever, the eigenstates of P are no longer states with
de6nite numbers of bare particles. If the constants of
the motion of interacting fields are connected by a
unitary transformation to those of free 6elds—and
this is usually the case in scattering situations, i.e.,
no bound state formation —then the partition function
of interacting fields is the same as that of the corre-
sponding noninteracting fields, since Trp in Eq. (2) is
invariant under unitary transformations. The contribu-
tions of all graphs in a perturbation expansion cancel
out. As long as there are no bound states, the statistical
properties of interacting fields are independent of the
interaction and are the same as those of free fields. We
can see this result also in another way. When one intro-
duces the eigenstates of I'" which are states of definite
"clothed" particles of various kinds, the eigenvalues of
E' are the sums of the energy-momentum vectors of the
various particles in those states, and these sums are
constants (while the individual p' are no longer con-
stants). By the adiabatic hypothesis the sum is equal
to the total momentum of the free fields, so that Eq. (2)
gives in the normalized basis of "clothed" particles the
same result as in the basis of bare particles. This fact
may be the main reason for the success of the Fermi-
Landau statistical theory of multiple meson production
mentioned in the Introduction. In this paper we shall
not consider bound state problems of interacting fields.

3. ENERGY-MOMENTUM STATISTICS

Let us consider 6rst the case where the average value
of the total angular momentum is equal to zero, i.e.,
),;=0.If there is only one kind of charge present, then
charge statistics is equivalent to the use of grand
canonica1 ensembles, a being then related to the

then the above-mentioned states are

where ~0) is the vacuum state. If one quantizes with
commutators, the n's can have all possible integral
non-negative values, whereas the quantization with
anticommutators gives

so that in this case e can have only the values 0 and 1.
Equation (2) becomes —we write the equation first
for particles of the same charg= ——

exp(n p n,' p; p —n„'k&'»)
'g J1 ~ ~ 0 'mrs ~ ~ ~ e, r e, r

&& ((n,'k&"'}
~
(n,'k&"'}). (11)

We normalize the states in Eq. (12) by taking a
finite volume V as seen from a given frame of reference.
In the following, V stands for J'd'x taken over an
invariant 6nite part of a space-like surface. Thus
(1/ V) lnZ is the true Lorentz-covariant quantity,
not lnZ itself. Then

—lnZ= P lnZ, '=—P ln P expfn„'(n P;k&"~')—j
V 8, r e, r n e

=P ln(1+exp(n —P.k&"»)1+' (12)
8, r

The r summation can be converted into an integral
and the s summation gives a factor S if there are S
kinds of particles, and one gets 6nally

—lnZ= (2x) '8 dk 1nL1&exp(n —P k') j+'

xb(ko —(k'+nP) &1) (13)

where the upper sign is for Fermi particles and the
lower sign is for Bose particles. The 8 function means an

thermodynamical potential. The same is true for
strangeness and, in the case of heavy particles, for
hyperon charge. For light fermions or bosons of diGerent
charge, only the difference of the numbers of positive
and negative particles will be constant.

We denote the eigenstates in Eq. (2) by ~
(n, 'k&"'}),

representing states with n„' particles of kind s (spin,
charge, ~ ) and of four-momentum k&"', for all values
of s and r. This designation is covariant since in the case
of free fields the field variables P'(x) can be separated
in covariant form into positive- and negative-frequency
parts:

P(x) =P&+~'+P& &'= (2z.) 4 "dke '"*
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Sx'
'Eo uT——4= (kT) 4.

ash'c'
(23)(wq)"

ln(1mq) =—P

integration over positive energies. To evaluate the where E0 is the energy density in the rest frame of
last equation we expand the logarithm: reference,

This expansion is valid for

42—P,k'& 1. (14)

Xexp{ng.k —Po(k'+m') 'j}.
Let E= fkf, P= fg f, then

- (~1)-—»Z= W (22r)-35 P e","dE E'
V n=1 g

XexpfnPE cos8—npo(k'+m') &1

Xsin8d8d 32 (15)
(~1)a—~(22r)—225 p ena

'

dE E2
n1 gg 4

Then Eq. (13) becomes, after the kp integration has
been carried out,

(w1)"—lnZ=W(22r) 'S dk g e"~
V e

Equation (22) agrees with the known form of relativ-
istic blackbody energy density found by invariance
considerations. 4

The condition (14) means that Ppko)PE which is
always satisfied.

(b) mWO, total charge =Ne
Equation (16) can be written (when one uses the

expansion of sinhx/x) as

1 25 (+1)" (nP)"—lnZ=% Q e""g m2l+3

(22r) n l=n l=o (2)+1) !

XB2i(npom), (24)
where

B23(s)=
~

dt t"¹expL —s(t +1)&j.
0

It is shown in Appendix II that B2~(z) can be ex-
pressed in terms of SchlafH's Ressel functions E„(s)and
their derivatives as

sinh (nPE)
Xexpf —npp(E'+m2) «$ (16) (~l

B»(s)= Z (—1)'f IBo"' '"'(s)
Ep

(26)

(a) m=0 (yhotons, neutrinos)

The integral in (16) in this case can be easily evaluated
and we get, with n=0 (total charge is zero),

1 2 Po ~ 1 2 Po—lnZ= — P —=—t (4), (17)
p ~2(P2 P2)2~ 2n4 ~2 (P2 P2)2

where we have introduced Riemann's f functions.
The average energy density E, the momentum density
P, and the number of photons are given by

where
Bp(s) =E2(s)/s. (27)

If P is zero, i.e., in a rest frame of reference, Eq. (24)
simplifies:

1 2S (%1)" E2(npom)—lnZ=W — P e" m' ~ (28)
V (22r)2 o=& n nppm

Energy-momentum and particle number densities are
given then from (24):

P'+3Po2
E= !(4—),

~2 3(P 2 P2)3

8
i-(4),

~2 o2—2 3

00 (nP)"
(18) N —~25(22r) —2 g (~1)nena Q m2l+3

+~1 ~=o (21+1)!
XB2i(nP pm), (29)

(19)
00

Po
N = !.(3). —

~2 (P 2 P2)2
(20)

P=&25(22r) ' Q (w1)" p n"P"
n i~ (21+1)!

Xm"+3B2i(npom), (30)

I et us consider, as a special case, a system of reference
moving with a relative velocity v in the x& direction;
then

00 - (.P)"
E=+25(22r) ' p (Wi)"e"Ip pg2l+4

n-1 (2t+ 1) !
PIPp= p/c

3+ (o/c)'
E=E0

3(1—"/c')

and Eq. (18) becomes
(21)

(22)

XB2i'(npom). (31)
M. v. Laue, Relativitatstheorie (Friedrich Vieweg und Sohn,

Braunschweig, 1952), Vol. i, p. 178; R. C. Tolman, Relativity,
Thermodynamics, and Cosmology (Clarendon Press, Oxford,
1946), p. 161.
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(nPp cos8)'
N(8)=MS(2pr) ' P (~1)"e" P tn'+3

L=On=1

At this point we can also give the energy and angular
distributions of the particles, which are deined by
J'E(K)dK=E and J'N(8) sin8d8drp=N, respectively.
From (15), or

where

Z=Z+Z Z',

lnZ= lnZ++lnZ +lnZ

(39)

eigenvalues of P are again P,, „(n,'++n„' +n, "}kI"&.
In this case, Z in Eq. (12) splits up into three parts:

&&g, (npom) (32) lnZ+= lnZ(n), lnZ = lnZ( —n), lnZ'= lnZ(0), (40)
where

(»()= Z (—1)"l l~ "'-'"'(),
o Ev

(33)
and lnZ(a) is given by Eq. '(13) or (16) or (24). Hence
the total charge, momentum, and energy densities are
given by

with
8

Q =e—[1nZ(n)+lnZ( —n)]=e[N(n) —N( —n)], (41)
Bol

Bi(s)= 2e-*(s-'+3s-'+3s-').

(See Appendix II.)
If p is zero, the angular distribution is isotropic

(in the present case in which the total angular momen- P= ——1n[Z(n)Z( —a)Z(0)]
turn of the system has been assumed to be zero). The
angular distribution for m =0 becomes

00 ~n~

Np(8)-WS(2ir) —' P (W1)" (33)
n' (Pp —P cos8)'

The energy distribution in terms of the momentum
four-vector K= ~k~, ko'=K'+m', is, from (16),

E(K)=~S(2pr)-' P (~1) e eKe(KP'+ m)I

n=1

sinh (nPK)
gexp[npp(K +m )I] (36)

In the very special case of photons (S=2, bosons,
i.e., lower sign, u=0, m=0), Eq. (36) reduces to
Planck's law:

or

since

K' exp( —PpK)
E(K)dK= dE

m' 1—exp( —PpK)

exp( —2m v/kT)
F(v)dv = 8~v' 2m'vd v,

1—exp (—27rv/k T)

(37)

E=ko= 2% v (h= c= 1).

Qg 00 (np)2&
C„= =AS(27r) ' Q (%1)"e"~nQ

BT n=l &=o (2I+1)!
8&"(nm/kT)

Xm"+ (38)kl'

4. CHARGE STATISTICS

For a system of three types of charges with the
numbers m„'+, e„', and e„", the eigenvalues of the
total charge Q are P,, „(n,'+—n„), whereas the

From Eq. (31) we can also calculate the specific
heat in the general relativistic form:

E= —
1n[Z (i&,)Z( —n)Z(0)]

Bpp
=E(n)+E(—n)+E(0), (43)

where N(n), P(o,), and E(n) are given by Eqs. (29),
(30), and (31).

In problems like the multiple production of mesons
mentioned in Sec. 1, one is interested in the number E
as a function of energy and momentum. This is obtained
by eliminating n, P, and Pp among the three equations
(29), (30), (31) or (41), (42), (43). It is seen that this
number is markedly diferent depending on whether
one uses the simple statistics or the charge statistics.

The same type of analysis can be made for a mixture
of fermion and boson systems. Here again one finds
Z=Z"Z"" and Q, P, and E are additive in fermion
and boson expressions, E=Efe™+E"",etc.

S. SPIN AND ANGULAR MOMENTUM STATISTICS

We now consider the situation when the total
angular momentum of the system is not zero. The
system may be spin-polarized or have an angular
momentum in some direction, say due to a primary
collision. It is perhaps not very dificult, for instance,
to produce a polarized blackbody radiation with pho-
tons or electrons.

We consider the cases where the J'& commute with
P' and among themselves (see Sec. 2). Then we will

have, instead of Eq. (12),

exp(n p n,'—p, Q n„'k&'»')
nI' ~ ~ ~ n&" ~ ~ ~

)& ({n,'k'"&}
~
exp(Ii, ;J' ) ~

{n„'ki'&}). (44)

To evaluate the matrix elements in this equation, we
expand P' &(x) in the expression

b& '(k&') = ~dx exp(ik'"&x)P& '(x)
J
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into a set of eigenfunctions of J'&:

Hence

$&
—&'(P&"&) ~0)=P g ~

—&'~P)dg exp(jP&"&g)P' (g)

where the a„& '~0) are eigenvectors of J'&', and the
I'„(k&"&)are Fourier transforms of the spherical harmonics
for orbital angular momentum alone. The corresponding
eigenvalues p;, take integral values in the case of
orbital angular momentum, and the values W-,' for a
spinor field. The matrix elements in question are then
of the following form:

P;;Q„F„"(k&"&)exp(&;J&i; ). (45)
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the ensemble in pairs or in triples, etc., without changing
the statistical character of it. Thus, if we group the
systems in the ensemble in pairs, we get

p =e'o= exp(n, C~), (I,2)

which reduces to Eq. (1) for the case considered.
These two conditions characterize the ensembles

studied here. The actual mechanism of how a system
reaches the equilibrium defined by Eq. (1) is another
question which will probably be different from the
usual nonrelativistic approach to equilibrium.

APPENDIX II

We want to evaluate the functions

i.e., the same function p but now of argument C"&+C"&
describes the newly obtained ensemble. Since p and
C are Hermitian, the unique solution of the operator
functional equation (I,1) is (generalizing the c-number
result)

APPENDIX I
Bi(s)= dt t'+' expL —z(t'+1)&]. (II,1)It is of interest to state the conditions under which

the density matrix p is given by Eq. (1).Let us denote
the constants of the motion of the system collectively
by C and consider a Gibbsian ensemble. Perhaps the
simplest set of postulates are the following:

1. The density matrix of a system in equilibrium is
equivalent to a distribution over the Gibbsian ensemble
of identical, statistically independent systems.

2. The density matrix p depends only on the set of
Hermitian operators C. Since the quantities C for
arbitrary subsets of the ensemble are additive, the
essential idea is that one can also group the members of

80 and 8& are known integrals and are given in Eqs.
(27) and (34). For odd t the functions can be reduced
to elementary functions. For / even but not zero, the
integral (II,1) does not seem to be manageable directly.
By di8erentiating B&(s) twice under the integral, we
obtain the following recursion relation:

Bi"(s) =Bi(s)+Bi+.(s)

Since Bo(s) is known, we get then the results quoted
in the text, Eqs. (26) and (33).


