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direction using the 180-Mev bremsstrahlung. Back-
grounds due to cosmic rays varied from about 259, at
6=0° to about 29, at §=90°. Other backgrounds,
mostly due to accidental coincidences, were determined
by measurements below counting threshold at 150 Mev.
At 6=90° these backgrounds were about 25%,. At all
other angles they were 109, or less. Several runs were
taken at each angle. An attempt was made to alternate
the runs on each side of §=45° to reduce systematic
errors. These data have been corrected for the expected
geometrical asymmetry discussed above.

The angular distribution of Fig. 4 indicates no marked
asymmetry. A least squares fit of the form f(6)
=1+-a cos’d gives a value of ¢=0.02540.090.

E. LEISS AND R. A.

SCHRACK

CONCLUSIONS

The results of this experiment do not demonstrate
that the spin of the #% meson is zero. What they do show
is that if the spin of the #° should be nonzero, there is no
large amount of polarization or alignment of the photo-
produced #%s from carbon.
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As a consequence of our inability to observe directly the origin
of a cosmic-ray particle, we begin the development with a discus-
sion of the limitations within which we can construct a cosmic-ray
accelerator mechanism. We find that we are allowed only the
betatron effect and the Fermi mechanism. We review some of the
many variations of these mechanisms which are to be found in
the literature. Then it is shown that trains of oppositely moving
hydromagnetic waves of large amplitude and with sharp crests
can accomplish large and continued particle accelerations which
are adequate to maintain the observed galactic cosmic-ray field.
The large acceleration arises as a consequence of the simple fact
that each wave tends to sweep up the cosmic-ray particles before
it, so that head-on collisions of particles with waves are much
more common than overtaking collisions. It is pointed out that
the sharp crests of the waves are a natural consequence of the
observed supersonic mass motions. Therefore, the acceleration
by oppositely moving waves does not depend upon any special
wave form, and we suggest that it is the naturally occuring
acceleration process.

1. INTRODUCTION

ITH the large number of astrophysical and
geophysical phenomena now attributed to
high-speed charged particles, there has been increasing
interest in speculations of how electrons and ions might
be accelerated up out of the range of thermal velocities
by naturally occurring processes: Beginning with
thermal velocities one would like to know how protons
might be accelerated to 10°—10* km/sec to produce
the aurorae!; how protons or electrons might achieve

* Assisted in part by the Office of Scientific Research and the
Geophysics Research Directorate, Air Force Cambridge Research
Center, Air Research and Development Command, U. S. Air
Force.

! J. W. Chamberlain and A. B. Meinel, in The Earth as a Planet,
edited by G. P. Kuiper (The University of Chicago Press,
Chicago, 1954).

By treating the cosmic rays as a gas with relativistic thermal
motions, it is shown that the cosmic-ray gas is effectively coupled
to the motions of the ordinary matter both parallel and perpendic-
ular to the magnetic field. Thus the effective speed of sound must
be computed in the composite cosmic-ray and ordinary gas.
It is noted that with this composite speed of sound the irregular
mass motions in the galactic disk and halo are approximately
Mach one. It is suggested that this represents a general dynamic
balance to be found in all sufficiently active regions of space,
and explains how it is that we often observe prolonged mass
motions in the galaxy and in stellar atmospheres which would
otherwise be computed to be highly supersonic and dissipative.
The dynamic balance comes about from the fact that increased
cosmic-ray density would reduce the effective Mach number
below one, allowing the sharp crests of the hydromagnetic waves
to degenerate, and thereby halting the production of comsic-ray
particles.

10% km/sec to produce some of the solar radio bursts?;
how electrons might achieve relativistic velocities to
produce the radio stars as a consequence of their
synchrotron radiation®=%; how nuclei might achieve
relativistic velocities to become cosmic-ray particles.
Acceleration of electrons and nuclei from thermal

2 Wildt, Roberts, and Murray, Nature 173, 532 (1954).

3H. Alfvén and N. Herlofson, Phys. Rev. 78, 616 (1950);
K. O. Kiepenheuer, Phys. Rev. 79, 738 (1950).

41. S. Shklovsky, Doklady Akad. Nauk U.S.S.R. 90, 983 (1953);
M. A. Vashakidze, Abastumani Astr. Circ. No. 147, 11 (1954);
V. A. Dombrosvsky, Doklady Akad. Nauk U.S.S.R. 94, 1021
(1954); J. H. Oort and J. H. Walraven, Bull. Astron. Soc. Nether-
lands No. 462 (1956); J. E. Baldwin, Nature 174, 320 (1954).

5 A. Unsold, Phys. Rev. 82, 357 (1951); V. L. Ginsburg,
Doklady Akad. Nauk U.S.S.R. 76, 377 (1951); I. S. Shklovsky,
International Conference on Nuclear Astrophysics, Liege, 1953
(unpublished) ; Philip Morrison, Revs. Modern Phys. 29, 235
(1957).



ORIGIN AND DYNAMICS OF COSMIC RAYS

velocities apparently occurs in regions as dense as the
solar chromosphere,® as active as supernovae®® and
as large-scale and cool as the interstellar medium.?
Presumably, therefore, the process, or processes, of
acceleration are not at all a freak occurrence, but must
arise from some naturally and not uncommonly
occurring dynamical condition.

Many interesting speculations have been proposed
to account for the particle acceleration required to
explain the aurorae, solar radio bursts, etc. Unfor-
tunately the actual acceleration processes are not
subject to direct observational scrutiny, nor, of course,
is it possible to treat the physical situations, in which
acceleration occurs, by rigorous mathematical methods
in order to deduce what must occur according to our
knowledge of the basic dynamical properties of matter.
Thus, the only approach open is to attempt to write
down all possible acceleration mechanisms and decide
as best we can which is most likely in light of what
we can observe. Hence, the questions at the present
time are simply the following:

(a) Which of the acceleration mechanisms that have
already been proposed might be expected actually to
occur in the physical world? (b) What other acceleration
processes might occur within the limitations set down
by our contemporary astrophysical knowledge? (c)
Which, if any, of the allowed acceleration processes
can account for the necessary high speed particles in
the various special cases?

We shall, therefore, begin our discussion of the origin
of cosmic rays, and of the origin of suprathermal
particles in general, by inquiring into the electro-
magnetic fields theoretically available within the
limitations imposed by our present astrophysical
knowledge. Obviously the results of such an inquiry
suffer at least the same limitations as our present
conception of the astrophysical universe.

Then, within the limitations imposed upon the
electromagnetic fields, we shall demonstrate what
particle acceleration mechanisms are available. In this
manner we hope best to answer questions (a) and (b).
We will find that many familiar speculations are
eliminated, but that there exists a continuous-field
version of Fermi’s mechanism, presumably commonly
occurring in nature, which apparently fulfills the accele-
ration requirements in most cases, in answer to (c).

But this constitutes only one part of the problem.
For the cosmic-ray energy density is not at all negligible,
being comparable to the magnetic and turbulence
energy densities throughout the galaxy. Thus the
remainder of the paper will be devoted to the mutual
interaction of the cosmic-ray particles with the electro-
magnetic and velocity fields throughout the galaxy.
We will find that the cosmic rays apparently play an
important role in determining the general character

8 E. N. Parker, Phys. Rev. 107, 803, 926 (1957).

7E. Fermi, Phys. Rev. 75, 1169 (1949); Astrophys. J. 119, 1
(1954).
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of the mass motions in the galaxy and its halo, and
perhaps in some stellar atmospheres; in the presence of
cosmic rays we find that otherwise immensely supersonic
mass motions are possible without excessive dissipation.

II. ELECTROMAGNETIC FIELDS
A. Weak Magnetic Fields

In the presence of magnetic fields sufficiently weak
that the cyclotron frequency of a free electron is
small compared to its collision frequency, the current
density i is related to the electric field E’ in the frame
of reference moving with the matter by the simple
scalar form of Ohm’s law,

i=oF. (1)

E’ is related to the electric and magnetic fields E and
B in the fixed frame of reference by the usual Lorentz
transformation

E'=E+ (V/;)XB )

for material velocities, v, small compared to the speed
of light. The conductivity ¢ of a gas at absolute temper-
ature T may be computed from Cowling’s approximate
numerical expression®

o==1.8X107T%/Z esu, 3)
where Z represents the mean charge on each ion.

¥ Using (1) and (2) to express i in terms of E and B,
Maxwell’s equations,

4ri+9E/di=~+cVXB, 4)
oB/dt=—cVXE, (5)
may be rewritten
IE/dt+4ncE=1(0), (6)
where
1(1)=cVXB—4mo(v/c)XB. ) @)

We may integrate (6) to obtain the formal result
t
E()= f drk(n) explara(r—0)].  (8)

As has been pointed out by Schliiter,? using Cowling’s
formulas,® the electrical conductivity ¢ ranges from
10" esu in the cool Hy regions of interstellar space, to
10® or more in a stellar atmosphere, to 10'® in a stellar
interior. Thus, it is readily seen that o, which has the
dimensions of a characteristic frequency, is large
compared to any of the observed characteristic fre-
quencies of macroscopic mass motions.’® Expanding
f(7) about 7=¢ we obtain from (8) a series in ascending

8T. G. Cowling, in The Sun, edited by G. P. Kuiper (Uni-
versity of Chicago Press, Chicago, 1953).

9 A. Schliiter, Z. Naturforsch. 5a, 72 (1950).

10 The only exception to this might be plasma oscillations.
However, since plasma oscillations are believed to be caused by
(and therefore cannot be a major source of) high-velocity particles,
we exclude them from our discussion.
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powers of 1/q,

E () =[1(t)/4ne (14 (3f/0) (1/4maf)+- - - 7.
Then

E()=—(v/c) X B+ (¢/4ma)[VX B
—¢2(3/08) (vX B) 40 (1/0).

As already mentioned, the term (1/4wo)(8/3t) (vXB)
is observed to be always extremely small compared to
vX B because ¢ > 10" sec™!; it represents the displace-
ment current, which is negligible! in all observable
astrophysical cases.’?

The quantity (¢®/4wo)VXB is small compared to
vX B except when the material motions are so sluggish
that v=20. Therefore, we write just

E@®)=—(v/9)XB[1+0(1/®)],

where ® is the magnetic Reynolds number, defined by
Elsasser'? as

®R=Lvo/c,

and representing the ratio of the magnitude vXB to
that of (¢%/4wo)VXB. L is the scale of the material
motions. ® is observed to be immensely large: In an
interstellar Hy region where L2210 parsecs and v=10
km/sec we have ®=3X10'; in the solar photosphere
where the smallest observable scale is L=100 km and
=1 km/sec, we have ¢==210® sec! and ®R=10%
Therefore, we shall put

E=—(v/c)XB, ©)

neglecting all terms of O(1/®).

Equation (9) is the basic field relation in a conducting
gas. Inserting it into (5) yields the familiar hydro-
magnetic equation,

dB/9t=VX (vXB). (10)

Including the Lorentz force (i/c)X B exerted by the
magnetic field on the fluid, and using (4) without the
negligible displacement current term dE/0¢, we readily
obtain the equation of motion for the gas as

pdv/di=—Vp+(1/4) (VX B)XB.  (11)

B. Strong Magnetic Fields

In the presence of a magnetic field sufficiently strong
that the cyclotron frequency of a free electron is large
compared to its collision frequency, one is not justified
in writing down (1) because, as is well known, an

“electric field E impressed perpendicular to a magnetic
field B produces only a general drift u, where

u=cEXB/B? (12)

117t may also be shown that the acceleration time of the con-
duction electrons is negligible ; thus we ignore plasma oscillations.
12 W. M. Elsasser, Phys. Rev. 95, 1 (1954).
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for all free particles regardless of the sign of their
charge. Thus no net current results from an externally
impressed field E; only a mass motion u follows.
However, if we form the vector product of (12) with
B, we find that ’

E=—(u/c)XB, 13)

which is of exactly the same form as (9) ; if the magnetic
field is of large scale compared to the radius of gyration
of the thermal motions of the ions and electrons, then
v=u and (13) is identical with (9). The general
macroscopic dynamical equations assume a form similar
to (10) and (11), and have been discussed at length in
the literature.®-1*-15

We see that in either extreme of a strong or a weak
magnetic field, E and B are mutually perpendicular
and |E|/| B]| is of the order of the macroscopic material
velocity divided by c.

III. MOTION OF A CHARGED PARTICLE
A. Equations of Motion

Now consider the motion of a particle of mass m,
charge ¢, and velocity w in electromagnetic fields
restricted by (9) or (13). We shall limit ourselves to
the nonrelativistic equations of motion,

dw/di= (g/m)[E+(w/c) X B],

because it is the initial acceleration of particles at
nonrelativistic thermal velocities that is basic to our
problem of producing high-speed particles, and, what is
more, it is at the lowest particle velocities that the
losses to the surrounding medium by Coulomb
interaction are greatest and acceleration most difficult;
we shall regard our nonrelativistic discussion as
fundamental.

If E is related to B as in (9), then (14) may be
written

(14)

dw/dt= (¢/m)[ (w—v)/c]XB.

Forming the scalar product with w we find that the
rate of energy gain is

(@/dt) Gmw?)=—qw- (vXB)/c
=+qv-[(w/c)XB].

We see from (15) that the particle energy may be
increased only by the work which the macroscopic
motions v do against the Lorentz force ¢(w/c)XB
exerted on the particle by B. Hence, whatever accelerat-
ing mechanisms may be possible, they must all reduce
to the same basic process of v working against the
Lorentz force.

(15)

181, Spitzer, Astrophys. J. 116, 299 (1952).

14 Chew, Goldberger, and Low, Proc. Roy. Soc. (London)
236, 112 (1956).

15 K. M. Watson, Phys. Rev. 102, 12 (1956); K. A. Brueckner
and K. M. Watson, Phys. Rev. 102, 19 (1956).
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B. Large-Scale Fields

When the scale L of the magnetic field is large
compared to the radius of curvature R of the particle
trajectory, and when the characteristic period of the
field variations is large compared to the cyclotron period
27 /Q of the particle, one may integrate the equations
of motion (14) for arbitrary E and B by expanding the
coordinates xi(f) of the particle into a sum

H(l)= 3 %i(0),

n=0

(16)

where x,i(¢#) represents terms with a frequency of »
times the cyclotron frequency. We use a local moving
coordinate system with the 2=3 axis directed along
B and the origin at the instantaneous center of the
circular cyclotron motion [represented by x::(f)] of
the particle; we neglect all terms of O?*(R/L). The
coordinates x,i(f) are of the form

%ni () = aai(f) ::[n f_ ; dm(f)],

and n=0,1,2, ---.

The variables are readily separated and the integra-
tion carried out using the WKB approximation.!®
After considerable elementary manipulation one obtains
‘the familiar result that the particle velocity component
w, perpendicular to the magnetic field varies as the
square root of the field density; the velocity component
w, along the field at time ¢ is related to the initial

velocity according to

w,2(0) pt 9B(7) R
0, () =w,(0)— f dr - O(w——). (18)

2B(0)/, ik L
The component w,, proportional to B¥(¢), represents the
betatron effect; (18) represents the repulsion of a
particle along the lines of force away from regions of
dense field, and, when the dense region is moving,
introduces the energy gain by Fermi’s mechanism. The
terms O(wR/L) in (18), which we have omitted, are of
considerable length and of no particular interest;
similar terms appear in the complete expression for w,.
We see, then, that when the magnetic field is slowly
varying in both space and time we have only the
familiar betatron effect and Fermi’s mechanism. In
particular we see that there are no trochoidal orbits

leading to large accelerations, as has been speculated
by Alfvén.'

(17)

C. Abruptly Varying Fields

We wonder if something new might appear if we
consider abruptly varying fields. In order to have a
field which is of large-scale but varying abruptly with
time as compared to the cyclotron frequency of the

16 E. N. Parker (unpublished).
17 H. Alfvén, Tellus 6, 232 (1954) ; Phys. Rev. 94, 1082 (1954).
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particle, we must have L>>R and v/L>>Q, where v is
the material velocity, @ the cyclotron frequency, R
the radius of gyration, and R=w,/Q. It follows im-
mediately that » must be large as compared to w.
This is obviously not an interesting case because only
one collision with a moving magnetic inhomogeneity
will make w at least comparable to » by Fermi’s
mechanism.

We consider the case where the field varies abruptly
with position, so that L&KR. Then the variations of the
magnetic field may be treated as discontinuities,
across which the particle trajectory is continuous. It
is readily shown from the hydromagnetic equations (10)
and (11) that such discontinuities form hydromagnetic
waves with longitudinal and/or transverse material
motions.

We have traced the trajectory of a charged particle
with velocity w through a number of hydromagnetic
waves with sharp fronts.!® The procedure is laborious
but elementary. A particle in front of an infinite plane
shock wave which is moving perpendicular to an
initially uniform magnetic field will be engulfed by
the wave after several circular passages into and out
of the wave front. The ratio of the final particle velocity
(perpendicular to B), following engulfing by the wave,
to the initial velocity perpendicular to B is equal to
the square root of ratio of the field behind the wave
front to the field ahead; hence the final result is w,/B?
=constant, as in slowly varying fields.

A shock wave moving perpendicular to B, but with
a cylindrical front with axis parallel to B, leads to
the same result as a plane front. And again we find the
same result when a particle is trapped between two
approaching transverse hydromagnetic waves of very
large amplitude propagating along a uniform field.

D. Conclusion

We have not considered all possible hydromagnetic
wave forms, nor have we considered the intermediate
case where the variations of the field are comparable
in rate to the circular cyclotron motion of the particle.
However, we suspect, on the basis of what calculations
we have made, that we probably cannot avoid the
relation

w,?/B=constant 19)

in any essential way. It is apparently rather more
general than just being the adiabatic invariant in
slowly varying fields. We suggest that (19) is intimately
related to the fact that the particle energy is increased
only when the material velocity v works against the
Lorentz force g(w/c)XB, as shown in (15), though
we have been unsuccessful in demonstrating with what
generality (19) follows directly from (15).

It seems to follow from the calculations discussed
in this section that the betatron effect and the Fermi

18 . N. Parker (unpublished).
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mechanism cover all the possibilities contained in (15),
and that the two mechanisms are in fact the same
process with different geometry. Hence, our study of the
acceleration of particles in the astrophysical universe is
limited to these two processes. Since other devices
for the acceleration. of particles have been proposed
in the literature, we shall discuss in the next section
how they violate the conditions apparently obtaining
throughout our galaxy.

IV. EXCLUDED MECHANISMS
A. Betatron Effect

Riddiford and Butler®® have computed from the
relativistic equations of motion the acceleration of a
proton, etc., in a field growing linearly with time,

B=u, (20)

from zero to several thousand gauss, as one might
suppose a sunspot field to do. They find that a proton
starting at rest may easily achieve 1000 Bev by the
time the sunspot reaches maturity.

In a perfect vaccuum, in which ¢=0, their results
are entirely correct. However, if we take into account
the fact that =10 esu in a sunspot, resulting in (9),
we find that (20) cannot possibly obtain in the
neighborhood of {=0. To understand in detail how their
result arises, and why (20) is not a possible field density
in the vicinity of {=0, consider the electric field at a
distance »=10* km from the axis of a hypothetical spot
wherein B grows linearly from zero to 3000 gauss in
105 seconds (about 30 hours). Then a=3X10"? gauss/
sec and E=2%ar/c=0.15 volt/cm. We see that E does
not vanish when /=0 but is uniform for :>0. E>B
until £=0.016 sec, and in that time a proton will fall
more or less freely down E a distance s, according to
s=%(qE/m)#=2200 km. By the time E=2DB, then, the
proton will have a kinetic energy of the order of
3 Mev. After about 0.06 sec (1/B)(dB/dt) will be
smaller than the cyclotron frequency € and (19)
becomes applicable. B=~2X10~% gauss when ¢=0.06 sec
and will increase by a factor of 1.5X10° before t=10°
sec. We see, then, that it is the first moments of B=at
that are so important to achieving the immense final
particle energies; 3 Mev is reached in 0.016 sec.

But if v is more or less uniform in time, we see from
(10) that at least in the first moments B must grow
exponentially, rather than linearly; in view of (9),
E cannot be as large as B, let alone much greater
(when £<0.016 sec). Or, to state the matter differently,
the conductivity ¢=210% esu will not tolerate a pure
electric field of 0.15 volt/cm over a scale of (10* km)?2.

We suggest that a more realistic calculation of the
betatron effect in a sunspot is to apply (19) to a field
which grows from one, not zero, gauss to 3000 gauss in
10® seconds. Then a particle which initially has 1 ev

11, Riddiford and S. T. Butler, Phil. Mag. 43, 447 (1952).
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in the form of thermal energy will achieve only 3 kev
after 10° sec. And if we take into account the ionization
losses, the particle will not succeed in surpassing even
a few electron volts.

The betatron effect, being reversible, is difficult to
use by itself in a sequence of accelerations. We suggest
that with the apparent astrophysical values of o,
it is not of great interest by itself. We shall discuss it
further only insofar as it cooperates with acceleration
parallel to B in Fermi’s mechanism.

B. Magnetic Beams and Galactic Rotation

It has been suggested® that the electric field in the
fixed frame of reference arising according to (9) when
a magnetic field B is carried by a more or less uniform
velocity v, will accelerate cosmic ray particles: A cloud
or beam of material from the sun of width 10 c¢m
[0.15 astronomical unit (a.u.)] carrying 103 gauss
with a velocity of 2000 km/sec yields a potential
difference between its faces amounting to about
2X10° volts; the rotation of the galaxy, for which
L=210* parsecs, v=200 km/sec, and B=10"5 gauss,
yields 210" volts. As was pointed out by Swann,?+%
the error in such speculations is immediately obvious
when we note that, if we transform to the coordinate
system in which v=0, then E vanishes and there is
no acceleration. The existence of trochoidal orbits,
as speculated by Alfvén,'” in no way alters the situation.
The only acceleration that takes place is by Fermi’s
mechanism, in the jolt the particle receives as it passes
into or out of a moving beam.

V. FERMI MECHANISM
A. Isolated Moving Inhomogeneities

In the original version of Fermi’s mechanism,’
wherein the cosmic-ray particles were in a space filled
with separate and independently moving clumps of
magnetic field, the mean fractional energy gain per
collision of a relativistic particle with a moving clump
of field, was

AW /W =0/c); (21)

W represents the total particle energy, AW is the mean
energy gain in one collision, and v is the random
velocity of the clump. The energy exchange per collision
is £0(v/c), but the overtaking collisions very nearly
cancel the head on collisions, so that the mean is only
0*(v/c).

At least on the surface of it (21) seems to be adequate
to accelerate protons to relativistic energies in a solar
flare.® A field of about 500 gauss is required to explain
the energy output of the cosmic-ray flare of February
23, 1957. Putting v equal to the characteristic hydro-
magnetic velocity resulting from a 500-gauss field in

20 H. Alfvén, Phys. Rev. 75, 1732 (1949).

2W. F. G. Swann, J. Franklin Inst. 257, 191 (1954).
2 W. F. G. Swann, Phys. Rev. 93, 205 (1954).
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the solar chromosphere yields the observed cosmic-ray
energy spectrum.

Ginsburg®# has pointed out that (21) seems to be
adequate for the acceleration of cosmic rays in novae
and supernovae, and in the solar corona.

However, Morrison, Olbert, and Rossi*® have shown
that in order for the interstellar motions to result in
the observed energy spectrum as a consequence of (21),
as originally suggested by Fermi,” it is necessary that
the interstellar velocities be of the order of 120 km/sec,
reversing their sign every light year. But it is readily
shown?® that the viscous losses of such small-scale
and violent motions are prohibitive: The cosmic-ray
energy density of 10722 erg/cm?® with a life of the order
of 4X108 years requires an energy input of the order
of 10726 erg/cm3/sec; the mechanism of Oort and
Spitzer?® may perhaps supply sufficient energy to
the interstellar motions for maintaining the input to
the cosmic rays, but the mechanism is entirely in-
adequate to support the viscous losses, which are
100 times greater than 10726 erg/cm?/sec.

B. Continuous Waves

If regarding moving magnetic inhomogeneities as
1solated and separale units provides inadequate accelera-
tion in interstellar space, our next region of inquiry
is into the opposite extreme, wherein we consider the
moving magnetic inhomogeneities as continuous hydro-
magnetic waves in an initially uniform field. As is
already well known, continuous waves allow many
variations on Fermi’s basic scheme, and we shall
find that AW/W may be made O(v/¢) rather than
just O%(v/c).

1. Fermi was the first to consider the acceleration of
particles by smooth continuous hydromagnetic waves
in a large-scale field. In his second paper” he pointed
out that a cosmic-ray particle may be trapped between
two approaching waves so that all of the reflections of
the particle from the waves are head on and AW/W
=40(v/c). The particle eventually escapes from the
trap because the direction of its velocity steadily
approaches the direction of the large-scale field,
allowing penetration of the waves which confine it.
Fermi did not show that the particle might not then
be caught between two receding waves and decelerated
at the same rate, AW/W=—0(v/c) yielding a mean
acceleration of second order in /¢, as in (21).

2. Davis® has pointed out that as two approaching
hydromagnetic waves begin to pass into each other,

2 V. L. Ginsburg, Doklady Akad. Nauk U.S.S.R. 92, 727 (1953)
[National Science Foundation translation—2077].

24V, L. Ginsburg, Suppl. Nuovo cimento 3, 38 (1956).

25 Morrison, Olbert, and Rossi, Phys. Rev. 94, 440 (1954).

26 E. N. Parker, Phys. Rev. 99, 241 (1955).

27 J. H. Oort, Bull. Astron. Soc. Netherlands 12, 177 (1954).

28 F. D. Kahn, Bull. Astron. Soc. Netherlands 12, 187 (1954).

2 J. H. Oort and L. Spitzer, Jr., Astrophys. J. 121, 6 (1955).

3 M. P. Savedoff and J. Greene, Astrophys. J. 122, 477 (1955).

3 L. Davis, Phys. Rev. 101, 351 (1956).
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the field density in the narrowing region between will
increase, so that trapped particles will be accelerated
by the betatron effect as well as by Fermi’s mechanism.
The betatron effect, as may be seen from (21), increases
the component w,, of the particle velocity perpendicular
to B; this is in contrast to the Fermi mechanism which
increases only the component w; parallel to B. Thus the
simultaneous operation of the betatron effect may
tend to counteract the tendency of the particle velocity
to align itself along the magnetic field and thereby
escape from between the two waves. Davis showed
that the random walk in the cosmic-ray particle energy,
resulting from both acceleration and deceleration by
the combined betatron and Fermi mechanism, can
yield the observed cosmic-ray spectrum if the inter-
stellar motions of 10 km/sec have a scale of 1 light
year perpendicular to the large-scale galactic field
and 7 light years parallel, and if the net energy input
to the cosmic-ray field is zero. In this way the over-
whelming viscous losses required by (21) are avoided,
but, of course, the injection mechanism must supply
the total energy in the form of particles with the mean
cosmic-ray energy of about 2 Bev per nucleon.

3. Fan® has gone one step further to show that, with
suitable wave forms, incorporating the betatron effect
may lead to a mean energy gain per collision

AW /W =0(v/c),

in contrast to (21). Fan assumes that in the region
between two hydromagnetic waves approaching each
other in a large-scale field, the field density grows in
the same manner as the mean field density throughout
a turbulent field ; he takes

(1/B)dB/di=av/L,

where v is the characteristic velocity, Z the scale, and
«aa numerical constant. Hence, between the approaching
waves he assumes that

B(x’yyz7t) =B, (x,yyz)‘i'Bl(x:%Z;O) €xXp (th/L). (23>

Thus, both the betatron effect and Fermi’s mechanism
act to accelerate particles trapped between the approach-
ing waves.

For particles with small angle of pitch ¢ (@ is the
angle between the particle velocity w and large-scale
field By) the betatron effect is dominant and 6 increases;
for large 6 the Fermi mechanism dominates and 6
decreases. The result is that all the trapped particles
remain trapped and undergo considerable acceleration
before the waves meet.

Between receding pulses Fan assumes that

(1/B)dB/dt=—av/L,

and it follows that  decreases if it is small and increases
if it is large. Hence only a portion of the particles
remain trapped; all those with angle of pitch less than

(22)

2 C. Y. Fan. Phys. Rev. 101, 314 (1956).
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some critical value soon find themselves with so small
an angle of pitch that they penetrate one or the other
of the receding waves and escape the trap. It follows
that deceleration by receding waves is much less effective
than acceleration by approaching waves, resulting in
(22).

Fan’s mechanism depends upon the validity of (23),
and it is not clear that the field will grow exponentially
between approaching waves. If the field were to vary in
some other manner, the opposite effect might easily
occur. For instance if dB/dt were independent of B,
instead of proportional to B, then Fan’s first-order
effects vanish. If we argue that B increases most where
it is weakest, so that dB/dt varies as (1/B) to some
positive power, the effect reverses and the mean energy
gain is negative. Unfortunately it is not possible at
present to establish in just what manner the field at a
given point in a turbulent medium will vary with time.
Our present objection to Fan’s mechanism is that simple
variations of the form of (23) do not represent approach-
ing jaws of a trap.

4. We would like to suggest at this point that there
is one effect occurring in the presence of continuous
hydromagnetic waves which, so far as we are aware,
has been overlooked : That is the fact that the cosmic-
ray particle density will be systematically greater
ahead, as compared to behind, continuous transverse
hydromagnetic waves, as a consequence of the relative
impenetrability of such waves; significantly more than
half of the collisions will be head-on.

To demonstrate this effect quantitatively, consider
a uniform magnetic field of density By in an infinitely
conducting incompressible fluid medium of density p.
We put the z axis of our coordinate system parallel to
By and introduce at z=-c plane transverse hydro-
magnetic waves at intervals of L/C seconds, where C
is the characteristic hydromagnetic velocity Bo/(4mp)?.
Thus we have two sets of waves, traveling in opposite
directions along By; the waves of each set are separated
by a distance L. For convenience we suppose that each
individual wave is a narrow pulse of width /, where
IKLL. )

We suppose that the nth pulse consists of the field
ba(2,t) in the x direction, where

ba(z,t) = —bo(£n/1) exp(—&.°/P),

£n=24 (nL—C¥).

(24)
and
(25)

F16. 1. Schematic diagram of plane transverse hydromagnetic
waves in a large-scale magnetic field. The waves B and D are
propagating to the right with the usual hydromagnetic velocity
C=B/(4mp)*; waves 4 and C are propagating to the left.
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The = is 4 for pulses propagating in the positive z
direction and — for propagation in the negative z
direction. The pulses are shown schematically in Fig. 1.

It is readily shown that an infinite plane transverse
wave, such as we are considering, involves none of the
nonlinear terms in the hydromagnetic equations (10)
and (11). Hence the pulses do not interact, and pass
through each other unchanged. The fluid velocity
associated with the nth pulse is readily shown to be
,,(2,¢) in the x direction, where

v (3,8) = Fbu(3,1)/ (4mp)*. (26)
The densest field in a pulse occurs where
En=£l/V2,
and has the value
Buax=Bo[ 14 (bo/Bo)*; exp(—1) % (27)

We consider a charged particle with velocity w whose
radius of curvature in By is small compared to the pulse
width . It follows from (19) that in the frame of
reference in which a given pulse is stationary, the
angle of pitch @ (the angle between w and the total
magnetic field) varies in the well-known manner”:

sin%/ B= constant. (28)

Penetration of the pulse occurs when 6 is sufficiently
small that § <6, in the uniform field between pulses,
where

sin%0,= Bo/Buax. (29)

Hence all particles for which 6 is greater than the critical
angle will be reflected by the pulses; all particles for
which <6, pass freely through the pulses with no
net change in 6 or in speed w.

At the moment when two pulses have just passed
through each other, as have 4 and B in Fig. 1, all the
particles will be contained between approaching pulses,
such as B and C. All collisions will be head on. The
particle velocities parallel to By will increase, and 6
for each particle will decrease to 6.. Penetration of the
approaching pulses B and C follows, with all particles
ultimately between the receding pulses, 4 and B, and
C and D (undergoing deceleration and increasing 6) -
when B meets C. Thus all particles begin with head on
collisions and end with overtaking collisions during
each cycle, of duration L/2C.

We will now show that, if 6. is sufficiently small,
penetration of the pulse does not occur for the average
particle until the wave B has nearly arrived at C; the
particles spend a significantly greater portion of their
time between approaching waves making head on
collisions, than between receding waves. What is more,
the particles are crowded together in greatest density
by approaching pulses when the pulses are closest
and acceleration is most rapid. The particles are not
between receding pulses which have just passed through
each other and are close together, when deceleration
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would be most rapid. Because our wave configuration
is periodic, it is equivalent to the single cell shown in
Fig. 2 where a single pulse starts from the reflecting
surface 2=0 at time =0, and proceeds with velocity
C'=2C to the reflecting surface =L at time t=L/C".

Consider a particle ahead of the pulse, between
z=C't and 2= L. We suppose that the particle velocity
is large compared to C’. The particle collides with the
pulse every At seconds, where

At=2(L—C"t)/w,

Reflection from the pulse results in an increase in w,
of
Aw,=2C",
and
Aw,=0.
Noting that
tanf=w,/w;,
we find that
do c’
—_—=— sinf cosf;
dt L—C't

(30)

we have written d8/dt in place of A6/At because with
the particle velocity w large compared to C’, A6/8 and
Ai/(L/C") become small quantities. We may also
show that

dw c’
—=+4———w cos?. (31)
L—C't

dt
For a particle behind the pulse, in 0 <z<C’f, we have
db/di=+ (1/t) sinf cosf, (32)
dw/dt=— (1/)w cos?. (33)

Equation (29) is readily integrated to give the angle
of pitch of a particle initially at 6q; we obtain

0 (8o,t) =arc tan{[ (L—C"f)/L7] tanfy}. (34)

We see that 6(6o,¢) is a monotonically decreasing
function of time, as a consequence of Aw,>0, Aw,=0.
This brings us to the question of the redistribution of
particle velocities, first discussed by Fermi.”

If @ becomes less than 6., defined in (29), the particle
no longer interacts with the pulse, and acceleration
ceases. Fermi suggested that sharp kinks in the magnetic
field may sometimes be encountered by the cosmic-ray
particle, reorienting the field so suddenly that the
particle cannot follow, and effectively scattering 6
from <8, to larger values where acceleration may again
take place. In a later section of this paper we will
show that all hydromagnetic disturbances of sufficiently
large amplitude are expected to have sufficiently sharp
crests to accomplish the reorientation of 6. Therefore,
we shall for the present calculation suppose that the
pulse, z=C’t, has a sufficiently sharp crest to scatter
the angle of pitch of those particles escaping (with
6=0.) through the pulse from the region ahead of the

1335

pulse. We shall assume that the probability of a particle
being scattered into (0, 0-+680) from 6, is ¥(0)50. We
suppose that the scattering takes place without much
change in the speed of the particle, so that if w,=w,,
and w,=w,, before the scattering, we have

We=1Wse COSO/COSO;,  Wn="1Wne SING/sinG,

following the scattering.

We consider, then, a particle with an initial speed
wp and angle of pitch 6o (at time ¢=0). It is trapped
ahead of the pulse until its angle of pitch, 8(f,t) has
decreased to 6., at time 4; it is readily shown from (34)
that

te= (L/C")[1—tanf,/tanf, .

The component of the velocity perpendicular to the
large-scale field remains unchanged up to ¢=1{, so
that it is just wo sinfo. The component parallel to the
field is, therefore, just wo sindy cotd, when t=1¢,.

Following penetration of the pulse, and scattering
to some new pitch, say =80, the particle is decelerated
behind the pulse during the remaining time ¢, <t <L/C’.
The perpendicular velocity w, remains unchanged from
Wa, sinfy/sind,. The angle of pitch increases according
to (32), or ‘

0(01,L,t) = arc tan[ (¢/4,) tand; .

The parallel velocity w, decreases from w;, cosfi/cosf,
at time =1, to

W, (01,1,8c) = wn, cotf (01,1,16)
=W, CotO(01,L,1,) sind;/sind,.

at some subsequent time .. Thus, by the time that
t=1L/C’, we have a total particle velocity of

=1, sinfl sinf/sinb, sind (6:,L/C’ t.)

sinfy cosﬁlr tanf.\ 2 H
=wy (1—— ) +tan201] .
sinf, '. tanfo

.
| .
I i

Z=Clt z=L

| .
F1c. 2. Equivalent acceleration cell. Between the reflecting
barriers at z=0 and z=L we have the plane transverse hydro-

magnetic pulse at z=C’t. Penetration of the pulse is possible
only for particles with angle of pitch 6 less than 6,.
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The mean of the velocity over 6, is

sinﬁg /2
[ d01 COSHH& (01)

tand,\ 2 i
X[(l— ),—Hanzﬁlil .
tanfp

If f(fo) is the initial distribution of the angles of
pitch (when ¢=0), then the mean final velocity is

(w)(01) =w

sinf. Vs,

W /2
f dﬂof(&o) sin@o
iné

SIv.va.

(w)(80,01) =

/2
Xf dﬁuﬁ(ﬁl) COSB]
Oc

tan?,\ 2 i
X[(l— ) —l—tan201] .
tan%,

Thus far we have said nothing of the particles initially
in 6<0,, or of the particles scattered into 6 <6, as they
penetrate the pulse. We shall avoid this unnecessary
complication by restricting ourselves to a pulse of
large amplitude. Then 6,<&w/2 and the number of
particles in 8 <8., being O?(f,), may be made vanishingly
small.

If we suppose that the initial distribution is isotropic,
and that the scattering by the pulse is also isotropic,
so that

(35)

J(0)=4(0)=sino,
then /
/2

wo
<w> (00101)‘/\'

sinf,V/,

w[2
deo sin200f d01 sin91
0

in the limit as §,—0. This follows from the fact that
(1—tanf,) approximates to unity everywhere in (0,7/2)
except in the vicinity of o=6,; but there the contribu-
tion to the integral is negligible because of the factor
sino. Thus

TWo

4 sing,

() (80,01)~ (36)

The mean kinetic energy has increased by the factor
72/166.2 during the passage of a pulse of large amplitude,
8.1. The final velocity distribution has a mean angle
of pitch which is larger than the (#)=1 for the initial
isotropic distribution, because 6 increases following
scattering to isotropy when {=1¢,.

We have demonstrated that oppositely moving
trains of sharp crested hydromagnetic waves yield
large and repeated acceleration of the cosmic-ray
particles contained within. The acceleration is effec-
tively first order in v/c, as in (22). Since the acceleration
does not depend upon any subtle property of the wave
forms, requiring only that they be of large enough
amplitude to develop sharp crests (discussed below),
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we suggest that our acceleration model is a naturally
occurring process in any sufficiently perturbed hydro-
magnetic region of space, and that it dominates other
versions of the Fermi mechanism.

We have, in effect, established Fermi’s suggestion
in his second paper” (that the observed cosmic-ray
particles are accelerated primarily when trapped
between advancing waves) by demonstrating a simple
example where the overtaking collisions (when trapped
between receding waves) do not cancel the major
portion of the head-on collisions.

VI. EFFECTIVENESS OF FERMI MECHANISM

To demonstrate that the coutinuous-wave version
of the Fermi mechanism is sufficiently potent that the
observed interstellar motions in the vicinity of the
sun may perhaps account for the observed cosmic-ray
energy spectrum, let us suppose after Morrison,
Olbert, and Rossi®*® that the cosmic-ray particles
undergo random walk through interstellar space with
a mean step A across the galactic magnetic field until
they escape out of the galactic disk, of thickness 4.
If the mean fractional energy gain per step is AW /W,
they were able to show that AW/W must be as large as

AW /W =0.6\2/12

in order to account for the observed energy spectrum.
We have been able to show that in the presence of
trains of hydromagnetic waves with velocity v the
fractional energy gain is O(v/c): If all collisions were
head on, it is readily shown’ that AW/W=2v/c; we
shall put AW/W=mv/c and guess that 5, which
ultimately appears only to the one-half power, may
be of the order of 0.5. In a large-scale continuous
magnetic field of scale L, a particle with velocity w
and radius of gyration R will drift perpendicular to
the field along a contour of constant field density with
a velocity of the order of wR/L. In a time L/w between
reflections from hydromagnetic waves the total drift
is A=0(R). It follows that in our case A is a function of
particle energy and the analysis of Morrison et al. is
not strictly applicable. However, if as an upper limit
\ were taken equal to the radius of gyration of a 10%-ev
proton in a field of 1075 gauss, viz., 0.3X10'® cm or
0.3 light year, we deduce that the usual interstellar
velocities of 10 km/sec would suffice to produce the
observed cosmic-ray energy spectrum, provided % were
60 light years. Thus, so far as escape out the sides of
the galactic disk is concerned, there should be no
problem in producing the observed cosmic-ray energy
spectrum with the observed interstellar motions.

VII. HYDROMAGNETIC REDISTRIBUTION

Now consider whether the hydromagnetic waves to
be found in nature can be expected to develop
sufficiently sharp crests as to redistribute the cosmic-ray
particle velocities in the manner assumed above.
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It is necessary that the magnetic lines of force be
deflected appreciably in distances which are less than
the Larmor radius fo the cosmic-ray particles; only then
can we violate the adiabatic relation (28) and scatter
the angles of pitch of the individual particles away from
the small values toward which the Fermi acceleration
causes them to drift.

Consider the formation of kinks in the magnetic
lines of force in a highly conducting medium such as
the interstellar gases or a stellar atmosphere. Obviously
a sharp angular bend in a large-scale magnetic field is
not an equilibrium configuration and represents a
hydromagnetic shock wave of one form or another.
For simplicity we shall discuss only two special classes
of waves: those which contain only longitudinal
motions,?8:3:3 wherein the mass motions are all parallel
to the direction of propagation of the shock front;
and those which contain only transverse motions,?6:33
wherein the material flow is essentially incompressible
and represents an Alfvén-type hydromagnetic wave.

A. Longitudinal Waves

So far as the purely longitudinal wave is concerned,
the reader is referred to the rather extensive litera-
ture®—%" for a description of their macroscopic properties.
So far as the tendency to grow a sharp front is concerned,
one may think of such a shock wave as an ordinary
hydrodynamic shock, which incidentally carries with
it whatever magnetic fields are present according to
the usual hydromagnetic equation,

aB/3t=VX (vXB),

in a fluid medium with velocity v. Any compressional
wave will eventually steepen into a shock front simply
because the velocity of propagation is slightly higher
in the warmer gases behind the wave front.

Petschek?® has pointed out that in a tenuous plasma
the thickness of the front of such a hydromagnetic
shock wave propagating more or less perpendicular to
the large-scale magnetic field B will be of the same order
as the radius of gyration of the thermal ions in B.
Thus the shock front will have a thickness of the
order of the radius R, where

R=Mu,c/ZeB,

rather than the much larger mean free path. Here M
is the ion mass and #, is the component of the mean
thermal velocity, #, perpendicular to B. Since any ion
with an energy very much in excess of the thermal

3 C. F. Sommerfeld, Mechanics of Deformable Bodies (Academic
Press, Inc., New York, 1950), p. 147.

3¢H. Lamb, Hydrodynamics (Dover Publications, New York,
1945), pp. 31, 202.

35 F. de Hoffmann and E. Teller, Phys. Rev. 80, 692 (1952).

36 H. L. Helfer, Astrophys. J. 117, 177 (1953).

37 R. Liist, Z. Naturforsch. 8a, 277 (1953); 10a, 125 (1955).

38 H. E. Petschek, Third Symposium on Cosmical Gas Dynamics,
June 24-28 (1957) Smithsonian Institution, Astrophysical Observ-
atory, Cambridge, Massachusetts (to be published).
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energy will have a greater radius of curvature in B
than will a thermal ion, and hence a radius greater than
the thickness of the shock front, such shock waves will
probably always represent kinks in B which are
sufficiently sharp as to redistribute the angle of pitch
of accelerated particles.

To see how this works out numerically, we note that
the radius of curvature of a 10* °K hydrogen ion
(16 km/sec) in a galactic arm field of 10~% gauss is
160 km, whereas the mean free path is of the order of
0.01 light year, or 10" km (if the collision radius is
1078 cm and the density is about N=1 hydrogen
atom/cm?). The radius of curvature of a cosmic-ray
proton exceeds the mean free path of 0.01 light year
only if its energy is in excess of 3.3)X10* Bev; but any
proton moving faster than 16 km/sec (~1 ev) has a
radius of curvature in excess of the shock front thick-
ness, O(R).

Shock waves propagating exactly parallel to B are
of no interest because they have thick fronts (of the
order of the mean free path), and because they do not
yield any variation in B. They contribute neither to the
acceleration and decrease of 6, nor to the opposing
redistribution over 4. We shall not mention them
again in our discussion.

B. Transverse Waves

Now a single transverse hydromagnetic pulse prop-
agating along a large-scale magnetic field in a highly
conducting, incompressible fluid possesses no dispersion
and propagates without changing its form.26 If the
wave is of sufficiently small amplitude, its form is
preserved even upon meeting and passing through an
oppositely moving wave of comparable amplitude.
It is observed® that the plane of polarization of starlight
deviates from the direction of the galactic arm (and
hence from the direction of the galactic arm field) by
only about £0.2 radian, suggesting that the distortions
of the galactic arm field are hydromagnetic waves of
small amplitude.®# However, though it is possible
that they may be waves of small amplitude so far as
the distortion of the magnetic field is concerned, their
7-km/sec material velocities®®* are often rather
supersonic; in the observed cool Hy regions the tempera-
ture may be of the order of 100°K, corresponding to
a thermal velocity of ounly 1.6 km/sec. Therefore,
compressibility effects are probably not negligible.

The propagation of an infinite, plane, transverse,
hydromagnetic wave in a slightly compressible medium is
treated by perturbation methods in the Appendix. As
one would expect, the slight rarefaction in the region of

% W. A. Hiltner, Astrophys. J. 109,471 (1949) ; 114, 241 (1951).

© 71, Davis, Phys. Rev. 81, 890 (1951).

1S, Chandrasekhar and E. Fermi, Astrophys. J. 118, 113
(1953); 118, 116 (1953).

% A, Blaauw, Bull. Astron. Soc. Netherlands 11, 405 (1952).

% H. C. van de Hulst, Third Symposium on Cosmical Gas Dy-

namics, June 24-28 (1957) Smithsonian Institution, Astrophysical
Observatory, Cambridge, Massachusetts (to be published).
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strongest field leads to a higher velocity of propagation
within the wave and a steepening of the wave front.
Again it is not the mean free path but the radius of
curvature of the thermal ion trajectories which limits
the sharpness of the kink.

Since, as will be discussed later, the Mach number of
the observed material motions in regions active enough
to perhaps accelerate cosmic rays (galactic halo,
novae, solar flares, etc.) is at least as large as unity, we
suggest that the magnetic kink associated with each
wave usually involves bending the lines of force through
an angle of the order of unity.

Thus in both the longitudinal and transverse cases
we expect to find the waves possessing magnetic kinks,
which are sharp as compared to the radius of curvature
of the trajectories of accelerated particles. We expect
that the waves have sufficiently sharp fronts or crests
to accomplish the necessary redistribution of the
cosmic-ray particle velocities.

VIII. COSMIC-RAY GAS
A. Effective Mach Number

One may think of the cosmic-ray particles in our
galaxy as the atoms of an extremely hot gas. This
cosmic-ray gas is so hot that its thermal motions are
relativistic, and it is unable to cool except by nuclear
collision with the ordinary non-cosmic-ray matter.*
Pickelner and Shklovsky* have pointed out that
infinite plane shock fronts propagating in a direction
perpendicular to the magnetic field must compress
the cosmic-ray gas (and also the magnetic field), in
addition to the ordinary gas. Thus the effective Mach
number of such a shock wave must be computed using
the speed of sound in the composite gas, consisting of
the ordinary gas, of density p and thermal velocity #,
together with the cosmic-ray gas of pressure p. The
composite speed of sound is of the order of [ (pz?+p)/p ]},
and is in many cases very much larger than the ordinary
thermal velocity #u. Therefore the effective Mach
number may be very much smaller than one would
estimate using the speed of sound in the ordinary
matter; the expected dissipation of the shock wave is
very much reduced by the high speed of sound in the
composite gas.

The basis for the suggestion of Pickelner and
Shklovsky is the inference*s:46 from 21-cm radio observa-
tions that the cosmic-ray gas pressure p in the halo is
about the same as in the galactic arm, viz., p=210~1
dyne/cm? and that much of the ordinary hydrogen is

4]t is interesting to note, though probably of no importance,
that we, armed with our electronic particle counters, assume the
unaccustomed role of Maxwell demons in the tenuous, relativistic
cosmic-ray gas.

4 S. B. Pickelner and I. S. Shklovsky, Third Symposium on
Cosmical Gas Dynamics, June 24-28 (1957) Smithsonian Institu-
tion, Astrophysical Observatory, Cambridge, Massachusetts
(to be published).

46 G. R. Burbidge, Phys. Rev. 101, 907 (1956).
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un-ionized and near 100°K. Taking a mean halo density
of N=0.01 hydrogen atom/cm?, we obtain the velocity
of sound in the ordinary matter as 2 km/sec. But for
propagation perpendicular to the magnetic field one
uses the speed of sound in the composite gas, which is
of the order of 80 or 100 km/sec. Thus the observed
100-km/sec mass motions in such regions are not
immensely supersonic when perpendicular to the
magnetic field, and their dissipation may not, therefore,
be as excessive as the conventional estimate of Mach
40 or 50 might indicate.

Now one observes continued violent disordered mass
motions, far in excess of the thermal velocities, in
the atmospheres of Wolf-Rayet stars, class B emission
stars, etc.; in the envelopes of novae and supernovae
such as the Crab Nebula and elsewhere!”; in the
Coma cluster and in the halos of M31, M33, etc.*?;
one infers continued disordered mass motions of 100
km/sec in the halo Hj regions of our own galaxy. We
wish to extend the suggestion of Pickelner and Shklov-
sky? that the coupling exists in the two directions
perpendicular to the magnetic field. We would like
to suggest that in such regions the disordered motions
of the ordinary matter are coupled to the cosmic-ray
gas in all three directions.

Now it is certainly true that a purely longitudinal
shock wave of ordinary matter propagating exacily
parallel to a static uniform magnetic field will not be
coupled to the cosmic-ray gas. But the disordered mass
motions produce ' disordered magnetic fields, and
motions are never exactly longitudinal, with the
result that this condition is never realized.

The disordered mass motions may be looked upon as
randomly moving hydromagnetic waves of large
amplitude, involving botk longitudinal and transverse
motions. The interaction of cosmic-ray particles with
transverse hydromagnetic waves in the ordinary matter
has been discussed quantitatively in Sec. V: The
cosmic-ray particles are reflected from the denser
magnetic fields carried by the transverse waves;
the transverse hydromagnetic waves are cosmic-ray
barriers which tend to sweep the cosmic-ray gas
ahead of them as they move. Therefore, in any region
where there are large numbers of disordered hydro-
magnetic waves, the cosmic-ray gas is strongly coupled
along B to the ordinary matter making up the waves.
The cosmic-ray gas is thus coupled to the ordinary mass
motions in all three directions.

If we care to look further into the details of the
interaction of the cosmic-ray gas and the ordinary
matter parallel to the magnetic field, then we may
use the results derived elsewhere® for the motion of

4 R. Minkowski, Tkird Symposium on Cosmical Gas Dynamics,
June 24-28 (1957) Smithsonian Institution, Astrophysical
Observatory, Cambridge, Massachusetts (to be published).

48 D. S. Heeschen, Astrophys. J. 124, 662 (1956) ; Third Sympos-
tum on Cosmical Gas Dynamics, June 24-28, 1957, Smithsonian
Institution, Astrophysical Observatory, Cambridge, Massachu-
setts (to be published).
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the ions of a tenuous gas along a large-scale magnetic
field. In general we expect, in the presence of a magnetic
field, no purely longitudinal motions, but rather
always a mixture with the transverse. The transverse
motions represent variations in the magnetic field,
and, except in trivial special cases, will always couple
to the cosmic-ray gas as just discussed. But suppose,
just to be contrary, that somehow we have on our
hands a purely longitudinal (acoustical) wave, given by

v=(k/k)vof(k-r—wt),

where k is the wave vector, w is the angular frequency,
C(=w/k) is the velocity of sound (not the hydro-
magnetic velocity as in earlier sections) in ordinary
matter, and r is the position vector. Suppose further
that this acoustical wave is of small amplitude, i.e.,
20KC, and that it is of smaller scale than the larger
hydromagnetic waves which, as pointed out above,
may form cosmic-ray barriers. Finally we shall suppose
that the scale of the acoustical wave, though small
compared to the large-scale field, is nonetheless large
compared to the radius of gyration of the cosmic-ray
particles in the large-scale field; thus the cosmic-ray
particles move adiabatically through the wave. Then,
if this acoustical wave in the ordinary matter can
interact strongly with the cosmic-ray gas, we have
reason to believe that so will most any other wave in
the ordinary matter.

Since the acoustical wave is of small scale, we may
regard the unperturbed magnetic field as uniform across
the wave. We set up a local Cartesian coordinate system
with z axis along the large-scale field

B0=ezBo,

and orient the x and y axes so that the wave vector
reduces to
k=~%(e, siny+e, cosy).

x is the angle between B and v; the unit vectors along
the coordinate axes are e, e€,, and e,. It is readily
shown from

IB/3t=VX (vXB)

that as a result of the acoustical wave the magnetic
field becomes

By=— By(vo/C) siny cosx f(£),
B,=+Bo[ 14 (vo/C) sin>x f(£)],

when one omits terms of second order in vo/C. We have
put
£=ky sinx-+kz cosx —wt.

To the same order, it is readily shown that the magni-
tude of the total field B is

B(yz,t)=Bo[ 14 (v0/C) sin’x f(£) ].

Thus the cosmic-ray gas sees only a small variation in
field density amounting to B¢O(vo/C).
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The velocity of sound C is, of course, extremely small
(only 2 km/sec in Hp regions) as compared to the
velocity (of the order of ¢) of the cosmic-ray particles.
Thus we may in first approximation neglect the motion
of the acoustical wave and limit our inquiry to the
effect of the variation in field density on the component
of the cosmic-ray motion parallel to B. We let 6
represent the angle between B and the individual
cosmic-ray particle velocity. Neglecting relativistic
effects to obtain an order-of-magnitude result, we find®
that if F(z,0) is the velocity distribution function per
unit volume for the cosmic-ray particles spirally along
the lines of force of B, then F(z,8) may be constructed
from a linear sum of terms of the form [B(0,y,t)/
B(z,y,t) J}@D sin®. Noting that «=1 represents
isotropy, and supposing that the effective « is probably
somewhat less than unity in a region where cosmic
rays are being accelerated, we see that the cosmic-ray
gas density tends to increase in regions where B is
denser (since the converging lines of force tend to
concentrate the particles spiraling along them). The
cosmic-ray gas density increases as B¥® or as
[1+1(1—a)(vo/C) sin?x f(£)]. The density of ordinary
matter increases by the factor [14- (vo/C)f(£¢)]. Thus,
except for the special cases that a=1 and x=0, the
perturbation in the cosmic-ray gas is of the same order
as in the ordinary gas. Even small and purely longitu-
dinal waves of small amplitude perturb the motion
of the cosmic-ray particles along B to such an extent
that the cosmic-ray gas density is affected to the same
order as the ordinary gas density. The correct treatment
of such a wave, therefore, must be carried out in the
composite ordinary and cosmic-ray gas.

Now the cosmic-ray gas pressure is of the order of
1072 dyne/cm? in the galactic arms and halo.#5:4¢
The ordinary gas pressure in an interstellar Hy region,
where the temperature is 100°K, and the density is
N=210 hydrogen atoms/cm?, is 0.14X10~2 dyne/cm?.
In the galactic halo Hj regions, where the temperature
is perhaps no more than 100°K and N=20.01 hydrogen
atom/cm?, the ordinary gas pressure is only 0.0014
X107 dyne/cm?. Therefore, the cosmic-ray gas
pressure p is the dominant gas pressure throughout
many regions of the galaxy. It may also be the dominant
pressure in sufficiently active stellar atmospheres, etc.
which we will discuss more generally a little farther on.
Our point in this section is that the cosmic-ray gas
pressure in active regions of space (coupled in all three
dimensions to the ordinary matter) is, in many cases,
the dominant pressure and must be included in any
dynamical calculations.

In particular the cosmic-ray gas must be included in
calculations of effective Mach number; the effective
speed of sound is of the order of [ (pu*+)/p]*. Many
otherwise temendously supersonic mass motions become
sonic, with corresponding reduction in the theoretical
dissipation. Thus it need not be paradoxical that we
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seem to observe turbulent mass motions in excess of the
ordinary thermal velocities.

B. Irreversible Compression

We have suggested that, in about the same length of
time as it takes two approaching hydromagnetic
waves to sweep up and compress the cosmic-ray gas
caught between them, there will be a redistribution of
the cosmic-ray particle velocities by the sharp crests of
the waves. Thus, on the whole, the cosmic-ray velocity
distribution will not differ by a whole order of magnitude
from isotropy, but, on the other hand, we do expect to
find some not insignificant deviations from isotropy
(see Sec. V). Therefore, the compression and expansion
of the cosmic-ray gas, as it is alternately caught
between approaching and receding hydromagnetic
waves, is significantly irreversible, which, as is well
known, leads to a marked heating of the gas. Thus the
continuous wave version of the Fermi mechanism,
developed in Sec. V, is equivalent to heating by
irreversible compression and expansion.

C. Viscosity

The viscosity of the galactic cosmic-ray gas is not
negligible.®® Let us take the expression, Nmul from
elementary kinetic theory as a measure of the viscosity.
Here m is the mass of the individual gas atom or
molecule, # the thermal velocity, and / the mean free
path. IV is the number of atoms per unit volume, so
that N is the total mass density of the gas. The mean
free path of a cosmic-ray gas particle is essentially
the distance between hydromagnetic waves. We take
this to be 20 parsecs®®* or more in the galactic arm and
100 parsecs in the halo.*® Putting u=c¢, m=1.66X10"*
g, and V=109 cosmic-ray particle/cm?® throughout the
galaxy and its halo, we have a viscosity of the order
of at least 3X107% g/sec cm in the galactic arms and
15X 107% in the halo. By comparison we note that the
same expression Nmul yields about 1.0X10~% for
ordinary hydrogen at 100°K and a collision cross
section of 3X107*¢ cm? Thus the cosmic-ray gas is
not negligible and may, in many cases, be a not insignif-
icant form of dissipation of mass motions.

We note that the cosmic-ray energy density is of
the order of 107 erg/cm?®. A material density of
N=1 particle/cm® (in the galactic arms) yields a life
of about 107 years for the heavy nuclei, requiring an
energy input of 3X107% erg/cm® sec. A density of
N=0.01 particle/cm? (the mean density of matter
throughout the halo) requires an input of 3X10—2
erg/cm?®, Most of the input may come from irreversible
compression, but on the other hand the heating of a
gas of viscosity # due to shearing velocities v with a
scale of L is of the order n1?/L2% Using the previously
estimated values for 7, we find an input of 1.6X10~%
erg/cm® sec in the galactic arm where v=<7 km/sec

“ The author is indebted to R. Schliiter on this point.
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and L=210 parsecs, and 1.6X107% in the halo where
=100 km/sec and L=2100 parsecs.5!¢ Thus, at least
in the halo, the acceleration of cosmic rays by the
viscous heating may not be negligible. And perhaps
the heating by irreversible compression and expansion
may not need to be much greater than the viscous
heating to supply the necessary total 3)X1072® erg/cm®.

IX. MACH-ONE EFFECT

From the radio observations?® of the halos of other
galaxies, and from general theoretical considerations
of the halo of our own,*®* we conclude that the
galactic halo possesses disordered mass motions of the
order of 100 km/sec; the composite sound velocity in
the cosmic-ray and ordinary halo gas is of the order of
80 km/sec. In the galactic arm the mass motions have
a mean value of 7 or 8 km/sec®#; the composite sound
velocity at 100°K with N=21 particle/cm?® is readily
shown to be about 8 km/sec. Thus we see that through-
out the galaxy, in both the halo and the arms, the
mass motions are of the order of Mach one.

We speculate that Mach one may not be a coin-
cidence, or simply a matter of limitation of the motions
by shock dissipation. We suggest that it represents a
dynamical balance common to any region of space in
which the tenuous matter is stirred sufficiently violently.
Suppose that in some large enclosed region of space
there is a tenuous conducting gas bearing a magnetic
field. We introduce large amounts of energy in the
form of disordered mass motion. The motions through-
out the space will be immensely supersonic, quickly
going over into hydromagnetic shock wave phenomena.
Acceleration of cosmic rays will begin and the intensity
of the comsic-ray field will increase without bound so
long as the hydromagnetic waves can maintain sharp
fronts or crests. If the gas is sufficiently tenuous, then
there is no stopping of cosmic-ray particles, and sooner
or later the cosmic-ray gas pressure will be increased
to where the composite speed of sound becomes
comparable to the mass velocities. Then a delicate
dynamical balance may be set up, wherein an increase
in cosmic-ray gas pressure reduces the effective Mach
number below one and the sharp crests disappear.
The cosmic-ray acceleration ceases until the Mach
number is restored to one by the decaying cosmic-ray
gas pressure. Thus a balance at Mach one is obtained
no matter how large is the emergy input to the mass
motions.

There are many expections to this principle, of course.
Obviously it will not obtain in a medium which is so
dense that cosmic-ray particle acceleration is not
possible; that is why we specified a region filled with
tenuous matter. Obviously it will not obtain in a small
active region from which cosmic-ray particles can
leak too readily; that is why we specified a closed region
of large extent. But we suggest that at least the galaxy
as a whole (and perhaps many smaller objects such as
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a solar flare, the atmosphere of an active star, or a
supernova shell, etc.) is sufficiently large and sparsely
filled that the principle is operative.

In terms of the statistical velocity distribution
function, the Mach one effect manifests itself as a
double-humped or camel-backed distribution function,
as sketched in Fig. 3. The bunching at low velocities
represents the thermal and mass motions in the ordinary
matter; the maximum just below ¢ represents the
cosmic-ray gas. The Mach one effect states that the
kinetic energies contained under the two maxima are
approximately equal. Presumably the effect could be
formulated from the classical Boltzmann equation
for sufficiently tenuous active regions of space.

In order to understand where we might expect to
find the Mach-one effect, consider the critical conditions
which allow the initiation of cosmic-ray velocities from
the ordinary thermal velocity distribution to be
expected in an active region of space. It was estimated
elsewhere® that the distance A over which a proton of
mass M and velocity w will lose about half its energy
through Coulomb interaction with the surrounding
plasma,® of N hydrogen ions per unit volume and
thermal velocity #, is of the order of

A(w)=23M?*wS/{32r Netu? In[ M3wu/4(3xN)ie* ).  (37)

If we hope to start cosmic rays from near the thermal
velocity #, where the loss to an accelerated particle is
greatest, we must have an energy input sufficient to
overcome the losses corresponding to a relaxation
distance A (u).

In the presence of hydromagnetic waves of large
amplitude propagating with velocity C, it was shown in
Sec. V that the mean fractional energy gain per collision
is of the order of C/w (for a single nonrelativistic head
on collision it is 4C/w). Thus in order that acceleration
be effective it is sufficient to require that the distance /
between collisions be not more than the critical value
l., where

Le/A(w)=0(C/w).

For simplicity we suppose that as a consequence of
shock phenomena the ordinary thermal velocity is of
the same order as C. Then, very roughly, we must have
w=u and

le=\(u).

Numerically this becomes
=21.5X1072(4/N)[In(4/N¥)—20.311.  (38)

An Hiz halo region, where #2216 km/sec (10* °K) and
N=20.01 particle/cm?, leads to /224X 10" cm or 2 a.u.

In an interstellar Hy region where 7=2100°K and
the degree of ionization is extremely low, it is probably
more correct to use the elementary free path 1/(w72N),

% An extensive treatment of the general interactions which
take place between a charged particle and the plasma through

which it is moving has been carried out by S. Hayakawa and
K. Kitao [Progr. Theoret. Phys. Japan 16, 139 (1956)].
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F1c. 3. A schematic velocity distribution function f(%) versus
the particle velocity # when the Mach one effect is operative.
The maximum at lower velocities represents the thermal motions
and the turbulent mass motions. The maximum at relativistic
velocities represents the cosmic-ray gas. The Mach-one effect
states that the kinetic energy under the two maxima should
be approximately equal.

where 7 is the collision radius and 77°=210-1% cm?
Then 7,2210'/N cm. For an Hi region in the galactic
arm, where N=21, /. is 0.01 light year. An Hr region
in the halo, where N=20.01/cm?, yeilds /=<1 light year.

All these distances are rather less than the expected
scale of the hydromagnetic waves. But, on the other
hand, 1000 km/sec in the expanding shell of a supernova
where N=10* particles/cm? gives ,=5X10° km or
30 a.u., and 1000 km/sec in an active stellar atmosphere
where N=10" requires that /,=6000 km. Therefore,
it appears that we may expect cosmic-ray particles to
originate in the vicinity of active stars,®%245 since we
may expect hydromagnetic waves with scales less than
l.. We may not expect to find them originating elsewhere.

As cosmic-ray particles are being accelerated from
the initial thermal velocities of the ordinary matter up
into the relativistic range, the dissipation length
increases rapidly (as the sixth power of the particle
velocity) until it reaches an asymptotic value of the
order of 10%N cm for nuclear collisions. The distance
A(w) then has only a small effect, and acceleration
proceeds easily in most any active region of space.
The heating of the cosmic-ray gas begins, therefore,
with irreversible compression in stellar activity of one
kind or another, and upon reaching near relativistic
temperatures may be supplemented by general galactic
acceleration (irreversible compression and perhaps
viscous dissipation).

We conclude, therefore, that large cosmic-ray
pressures are to be looked for in the atmospheres of
very active stars and novae, or in any larger, active,
more or less closed, system (such as the galactic arms
and halo) containing a sufficient number of violent
stars for injection. It is in such closed active regions
that cosmic-ray gas pressures will build up, limiting
the effective Mach number to the order of unity, as
discussed above. In this manner we can perhaps

8 S. Hayakawa, Progr. Theoret. Phys. Japan 15, 111 (1956).
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understand the observation that in the atmospheres of
extremely active stars, in interstellar space, and in
the galactic halo there are turbulent mass motions
very much in excess of the ordinary speed of sound.
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APPENDIX

Consider the wave solution of the hydromagnetic
equations

aB/ot=—(v-V)B+(B-V)v—BV-v, (1)
av/ot=—(v-V)v—(1/p)[V(p+B*/8)
—(B-V)B/4r], (2a)

in an inviscid, infinitely conducting fluid containing a
uniform magnetic field parallel to the z axis,

Bo = ezBo. (3&)

e;, €, and e, represent unit vectors parallel to the
x, 9, and z axes, respectively. We suppose that pq is
the uniform hydrostatic pressure when the system is
unperturbed, and that the fluid satisfies the equation
of state

p="10(p/po)". (4a)
We define the parameter € as
e=B¢*/8mp,, (5a)

and consider solution of (1) and (2) for a single hydro-
magnetic wave pulse propagating along Bo (with
velocity C=Bo/(4mpo)?), neglecting all terms 0?(e) and
smaller. Thus, we shall consider the compressibility
of the medium as a perturbation on the rigorous
incompressible hydromagnetic wave

B=B¢+b,, (6a)
V=1, (7a)
where
bo=bu(x,y, z:i:Ct), (83,)
Vo=:i:bo/ (4’1l'po)§. (93.)

Note that (8a) and (9a) constitute rigorous solutions of
(1a) and (2a) regardless of whether |Bo|/|bo| is
large or small. It is the compressibility, and not the
wave amplitude, which we are treating as a small
perturbation.

Substituting (8a) and (9a) into (2a), taking the
divergence, and remembering that the zero-order
incompressible velocity satisfies V-vo=0, we obtain
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the auxiliary condition that
V3(p+4-B?/8r) =0.

Since we regard p and B uniform at infinity with the
values po and By, it follows that p*+B?/8x is uniform
everywhere. We let p; represent the local variation in
the pressure as a consequence of the hydromagnetic
wave, obtaining

P1+ (bo'bo—l-ZBo'bo)/gﬂ'———O. (10&)

We see that p; is of the order of epo. We shall now
compute how the density variations p; arising from the
pressure fluctuation p; modify the propagation of the
wave.
We let
B=Bo+botbit- -,

p=potprtprt---,

etc., where the subscript denotes the order in e. Equa-
tion (4a) becomes

(11a)

pr=7p0(p1/p0)[1+0(e) . (122)
The equation of continuity becomes
8p1/6t+ Vo'Vp1+poV' V1=02(e). (138,)

Using (10a) and (12a) to eliminate p; and py from
(13a) leads to

—t
ot (4mpo)?

9 bV
[ ](bo'b0+2Bo'bo)=81r"/p0V'V1. (148.)

We have used (9a) to replace vo by b,, and shall
continue this practice whenever v, appears below. The
left-hand side of (14a) involves only the zero-order
wave solutions, and is presumed known. Hence (14a)
serves to determine V- vi.

Substituting (11a) into (la) and (2a), and making
use of the fact that

0bo/d1==Cadb,/0z,
we ultimately obtain

dby/8t="F (bo- V)b1/ (4mpo)— (v1- V)bo
+BoaV1/aZ+ (bo V)Vlﬂ: (bl V)bo/ (47!‘[)0)%

- (Bo‘l‘bo)v V1—|—02(6), (15a)
9v1/0t="F[(bo- V) vi+ (vi-V)bo]/ (4mpo)?
+ (1/4mpo) { —V(Bo-by+bo-bi+p2)
+ [Boab1/6z+ (bo V)b1+ (b1 . V)bo]
— (p1/po)) [ (Bo+bo) - VIbo}+0%*(e). (16a)

Using (10a) and (12a) to express p; in terms of By and
bo, we see that (15a) and (16a) are the general linearized
equations for the first-order perturbation fields, v,
and b1.

However, though (15a) and (16a) are linear, they
are by no means elementary. It will be sufficient for
our purposes to consider the special case of a plane
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transverse wave for which the zero-order field is in
the y direction and independent of x and y. Then we let

bo=e,,bo(z—Ct). (178.)

It is obvious that 3/9x=09/9y=0and by;=e,by, vi=e,vy,
+e.2:; in (15a) and (16a). Hence (14a) reduces im-
mediately to

81y podv1,/dz=0bo*/dt

=—Caby*/0x. (18a)

Intergrating (18a) over 2, we find that v;, is proportional
to b¢? plus a constant. In order to evaluate the constant
we integrate over z, obtaining

1= (v12)+ (C/8mvp0) ((be*) —be?),

where the angular brackets denote the mean value
over z.

The z component of (16a) serves to determine the
second order pressure variation, p,. The z component
of (15a) yields the physically obvious result that
db1,/3t=0. The y components of (15a) and (16a)

(19a)

+0.4
42 b, (&)
b, (=.t)
+ 1.0 + 2.0 E
-20 -lo *L0 20 &

(b)

F16. 4. (a) The incompressible wave field bo(£) =¢ exp(—£),
and the first-order compressional perturbation field, &:(z,2
=£(1-28) exp(—3£) at time t= (2av/3¢C) (Bo/bo)2. (b) A line
of force through the wave bo(£)+51(z,2).
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reduce to
db,/8t= Bodv,,/32— (8/92) (bov1) +0%(e), (20a)
37)1y/3t= [1/(4.7rp0) *][vlzabo/az—}—cabl/az
—C(p1/p0)dbo/dz]+0%(e). (21a)

Eliminating v;, between these two equations, using
(10a) and (12a) to express p; in terms of by, and noting
that v;, and b are both functions only of 5—Ct, so that
d/0t is equivalent to —Cd/dz, we obtain the inhomo-
geneous wave equation

0%,/ — C?0%, /0%

e P

dzl 0z 7Y Do

We have used (19a) to eliminate v;..

Assuming that the first-order perturbation field
vanishes initially, we expect ; to grow linearly with
time. Consequently we seek a solution of (22a) of
the form

bi(z,0) =18(z—C1). (23a)

Substituting into (22a) yields

aB 1 9 (0dbo - C
e = ——oa-sa ||
93 2 9zl 9z Y Do
+1.9]
b, (&)
b (7,t)
§
-+ o +% +% +3
-1.0
(@)
Cc
—
-i ° °4 4 +3 &

(b)

F16. 5. (a) The incompressible wave field bo(£)=cos27¢ and
the first-order compressional perturbation field &:1(z,f)=0.05
X [sin27w£—3 sin6r¢] and time = (ay/5weC) (Bo/bo)2. (b) A line
of force through the wave train bo(£)+b1(z,t).
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from which it follows upon integration that

b1(z,0) = —#(0bo/32) X [ (v1.)+ (C/8mvp0)
X ((0?)—50¢") 1. (24a)

One may then compute vy, from (21a), which becomes

dvy,/0t= (1/47rpo)%{ (8b0/92) [ (v1:)+C(be*)/8mvpo]

+Ct[8j;0bo(%)2
| —(<vlz>+8§m<<b&>—%b&))%"]j. (250)

We consider two special cases. If the zero-order wave
has a Gaussian form,

bo(z—Ct) =bot exp(— &),

Sz (Z—Ct)/d,

where
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then it is readily shown from (24a) that

(s =b(;) (5’3) (g)}(l_m exp(—38).

The incompressible wave bo(z—Ct) and the perturbation
01(2,t) are plotted in Fig. 4 (a). The resulting deforma-
tion of a line of force of By is shown in Fig. 4 (b).

If the zero-order wave is an infinitely long train,

bo(z—Ct) =bg cos2r,

then upon assuming that (v:,)=0 we obtain

T Ct bo\ 2
b1(z,8) = ebo (—) (—) (—) (sin27§&—3 sinbré).
4:’Y a Bo

The waves bo(z—Ct) and b(2,) are plotted in Fig. 5(a),
and the deformation of a line of force in Fig. 5(b).

The steepening of the wave front is obvious in both
Figs. 4(b) and 5(b).
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Isotropy of Pion Emission at 6 Bev*

D. T. Kinc
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee
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Observations have been made of the angular distribution of energetic electron pairs in nuclear emulsions
which had been exposed to the internal 6.3-Bev proton beam of the Bevatron. The method by which the
pairs were found is discussed. The angular distribution of the pairs is reasonably similar to that of the
neutral pions originating in proton-nucleus collisions in the emulsion. Examination of the angular distri-
butions in terms of multiple meson production in nucleon-nucleon collisions indicates that for these ebser-
vations the emission is consistent with isotropy in the center-of-mass system.

INTRODUCTION

LARGE body of evidence! has been brought

forward, largely from experiments with the
cosmic radiation, in support of the hypothesis of
multiple meson production in nucleon-nucleon colli-
sions. These observations have led to discussions of the
angular distribution of the emitted particles in the
center-of-mass (c.m.) system of the colliding nucleons.
An analysis by Fermi? shows that, for off-center colli-
sions of very great energy, the c.m. angular distribution
of the emergent pions departs notably from isotropy.
Several experiments with particles of energy in the
100-Bev region, where the assumptions of the Fermi

* Work supported by the National Science Foundation.
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theory are valid, support this conclusion.*~8 On the
other hand, observations in the 10-50 Bev region
suggest isotropic emission.”!® A recent paper,* however,
reports that the median angles of showers caused by
6-Bev protons are subject to wide fluctuations, and are
likely to be lower than expected for isotropic emission.
The premises of the Fermi theory hardly apply at this
energy for collisions of any impact parameter. It is
therefore of interest to examine the emission angles of
the neutral pions arising from 6-Bev stars.
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