PHYSICAL REVIEW

VOLUME 109, NUMBER 4 FEBRUARY

Relativistic Theory of Radiative Orbital Electron Capture

P. C. MARTIN AND R. J. GLAUBER
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts

(Received June 28, 1957)

A fully relativistic treatment of the radiation accompanying nuclear capture of orbital electrons is pre-
sented. All effects of the electrostatic field surrounding the nucleus are taken into account. As a preliminary
step, convenient representations for the electron Green’s function and initial state wave function in a
Coulomb field are derived. These forms, involving Dirac operators applied to scalar functions and free-
particle angular eigenfunctions, are developed from the second-order Dirac equation. They are particularly
useful for calculations since the procedures which make use of the properties of traces can be employed
with them.

With the aid of these representations the photon energy spectrum and polarization associated with
allowed radiative K capture are computed. Relativistic Coulomb corrections are shown to decrease the
expected photon intensity significantly at all energies. Since their effect is not sensitively dependent on
energy, the predicted shape of the spectrum is not greatly altered. The Coulomb field also influences the
degree of . polarization of the photons emitted, but has an appreciable effect only near the lower end of
the spectrum.

The influence of atomic screening on the capture from the K and L shells is also taken into account
approximately. It is shown that screening considerably decreases the likelihood of radiative capture of all
but the innermost electrons.

Finally, the existing experimental evidence is reviewed and shown to agree with the theory presented.
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Some additional experimental tests are proposed.

1. INTRODUCTION

N a previous paper,! an approximate theory of the
radiation accompanying nuclear capture of orbital
electrons has been developed. In that paper, the essen-
tial features of the gamma-ray energy spectra were
explained with the aid of nonrelativistic and approxi-
mately relativistic wave functions. The calculations
performed with these functions demonstrated that the
Coulomb field played a most significant role. Taking it
into account affected the predicted number of high-
energy quanta emitted during the capture of S-state
electrons. More important, it provided the mechanism
by which the large number of low-energy quanta ob-
served might be explained as quanta emitted in capture
of P-state electrons. In view of the steadily increasing
number of accurately measured radiative-capture spec-
tra, a more exact theoretical treatment of the problem
has become desirable.

A second and more immediate reason for performing
this analysis is the recently discovered and hitherto
unsuspected asymmetry of the beta interaction under
spatial inversion.? It is easy to show that this asym-
metry leads to a dominant circular polarization of the
y-ray spectrum. For example, the beta interaction most
commonly assumed to date, taken together with the
two-component neutrino theory,?® predicts radiation,

1R. J. Glauber and P. C. Martin, Phys. Rev. 104, 158 (1956).
Hereafter this paper will be referred to as (I). See also R. J.
Glauber and P. C. Martin, Phys. Rev. 95, 572 (1954).

2 Wu, Ambler, Hayward, Hoppes, and Hudson, Phys. Rev.
}05, 7%413 (1957); H. Frauenfelder et al., Phys. Rev. 106, 386

1957).

3T. D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957);
also L. Landau, Nuclear Phys. 3, 127 (1957); A. Salam, Nuovo
cimento 5, 299 (1957); and W. Pauli, Handbuch der Physik
(Verlag-Julius Springer, Berlin, 1933), Vol. 24, pp. 226-227.

which, in the absence of a Coulomb field, would be
completely circularly polarized.* It is therefore of
interest to determine more generally the degree of
polarization in the presence of a Coulomb field. The
present paper, in providing this analysis, is devoted in
part to the larger problem of simplifying relativistic
calculations for electrons moving in a Coulomb field. It
is hoped that the methods outlined will also be useful
in other contexts.

The most important corrections to the radiation
intensities previously calculated result from a more
exact treatment of the relativistic effects and from
taking into account the influence of atomic screening.
The former corrections are the dominant ones for the
innermost S-state electrons; the latter are more im-
portant for electrons further from the nucleus.

That relativistic corrections to the allowed radiative
capture of S-state electrons should be large is easily
made plausible by showing that these events must
always involve the essentially relativistic electron spin.
For radiative capture to occur, the electron must emit
a photon during a transition to an intermediate state
from which it may be captured. Since only spherically
symmetric wave functions differ from zero at the
nucleus, the intermediate state must be an S state. A
spinless particle, however, cannot radiate a single
quantum in the course of a transition from one spheri-
cally symmetric state to another. Hence radiative cap-
ture of electrons in spherically symmetric states must
involve their spin. The simplest possible process open
to an S-state electron, and the one most extensively
treated in (I), is radiation of a quantum by a reorien-
tation of the electron spin during capture. In this case,

4This point has also been noted by R. E. Cutkosky, Phys.
Rev. 107, 300 (1957).
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a large fraction of the energy released is carried off by
the photon and the electron suffers a relativistic recoil.
A second intrinsically relativistic mechanism, giving
rise to radiative capture of S-state electrons, is emission
of a single quantum when a virtual positron, ejected by
the nucleus, annihilates the electron. Still a third
process is the transition of S-state electrons to P states
from which direct capture may also take place. (Rela-
tivistic P; wave functions do not vanish at the origin
since, as a result of spin-orbit coupling, they contain an
admixture of S state.) These last two features have
been only approximately included in (I) and will here
be treated more exactly. While the latter two relativistic
effects noticeably alter the 15-state spectrum, screening
influences it only slightly. The 1.5 electrons, which are
responsible for practically all the S-state radiation, lie
so close to the nucleus that they are almost unshielded.

The importance of these relativistic and screening
corrections to the intensity is interchanged in the cap-
ture of P-state electrons. As indicated in (I), these
electrons emit predominantly low-frequency quanta
while making electric dipole transitions to the inter-
mediate .S states from which they are captured. Rela-
tivistic effects may therefore be expected to be quite
insignificant. On the other hand, all of the P-state
electrons are on the average sufficiently far from the
nucleus to make screening corrections sizeable.

Insofar as polarization is concerned, it is easily shown
that the radiation emitted in a transition which involves
no change of spatial parity will be completely polarized
if the beta interaction consists of only scalar and tensor
parts, or of only vector and axial vector parts, and if a
two-component neutrino theory is assumed. Under the
same assumptions the radiation emitted with a spatial
parity change of the radiating system is unpolarized.
This means that the radiation from .S states will be
polarized circularly while the radiation from P states
will not. As discussed in (I) and above, however, there
can be electric dipole radiation, that is, unpolarized
radiation emitted during K capture because the .S elec-
tron is partially in a Pj state as a result of the atomic
spin-orbit coupling. In this simple example, then, the
lack of complete polarization of the radiation accom-
panying K capture is directly related to the fraction of
radiation which is electric dipole in character. It will
emerge that this fraction is quite small except at very
low energies.

The use of the Dirac equation to treat the relativistic
effects leads to some mathematical complications. As
in the earlier presentation, it is convenient to find a
function, the Green’s function, which expresses the
probability amplitude that an electron which has
emitted a virtual quantum of a certain energy, propa-
gates inwards to the nucleus. For the Dirac equation,
this probability amplitude depends on the electron
spin and hence the Green’s function is an operator
which acts on Dirac spinor wave functions. The
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determination of the transition amplitude for radiative
capture and of the gamma-ray spectrum, by multiplying
explicit matrix representations of such quantities, would
be quite tedious. Considerable simplification is achieved
by employing only the general algebraic properties of
the Dirac operators in obtaining the Green’s function
and the wave functions and in carrying out the re-
mainder of the calculation. In the second section of
this paper, a method is developed which determines
each wave function as a linear combination of Dirac
operators applied to a free-particle spinor. By a similar
technique, the Green’s function is written as a sum of
Dirac operators multiplied by a scalar radial function.
The procedures which take advantage of the properties
of traces to simplify calculations with free-particle
Dirac spinors may then be used with these spinors and
Green’s function for the Coulomb field. In the following
section, these procedures are employed to evaluate the
intensity and polarization of radiation emitted by
electrons in the K shell.

The effects of atomic screening which are the major
correction for electrons further from the nucleus, are
discussed in the fifth section. For these purposes, it is
sufficient to assume that the electrons all move in the
same average potential. Then, as in (I), the exclusion
principle may be neglected in computing the matrix
element for radiative capture of any one of them. The
fact that the average potential in which the electrons
move is different from the field of an isolated nucleus
alters the predicted gamma-ray intensities in a manner
which is easily understood. In the energy region of
interest, the probability amplitude for capturing an
electron which has undergone a virtual radiative
transition decreases very rapidly as the distance of the
electron from the nucleus increases. In other words,
the Green’s function has a short range. Since its range
is short compared to the first Bohr radius, the Green’s
function is significantly different from zero only where
the electric field has almost the pure Coulomb form.
As a result, screening does not greatly affect the Green’s
function. The short range of the Green’s function also
means that the electron can be radiatively captured
only when it is initially in the neighborhood of the
nucleus. Since the electron wave functions are spread
out as a result of screening, the likelihood of finding
the electron near the nucleus, and hence, the probability
of radiative capture is decreased. In atoms which are
not too heavy, the probability of radiative capture of
electrons in the L shell is considerably diminished and
the likelihood of capture of electrons beyond this shell
reduced to insignificance.

The results of the more refined treatment carried
out here have been expressed as correction factors
multiplying the simpler functions which occur in (I).
Approximations for these correction factors have been
derived which are quite accurate for elements with low
charge (for example, A% and V¥). With these approxi-
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mations, observable departures from the less accurate
treatment are predicted. The experimental evidence
appears to be in agreement with these modifications.

2. RELATIVISTIC COULOMB WAVE FUNCTIONS
AND GREEN’S FUNCTIONS

Calculations, which treat electrons in the presence
of a Coulomb field relativistically, can in most cases be
simplified by expressing the electron wave functions
and the Green’s function with the help of linear combi-
nations of Dirac operators. The algebraic properties of
the operators can then be used to expedite the calcu-
lations in the same way as they are employed to
simplify relativistic problems involving free electrons.
In this section expressions having the desired form will
be obtained with the aid of the second-order Dirac
equation. The solutions to this equation will be con-
veniently derived by introducing an operator which
bears a resemblance to the orbital angular momentum.
The angular eigenfunctions of this operator will be
constructed from ordinary angular momentum eigen-
functions by applying simple projection operators. The
wave functions and Green’s function of the radial
second-order equation corresponding to given angular
eigenvalues will also be determined. From the solutions
to the second-order equation so obtained, the wave
functions and Green’s function of the first-order equa-
tion will be constructed by applying appropriate
projection operators.

If ¢, is the wave function of an electron in the ith
state and E; is its energy, then y; satisfies the Dirac
equation®

Ly p—vo(Eit+Ze?/r)+m:=0. (2.1a)
Tts adjoint, ¥*yo=1;, obeys the corresponding equation
YLy p—vo(EitZe*/r)+m]=0, (2.1b)

in which p is assumed to act to the left. It is convenient
to determine y; by applying the projection operator,
®4, for positive mass, to a function ¢;,

Yi= 2m) [ —vy-p+vo(EitZe/r)+m]ep:

=@, 0 (2.2)

which must then satisfy the second-order Dirac equa-
tion,

Ly - p—vo(Eit-Zeé/r)+m]
XL=7-p+vo(EitZe*/r)+m]e:i=0,

[p4m2— (Eit+Ze/r)2—ia,Ze/r"] oi=0.

The operator a,= e-r/r is the component of the Dirac
matrix « in the direction r. The adjoints of these

(2.3a)
(2.3b)

% The notation used in this paper is the same as that defined
in (I). Natural units are employed and the Dirac matrices satisfy
the relations: vy, +vivu=—20uw, vi=Bfe; (§=1,2,3), and
Yo=B= —ivys.
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equations are easily seen to be

ot p—vo(E;j+Zeé/r)+m]

X[—y pt+vo(Eit+Zeé*/r)+m]=0, (2.4a)

oL p*+m?— (E;+Zé/r)*—ia,Ze*/r*]=0, (2.4b)
where g;=¢;*B,

Vi= o — 1 p+vo(Ei4-Zé/r)+m](2m)~L, (2.5)

and p is again understood to operate to the left.

As in the Klein-Gordon equation, the energy appears
quadratically and linearly in Egs. (2.3) and (2.4).
Hence, as in a Klein-Gordon equation, the orthogo-
nality relations satisfied by solutions of different
energies involve weight factors dependent on the states.
These are easily found by the conventional procedure:
Equation (2.3b) is multiplied by @; on the left, Eq.
(2.4b) by ¢; on the right, both expressions integrated,
and the results subtracted. The orthogonality relation
which emerges has the form

27¢*
f draj(Ei+Ej+ )¢i=o,

4

(2.6a)

for E;#E;. The normalization of ¢; is most conveni-
ently chosen to agree with the normalization of the
first-order wave function, that is, so that

1= f dry M= f dt ;®1v0P4 s

EAZé/r
- furs (B Yo
m

Equation (2.3b), which involves only one of the Dirac
matrices, may be solved more easily than Eq. (2.1a).
For this purpose, it is convenient to introduce spherical
coordinates and express the square of the total momen-
tum as

(2.6b)

pr=rlp2r+ L2,

where p,=—19/9r is the radial momentum, and L, the
usual operator for orbital angular momentum. The
operator, L2, may in turn be expressed as

L2 = :K"(‘,K—B)a
where

K=B(c-L+1). 2.7

This operator, &, first introduced by Dirac, has
several useful properties. It commutes with the first-
order Dirac Hamiltonian and therefore identifies a
constant of the motion. It also commutes with a,.
Further, its magnitude is related to the magnitude of
the total angular momentum, J?= (L+3e)?, by the
equation

K= (o LH1)= (Ltdoy 3=+,

Since the eigenvalues of J? are 7(j+1) where j=%, 3,



1310

-, the eigenvalues of &2 must have the values (j43)%
The eigenvalues of &, which will be de51gnated by K,

are therefore restrlcted to
K=d41,42 ---. (2.8a)

The absolute value of K will be denoted by « and has
the value

k= [K|=j+1. (2.8b)
In terms of X, Eq. (2.3b) may be written as
{02+ [R(X—B)— (Ze»)*—ia,Ze* ]/
—2EZ¢/r+m*—E2}ro;=0. (2.9)

The coefficient of 1/7* takes the place of the operator
for the square of the orbital angular momentum in the
Schrédinger equation. This correspondence may be
brought out by introducing the operator,®

L=—KB—iZear, (2.10)

in terms of which, the second-order Dirac equation is
[p24L£(L+1)/P—2EZe/r+m—E&Jre;=0. (2.11)

Since the operator £ satisfies the equation £2=X?
—(Ze»)?, its eigenvalues, A, are [ (j+3)— (Ze?)*]h
The positive square root will be designated by

A=A =[K2— (Ze?)* ] (2.12)

Eigenfunctions of the operator £ which are at the
same time eigenfunctions of Eq. (2.9) satisfy

[p24+AQA+1)/P—2EZe*/r+m*— E&Jro;=0. (2.13)

The pair of uncoupled equations for A==\ replaces
the coupled first-order equations of the usual treatment
of the Dirac equation. The solutions to these equations
may also be taken to be eigenfunctions of X and a
component of the angular momentum, J, since £, X,
and J, all commute with one another.

The eigenfunctions and eigenvalues of Eq. (2.13)
can be obtained by a variety of methods one of which
is outlined in Appendix A. The eigenvalues, E;, are
given by

E;=m[1+2%/ (n.4+N+3£3) 175, (2.19)

where 7, the radial quantum number, takes on the
values 0, 1, 2, - - -, and where the alternative signs refer
to A=)\ respectively. The normalized eigenfunctions
are

0= (2uar) T exp (uar)Xa e (d/d2u )™
XL (Q2upiar) 2 exp(—2ue)], (2.15)
where
p=m—

E2, (2.16)

and where X,¥™: is an angular eigenfunction of the
operators X, &£, and J,, whose construction will be
described presently. These stationary states of the

8 The introduction of the operator £ was suggested to us by
Dr. K. A. Johnson.
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second-order equation are displayed in the energy-level
diagram of Fig. 1. They include the solutions to two
first-order equations, the familiar first-order Dirac
equation, and the first-order Dirac equation with the
sign of the mass reversed. Equivalently, if ¢; is an
eigenfunction of either of the operator factors occurring
in Eq. (2.3a), it satisfies the second-order equation
(2.13).

The eigenfunctions of the first-order equation (2.1)
also may be taken to be eigenfunctions of X and J..
These particular eigenfunctions of Eq. (2.1) must be
expressible as combinations of the solutions to Eq.
(2.13) which have the same eigenvalues E;, K, and ..
In general there are two such wave functions, one for
each of the values £=a4[x*— (Z¢*)?}*=-A\. Neither of
them need be an eigenfunction of the first-order equa-
tion since £, unlike &, does not commute with the
ordinary Dirac Hamiltonian. The pairs of solutions of
the second-order equation which must be combined to
form eigenfunctions of the first-order equation are
joined by the brackets in Fig. 1. The correct linear
combinations are most simply determined by applying

- 303/
30 , 30 50,
VP Qe A —" - 3P ——
2,0 =2,1 3/2 2,1 -2.0
Vo 2 2
N /"
38,
/2 _3p”2
-2.0 20 5
N:2 . R
J R L e
; © 2Py,
25,
-10 1,0

N2 | i i S,

A/K>0 N/K<O
STATES FOR A=-A KNr
STATES FOR A=A K Nr

F16. 1. Energy-level diagram for an electron bound in a Coulomb
field according to the second-order Dirac equation, (2.3a) or
(2.11). These levels are twice as numerous as the familiar ones for
the first order equation, (2.1a). (The energy intervals, plotted
vertically, are not drawn to scale.) Multiplets of levels are grouped
according to the total quantum number N, shown at the left.
Levels for negative values of the quantum number A are indicated
as solid horizontal bars, while those for positive A are dashed.
The individual levels are labeled by the pair of quantum numbers
K, n, appearing either above or below the bar.

The eigenstates of the first-order Dirac equation may be
expressed as linear combinations of degenerate pairs of the states
indicated above. The degenerate states superposed must have
equal values of K, and A==\, Such pairings are indicated above
by brackets which are labeled according to the hydrogenic levels
they produce. The levels in the right half of the diagram are
those for which A/K is negative, while those in the left half have
positive values of A/K. Thus, the levels at the right are those for
which the expectation value of 8 approaches plus unity as Z—0.
In this limit they are the principal contributors to the linear
combinations shown. For certain of the energy levels no de-
generacy with respect to K exists. For this reason the hydrogenic
states 1S}, 2Py, 3Ds, - - - arise from the single states of the second-
order equation indicated.
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the projection operator occurring in Eq. (2.2) to remove
the negative mass part of the functions, ¢; in Eq.
(2.15). Since the state specified by a given energy, K,
m., and sign of the mass, is unique, the same function,
apart from normalization, will be obtained by applying
the positive-mass projection operator to either of the
two solutions, ¢;, corresponding to A=-4\. Before
doing this, it is necessary to express this projection
operator in spherical coordinates. This may be accom-
plished by using the identity e-p=7"2(a'r)(a 1) (e p)
=a,[ p,+io-L/7], and Egs. (2.7), (2.10), to write

zZé
m‘f"Yo(Erf‘—) —-Y'P
7

0 £+1 '
=m—I-BE¢+iﬂar((—9—+ ) (2.17)
7

4

The previous discussion must be amended for a
certain special subset of states of the second-order
equation, those for which #,=0 and A= —A\. As indi-
cated in Fig. 1, there is no second eigenfunction in this
case, which has the same eigenvalues for E; and &, but
for which A is positive. The eigenfunctions of the first-
order equation must therefore be determined by apply-
ing @, to the state for which A= —\. The states singled
out in this way are the ones with maximal total angular
momentum for a given principal quantum number;
among them are the states 153, 2P;, 3D;. Each has a
wave function for which the relations

o L£+1
E;=m\/k and (———l—
or

) 0i=—pip;  (2.18)

4

follow from Egs. (2.15) and (2.16). Consequently, the

result of applying ®; to any of them is

@m) Y m~4-BE;+1Ba.[ (8/3r)+(1—N) /7 ]} s
= (207 (k+N8—1Ze%Barr) pi= (26) 7 (k+XK) .

In a similar manner, the projection operator for negative

mass operating on these states simplifies to

(2m)y{m—BE:;—iBa,[ (8/3r)+ (1 —N)/r]} ¢
= (2071 (x—K) .

(2.19a)

(2.19b)

Thus, when #,=0 and A is negative, the eigenfunction
for which K=« does indeed satisfy the first-order Dirac
equation. The solution for which K= —k satisfies a
Dirac equation in which the mass has the opposite sign.
More generally, the solutions for which the ratio A/K
is negative are the ones which correspond to expectation
values of 8 near plus one rather than minus one. Thus
these states are the principal contributors to the linear
combinations which form the solutions to the first-
order equation. For this reason it is convenient to
generate the solutions to the first-order equation by
applying @, to solutions of the second-order equation
for which A/K is negative,
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The solutions to the first-order equation may be
displayed in a more familiar form by using the canonical
representation in which 8 and spin are diagonal. For
the purpose of constructing eigenvectors of £ and X
in this representation, it is convenient first to determine
the angular eigenvectors” X ¥-m: for which

chiK’m" ZKXiK’m’, ]inK’m":—' sz,bK"”‘,

and

(2.19¢)

This may be accomplished by using the familiar
properties of the angular momentum operators® together
with the definition, Eq. (2.7), of X. The angular
eigenfunctions for which the eigenvalues of 8 and X
have the same sign are

k+m,—%172
_.___._1_] Y“_l’”bz—‘%(g)x ey

K—

6X:EK'mz= :l:x:]:K'mz.

X 5om=(Q) =[

K—mz—%'%
+[—J Ve (Q)x,—;  (2.20a)
2k—1

those for which the eigenvalues of 8 and & have
opposite sign are

K—mz+%
2k+1

kt+m+5 7
-{——J Vmeh (@)X~ (2.20b)
2k+1

@) =| | T

The functions, ¥;™(2), occurring in these expressions
are normalized spherical harmonics which are functions
of the direction, Q; the spinors, X, are eigenvectors
for which fX =X, and o x*=x*.

In the absence of the Coulomb field (Z=0), each
eigenvector of 8 and & is also an eigenvector of £ and
X. For nonvanishing Z, however, £ and 8 do not
commute and each of the two eigenvectors X \K:™z of
£ is a linear combination of the two eigenvectors,
X K™= of B. As a result, each eigenvector, X,¥'™= may
be determined by projecting either eigenvector, X X:ms
or X_Xm: onto the subspace in which £=A. The
operator which performs this projection is (£-4A)/2A.
A convenient choice is to write each eigenvector of £
as the projection of that eigenvector of 8 with which it
would coincide if the Coulomb field vanished. With
this choice, and the introduction of a normalization
constant which will prove convenient, the expression,

22
] X:FK'mz:
K+, :

7 The symbol x is used generically for spinor functions of
angle. Its superscripts and subscripts identify the particular
function of angle referred to.

8 These spherical harmonics have the standard phases defined,
for example, in W. Magnus and F. Oberhettinger, Special Func-
tions (Springer-Verlag, Berlin, 1943), p. 53.

K,mz—

(2.21a)

AEL
Xﬂ:)\ [

AN
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results for the eigenvectors of X, £, and J, for which
K>0 and the corresponding expression,

K,mz —

AELr 2a
e

2N Le+A

occurs for the eigenvectors for which K<0. In the
future, the index m, will be suppressed.

In carrying out expansions in the eigenfunctions,
X4X, the non-Hermitian character of £ must be taken
into account. Orthogonality relations exist only in the
sense that the scalar product of an eigenfunction of £
having eigenvalue A with an eigenfunction of £t having
an eigenvalue other than A*) is zero. (Although £ is
not Hermitian, it has real eigenvalues, A=A*.) Since
B anticommutes with the skew-Hermitian part of £,
and commutes with its Hermitian part the operator
£t is equal to BLA. This means that the eigenfunctions
of £tare Pauli adjoints, (X,X)*B, of the eigenfunctions
of £. The orthonormality of these functions is explicitly
demonstrated for K>0 by using the orthonormality of
the eigenfunctions of the Hermitian operator, X, and
the idempotence of the projection operator (Ad=£)/2\:

3
] X, Ems  (2.21b)

f A (Q)BX A~ (2))
=8, f A (2)BXa(2))

24 Ak £
f d0 (xq:x*(g), x;ﬂ(ﬂ))awaw
oY n

K

= — (A/N)dsadxu (2.22)

The more general orthonormality relation for arbitrary
Kis

f 2GR (@BXAE ()= — (A/N) (K/oadxcrr. (2.23)

With the choice of wave function normalization® made
in Eqgs. (2.21), the invariant integrals (2.22) and (2.23)
reduce for the cases A=A’, K=K’ to the values 1.

The solutions to the first-order equation, ¥;= ®4¢;,
are therefore given by

Yi=c\(2m) Y m+BEA+iBa,[ (d/dr)+ (1—N)/7]}
X Q2uar) e (d/d2ua) ™
X[(2ug)rrtd-lg2uir|x_y«  (2.24a)
for K>0, and

Yi= o\ (2m) Y m~+BEA+-ifa.[ (d/dr)+ (1+N)/7]}
X (2uar) et (d/d2uir)™
X[ Quar)rridtie2uirx,—«  (2.24b)

9 While this normalization is convenient in applications re-
quiring expansions of invariant functions, the positive-definite
normalization /" dQx*(2)x () may also be used. In that case the
factor multiplying the Kronecker delta in (2.23) would be —A/K
instead of —AK/Ax. :
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for K<0. The normalization constants, ¢y, occurring
in them, are evaluated in Appendix B, and the spinors
are given in the spin, B representation, by Egs. (2.20)
and (2.21).

Several of the statements made above are illustrated
by the two 1S electron wave functions (one for each
direction of the spin). Of the solutions to the second-
order equation having #,=0, j=1%, and A=-—[1
— (Zé*)*]}, the two for which K=—1 are annihilated
by the positive-mass projection operator and the two
for whichK=1 are unchanged on applying this operator.
The latter, which have the energy, Eis=m[1— (Ze?)? ]},
are given by

v [ w1t ]%(2 -
= v
e T(A+1)T(2A+1) Has

Xexp(—p1sr) A— L)X %, (2.25)

where Egs. (2.20) and (2.21) have been employed to
replace X% for k=1 by (4r)~*X,*. In this expression,
the quantity uis equals Ze?m or 1/a where a is the
Bohr radius. These wave functions have been normal-
ized so that SY™dr=1 as can be verified directly.
Normalization of more complicated bound state wave
functions is most conveniently accomplished by using
certain properties of the Green’s function to be derived.

The Green’s function, G(E;r;x") of the first-order
Dirac equation, like each wave function of that equa-
tion, is easily found by applying the projection operator,
(2.2), to the corresponding function G(E;r,r’), of the
second-order equation. The latter equation, when
expressed in spherical coordinates, is the inhomogeneous
counterpart of Eq. (2.9),

[p2—2EZe/r+m?— B>+ L£(L+1) /P IrQ(E; r,x')y
=70(r—1"). (2.26)

The Green’s function, G(E; r,r’) may be expanded as a

bilinear series of angular eigenfunctions and their

adjoints, multiplied by coefficients, gaa-(E; 7,7’), which
depend on the radial coordinates

GE;rx)= 2 — (KA/k\)gn,a(E;7,r)
A

I,A/I
XX (@) Far (R).  (2.27)

Taking the scalar product of Eq. (2.26) with X, on the
left and with X,s on the right leads to the conclusion
that gaar=gadaa.
In dimensionless notation, in which
“2=m2_E2; 77=Z62E/:u;

x="2ur, ya(n; 2,2) =2urgn(E; ')y, (2.28)

the function ya(n; x,2") satisfies the equation

[d2i17 1 AQA=£1)

dx? s 4

-3 " ]yix(n;x,x’)=—6(x—x’). (2.29)
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The boundary conditions imposed on the Green’s
function, G, require that each radial Green’s function,
Y4, be finite at infinity and obey appropriate regularity
conditions at the origin.l These functions, ys, may be
simply obtained from the solutions of the homogeneous
equation, fx(x), which fulfill the boundary condition
at infinity, and the others, &4 (x), which behave properly
at the origin. In terms of them, as may be verified by
integrating over a small region containing «’, the
functions, y,, satisfy

ya(@x) = fa(@s)ha(x<) /[ faka’ —hafa']. (2.30)

In this expression, x< represents the smaller, and x>
the larger, of the two arguments of y4. The denominator,
the Wronskian of f, and %4, has the same value for all
x. For large «, the second derivative and constant terms
dominate Eq. (2.29), and two solutions behave as e**
and ¢~**, The function, fa, must therefore be the
Whittaker function W, y43. For small x, the 1/4? and
second derivative terms are the dominant ones in Eq.
(2.29); therefore the solutions behave as xM?+# and
a~M¥FE Only the former is admissible. Since one of the
arguments of the Green’s function is confined, in dis-
cussing electron capture, to values smaller than the
nuclear radius, it is sufficient to use this small-distance
approximation for the interior solution, %4, and to write

gan(E; )

I'(3—n+r£3) )
— T Qur )i
I(2A1£1) rs

W g na3(2p75)

(2.31)

In problems in which the arguments of the Green’s
function are unrestricted, the exact solution to Eq.
(2.29) which behaves as x*#%} near the origin must be
used. The resulting generalization of Eq. (2.31),
involving the confluent hypergeometric function, 1/, is

gn(E; 7)) =[T G—n+r3) /T (IN+1£1) ] (2ur )i
Xexp(—ur<) 1F1(A\+3—n3, 2011, 2uro)

XW gag3(2prs) /1>, (2.32)

The Green’s function, G(E), which satisfies the first-

order equation

[y p—vo(E+Ze*/r)+m]G(E; x,x') =b(r—1),
is related to the second-order Green’s function by

G(E)=0,2mG(E). (2.33)

The fact that the first-order Green’s function, G(E),
is infinite when E is in the discrete spectrum of the
Hamiltonian and that the residues at these points are
bilinear combinations of the corresponding eigenfunc-
tions may be used to deduce the normalization constants

10 The regularity conditions on G near the origin are the same
as those imposed on the wave function, and discussed in Appendix

UE. T. Whittaker and G. N. Watson, 4 Course in Modern
Amnalysis (The Macmillan Company, New York, 1943), p. 337.
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for both the first- and second-order wave functions.
This procedure is carried out in Appendix B.

3. RADIATIVE K CAPTURE

In view of the recently discovered asymmetry of the
beta-decay interaction under spatial inversion, it is
desirable to examine the polarization as well as the
intensity of the radiation predicted by a fully relativistic
theory of radiative K capture. This parity asymmetry
is taken into account by replacing the capture Hamil-
tonian considered in (I) by a more general one, for
which the matrix element, Ny;, takes the form!?

Nyi= S ATNO) [ COFiysCO TG,
(GRY

In this matrix element, the primed constants refer to
the parity nonconserving interactions; 4ys=#yoy1v2vs
is Hermitian; the index (s) takes on the values S, V,
T, A, and P, for the scalar, vector, tensor, axial vector,
and pseudoscalar parts of the interaction; and the
quantity (T\®),; represents the corresponding nuclear
matrix element.

An additional, but minor, modification of the pro-
cedure discussed in (I) is caused by the singularity at
the origin of relativistic Coulomb*S-state wave func-
tions. Because of this singularity, it is necessary to
consider the fact that the capture interaction occurs
over a finite nuclear volume. The details of the nuclear
density distribution within this volume, however, do
not significantly affect a quantity like the ratio of
nonradiative to radiative capture. It is therefore suffi-
cient, in determining this ratio, to use proton and
neutron wave functions which are constant inside the
nuclear radius, 7y, and to employ the Dirac electron
wave funciions appropriate to a point charge. If the
variation in the neutrino wave function inside the
nucleus is also neglected, this procedure is equivalent
to averaging the wave function of the electron under-
going capture over the small nuclear volume. Apart
from these modifications, the required matrix element
has the same form as the one derived in Eq. (2.30) of (I),

M (k,p)=e(2w/k)*(4mry®/3)7

(3.1)

Xf drfdr(ép(O)Nﬁg(Ei—k; ' x)e-ikr
r'<ry

X[ze'p"l_'ieuo'nvkv]‘pi(r))- (32)

The function ¢,(0) is the neutrino spinor evaluated at
the origin, &, is the photon four-vector, and e, is its
polarization vector. It is convenient to employ the two
complex polarization vectors which describe circularly
polarized gamma radiation, that is to introduce vectors,
e, and e_, which satisfy

eiX(k/k)=:t’iei, e-Xe+=i(k/k), ei*'ei=1. (3.3)

12 These constants C‘9, agree with those used by Lee and Yang,
reference 3, in discussing beta decay.
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These vectors can be chosen as e, = (e,41e,)/V2 in a
right-handed coordinate system in which the z axis lies
along k. Radiation associated with the vector e, will
be designated as right handed and that associated with
e_ will be called left handed.®® By means of the identities

e, ok, =10+ (eXk)— (e- )k,
and
3.4

Q1=1Y5023="1Y501,

the term dey,0,k, occurring in Eq. (3.2) may be
reduced to

tey ok, =—[(a-ey)x (o ey) ]k
=F (1=iys) (o-eL)k. (3.5)

As has been indicated in (I), this term of Eq. (3.2)
provides nearly all the intensity in capture from S states
while the 2e-p term is principally responsible for the
photons emitted in capture from P states. The 2e-p
term will be shown to lead to radiation in S-state
capture only because the relativistic S states contain a
small P-state admixture due to spin-orbit coupling.
Thus, when the matrix element (3.2) is calculated for
right and left polarized radiation, the important term,
(3.5), contains as a factor, the projection operator,
1-+4ys, which selects neutrinos with a given sense of
spin relative to their direction of motion. It may be
expected, and is easily verified, that a beta interaction
which produces neutrinos with only one of these two
spin directions, or equivalently, a two-component
neutrino theory, will produce polarized radiation in
consequence of this asymmetry. In particular it will be
shown that there would be complete polarization except
for Coulomb effects if the interaction were entirely
scalar, tensor, and pseudoscalar, or entirely vector and
axial vector.

In order to compute the matrix element (3.2) in the
presence of the Coulomb field, it is only necessary to
use G(E;—k;1',x) for # <ry. In this region the simpli-
fied form given in Eq. (2.31) may be employed in the
expansion of G in terms of its angular eigenfunctions.
Since r’ is confined to the small nuclear volume, all
terms in the summation which vanish when 1’ goes to
zero, may be neglected. The only terms which survive
are those for which A= —[1— (Z¢?)?]*. When theangular
eigenfunctions, X_\¥(Q) and X_,¥(Q'), which multiply
this radial function are introduced, and the summation
over K==+1 carried out, the Green’s function becomes

'\ — 2ur’ )21 17 e,
G(Eembs 1) (A—n) (2ur) (”i a )
T(2)) 4 A1
(1 { iZeza,))\-l-l W,,,)‘_g(zm’), (3'6)
A1/ 2a r

13 These designations of circular polarization are suggested, in
contrast to the older ones of classical theory, by the angular
momenta carried by the quanta.
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where
w=m?— (E;—k)> and n=Ze&(E;—k)/u.

In this formula and hereafter A is understood to have
the value appropriate to a state for which j=1,

A=[1—(Ze)*
When the integral representation,
T =)W 5 2—3(2u7) .
= (Z;ur)l—"e—“’f L (Qup-£) T letdy,
0
is introduced, and the first argument, r’, of

G(E;—Fk;1'r) averaged over the nuclear volume, Eq.
(3.6) becomes

f dr'Q(E;—k;r,Y)
r<ry

47!'7 N3
A1

3 (rN)""l e""(1+iZ32a,)
a2\ s/ T@+1) 4\ A1

[y
0

(When averaged over directions of r’ the Dirac matrix,
a,, vanishes.)

Some properties of this Green’s function warrant
discussion. Outside of a region whose range may be
characterized by the distance, p'=[ul+2kE;— k> ]},
the Green’s function has a negligible magnitude. This
distance varies with the photon energy. From a value
of the Bohr radius for zero-energy photons, it decreases
rapidly with increasing photon energy to the order of
magnitude of the electron Compton wavelength. It
remains this size through photon energies k~m and
then increases, becoming infinite at a photon energy
equal to the total energy of the initial electron plus the
rest energy of a positron. When the photon spectrum
extends above this energy, real positron emission, as
well as K capture, can occur. The variation in the range
just described can be qualitatively explained. According
to the uncertainty principle, a process which involves
a large fluctuation in energy must be a short-lived one
and conversely. The virtual emission of a low-energy
gamma ray by an electron can almost conserve energy;
so can the emission of a gamma ray having an energy
of the order of, or greater than, two electron masses,
provided that the gamma ray is due to the annihilation
of the electron and a virtual positron emitted by the
nucleus. Therefore, if the frequency of the radiation
lies in either of these regions, the intermediate state
can persist long enough for the quantum to be emitted
far from the nucleus. If not, the radiation and nuclear
process must take place at positions within a distance
of the order of the electron Compton wavelength of
each other.
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The likelihood of capture of any virtual electron is
enhanced markedly by the attractive nature of the
Coulomb field. The Green’s function exhibits this
property by increasing in magnitude with increasing
charge. This dependence of magnitude on charge occurs
primarily through the parameter n of the parametric
integral in Eq. (3.7). The enhancement is most extreme
for initial states, 7, lying above the 1S state. If the
photon energy equals E;—E;, where the state j has
lower energy than ¢, energy can be conserved in the
intermediate state and the Green’s function then
becomes infinite. This behavior of the Green’s function
occurs, for example, at the resonance of the 2P spectrum
discussed in (I).

A third property of the Green’s function which
deserves mention is the fact that it sums over all states
from which direct capture can take place, both Sy and
P, states. An advantage of working with the second-
order equation is that both are automatically included
in the Green’s function for which A= —[1— (Ze?)?]%.

The replacement s=1¢/2ur in the integral in Eq. (3.7)
and the introduction of this equation into the capture
matrix element, (3.2), yields

st =e( =Y (6,000, 5yt
1s( ,D)—fi(*k*) <¢>N(¢p( ), fm

r\ dQ iZe%a,
X f rdr(—) e hr f ~( 1+ )(Z,ur)“‘l
a 4 A1

X fdss-ﬁ—)\_l (1+S) A —lg=2urs (2e * p+’£ey0'#vkv)€_ik' T

iZe%ar !
X (H— ) (—) e—’/“X+i) . (3.8)
A1 a

In this equation, and henceforth, the parameters, p and
n are understood to have values appropriate to capture
from the 1.5 state,

pr=mi— (Es— kY,

The abbreviation,

n=2¢(Eis—k)/p.

A1 ]%
T (2A+1)a2] A2

(3.9

<¢>N=[ r/a),

represents the average value of the 1S5 electron wave
function within the nuclear volume.

It is convenient to simplify first the dependence on
angles and Dirac matrices of the expression X which
is defined by

aQ iZea, _
X= f:( 1+ ) (2e-p+ieuouk,)e ikt
™

A1
e,
X (1+ )xﬁ.
A1
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Because X operates on a spherically symmetric function,
the differential operator, 2e-p, may be averaged by
itself. With the aid of the anticommutation relation
{a-ke.0.,k,} =0, X may be rewritten as

aQ iZeta\* 9
X=f—[ie,p#,k,— (H— ) 2ie,—
4 A1 or

27¢ 2%,
} (1+ )(e- «—e,0r)
A+1)r A1
T\ 2
- (;';—1) ia,e,,zr,,,k,ar]e‘ik"x+i,

where e, is the component of e along r. The angular
integrations may be performed with the aid of the
relations

aQ aQ .
[=emrmjotn),  [=est= i@,
4 J 4r
aQ 4
—e kT (7,7, — %BI-W) = (éuk"_ %5nV)j2 (kr),
4r
where #=r/r, E=k/k, and the functions 7;(kr) are
spherical Bessel functions. After the Dirac matrices

have been simplified with frequent use of the anti-
commutation relation {e-a, k-a}=0, X takes the form

e (324
S ED)

i1 (kr Zé
LD VR

)2) (io-eXk—e- ak)

B N1
4y ze o 1

+]2(k7)[§(>\+1)e'a 3;_5})

—E( e )2(ic-e><k—e- ak)]x+i. (3.10)
3\t

For purposes of comparison and calculation it is con-
venient to introduce the polarization vectors e, and e_
explicitly and to write the matrix element obtained by
substituting Egs. (3.4) and (3.10) into Eq. (3.8), as

M1s(k,p) = (e/2m) 2w/} (¢ (0) N s
X[A 18t0-eXk—B;ge- ak]X+i) (3.11a)

=—(¢/2m) (2r/k)¥Y)v (¢ (0) N s

X[iWsBls:!:Als](G'ei)X+i), (311b)
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where

A1 mk i (s _(k)[1+1(Za)2
T w rf S{JO 0t ]

SCNE Y

X s~ ﬁx—1(1+s)rr{—)\—l(z#r)2)\e—ur(2s+l) r/a,

(3.12a)
and

A1 mk
———— e drfdsljo(kr)
I‘(Z?\—l—l) ©

(=6 G (m)]
i k’)[ ()\—I—l)(ka 5 2)\)—"()\—!—1)”

XS_ HA—1 (1 —|—S) A1 (Z#T)Q)\e—ur(z.ﬂ—l)e—r/u‘

(3.12b)

The fine-structure constant, a=e¢?>=1/137, has been
introduced in these expressions since the Dirac matrix
@ no longer appears.

All the terms which A4;5 and B;g do not have in
common may be traced to the term 2e-p in Eq. (3.2).
The terms which occur in both and arise from the
e.0uk, term in the equation are the ones which would
give rise to completely polarized radiation in a two-
component neutrino theory with a pure S-7-P or
A~V interaction.

The total probability w,1s5(k) for the capture of a 1.5
electron with the emission of a photon polarized in the
e, sense, is determined by squaring the matrix element
M15(p,k), summing over electron spins, neutrino spins
and momenta, photon momenta, and final states of the
nucleus. For unaligned nuclei, the calculation yields,
in analogy with Eqgs. (2.33) and (4.5) of I,

wlS:Zfdk wi1s(k),
et

wiis(k) =a (2m7")_2<¢>1\’2k[ (kmax)15— k___lz
X; 1 Tr{(NVisIN)[ (A 159v5Bis)?
+8(4182—B1s?) ]},

where (kmax)1s=FE15—AE.

For allowed transitions, a nonrelativistic reduction
of the nuclear matrix elements may be used in evalu-
ating the trace in Eq. (3.13). In terms of the coupling
constants introduced in Eq. (3.1) and the nonrelativ-
istic nuclear matrix elements, {1);; and (¢);;, the ex-
pressions for the differential circularly polarized photon

(3.13)
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spectra are:

W15 (B) =a2rm)2Y) vk ((Bmax) 15— k)% 2 r{ (41

+BiAL WP (| CS P+ C [*+ [ CV [+ [CV]%)

+ @) *([CTP+ [CT' |4 | CA 2+ [C4[%)]

424 15315[! <1>f’vl22 Re(CS*CS’_CV*CV’)

+[(0)s:|*2 Re(CT"CT'—CA*C4) ]

+ (4182 — BiA[|{1)1:]22 Re(CS*CT4CS™*CV")

+1{(6)7:|22 Re(CT*CA+CT*C4)T}. (3.14a)

The term containing A,s°— Bis? is the Fierz inter-
ference term and appears to be absent from g-decay
spectra. Its contribution in Eq. (3.14a) would presum-
ably be negligible in any case since As?— B1s® is small
[O(Za)] at most energies. For a two-component neu-
trino theory, each pair of coupling constants is effec-
tively restricted to satisfy C®'=C®., If both these
simplifications are introduced, the spectra described by
Eq. (3.14a) can also be written

wyis(k) = (a/27r2m2)<§1’>1‘12k((kmax} 15—k)?
XA Ui *L(A1s£B1g)?| CS|?
+ (415F B1s)*| CV "I+ [ {0)7: L (4152 B1s)?| CT |2
4 (41sF B1g)%|C4|7]}, (3.14b)
where either CS or CV, and either CT or C4 vanishes.

The total intensity, obtained by summing Eq. (3.14a)
over polarizations, is

wis= @/ N0 E { LIl €52 O
+[CV 2+ [CV [+ (o) ] 2 (| CT 24| CT' |2
G2 C 9] [ a8 A((hmar)is— B Ris ()
L) ]22 Re(CFCV4-CS*CV)
+[{0) i 22 Re(CT*"CA4-CTVC4') ]

% f b B((kma)1s—B)Fis(B) b, (3.150)
where the abbreviations,
Rys(k)=%(A18*+ Bis?)

Fi5(k)=%(4158*— Bis?) (3.16b)

have been introduced. For the two-component theory
with no Fierz interference, Eq. (3.15a) reduces to

wis= (2a/m*m?){)n* ;[I W2 C3 2+ C7 %)
+ @)zl 2(|CT >+ C4]%)]

(3.16a)
and

X f @k B ((bma) 15— B’ Rus(F).  (3.15b)

The equations, (3.15), are similar in form to the
ones obtained as Eq. (9.15) of the earlier calculation, 1.
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With the approximations employed there, 45 reduced
to unity so that R;s(k) was represented in Eq. (9.16)
of I by (14 Bs?). Since the Fierz interference term
was assumed to vanish in that discussion the term
involving F15(k) was omitted.

In order to compute the fraction of capture transitions
in which radiation is emitted, it is necessary also to
determine the probability of radiationless capture from
the 1§ state. This may be accomplished in the standard
manner, that is, by squaring the amplitude, summing
over initial electron spins, final neutrino spins and
directions, and final states of the nucleus. With the 1§
wave function of Eq. (2.25), this summation is immedi-
ately carried out and the probability

wr= (4r) {Y)n? (Bmax) 15> 27 Tt (Vi Nps(148)) (3.17)

obtained. By using the nonrelativistic approximations
appropriate to allowed capture, and the coupling con-
stants of Eq. (3.1), this expression may be written in
the form

W= (1/7"><"//>N2(kmaX) 188
XAy 2(|CSHCT 24| CY+CV' |
+ (o) |2(|CTHCA 2+ | CT'4+C4'[9)}.  (3.182)

In the two-component neutrino theory with no Fierz
interference Eq. (3.182) becomes

wr= (2/m)@)~* (kmax) 15
XA Dsl2(IC5[2+[CT]?)
+ (o) 2 (| CT[* 4|49}

A comparison with the expression for the P-state
spectrum obtained in Eq. (8.6) of I shows that the
trace appearing in the nonrelativistic treatment of the
P-state term is the same as the one appearing in the
probability of ordinary capture, Eq. (3.17), but differs
from the one in Eq. (3.13). The relative magnitudes of
the various spectra associated with allowed capture
will therefore depend on nuclear properties unless the
terms involving Tr(N; N;B), that is, the Fierz inter-
ference terms, vanish. In the remainder of this paper
that assumption, which appears to be supported by
experimental evidence, will be made. Should it prove
not to be rigorously true, the more general formulas
[(3.14a), (3.15a), and (3.18a)] would have to be
employed.

(3.18b)

4. EVALUATION OF RELATIVISTIC
COULOMB CORRECTIONS

In this section, approximate forms will be obtained
for the quantities, A1s and Big, which describe the
intensity and polarization of the radiative spectra.
According to the approximations made in the previous
paper, the integral, 415, which is associated with spin-
flip radiative capture, is equal to one in the nonrelativ-
istic region, except for terms of order (Za)? and k/2m.
In the relativistic region, except for terms of order Za
not calculated there, it was shown also to have unit
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value. The factor Big, on the other hand, has already
been shown in Sec. 9 of (I) to vary considerably with
energy. At high energies, Big, like 4,5, differs from
unity by terms of order Za. In the binding-energy
region, however, Bys decreases rapidly, tending to zero
with vanishing photon energy. The decrease has been
shown to result from a cancellation between terms
representing capture through intermediate P states and
through intermediate positron states. Again, the errors
in the low-energy region were of order (Za)? and %/2m.

The calculations which will now be performed confirm
the calculation of (I) in the low-energy and medium-
energy region. However, the terms of order Z«a omitted
at high energies are not small, and for heavy elements,
higher order corrections are necessary. For argon, in
particular, the corrections amount to forty percent at
high energies although Za is only equal to 0.13.

The exact calculation of the integrals 4;5 and Big
in closed form for arbitrary charge and energy is possible
only in a restricted sense. If the functions j;(kr) are
written in the form Im (3 7.~"e~ "), where each 7,
is either real or imaginary, then the integration over 7
may be performed and leads to a series of integrations
over the variable s, each of which has the form

s—m=1(14-5) mH1gs

Iy=I‘(2)\— V)f )
o [utpast2us+ik P

(4.1)

where »=0, 1, 2, or 3. When » is not equal to zero,
these integrals diverge, but the imaginary parts of
those linear combinations of integrals occurring in 4;g
and B;g have finite values. The integral for »=0 has
the value

T2\
P a-n)
The other integrations may be expressed by series
© ()a(®)n 2"
@ (149!

where (a¢),=a(a+1)---(a+n—1). For elements which
are not too heavy it is possible to approximate the
functions without employing these rather slowly con-
vergent series.

In the integrals I,, the terms of order (Za)? relative
to unity, may be neglected, that is, A may be set equal
to one. With that approximation, the integrals may be
transformed to ones of the type

1oy Tdy
Ko()=p f 2
0 (py+1)‘-’“

by means of the substitution, s=v/(1—y). Methods
for deriving rapidly convergent series for integrals of
this form have already been discussed in (I), Sec. 8.

of 12N, 1, N+ 1—n; (u—u15—1k)/2p).

n=0

(4.2)
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For the parts of 415 and Bis involving 7o(%7), only
the integrals for which ¢=0 and ¢=1 are required. By
introducing the expansions of these integrals, developed
in (I), the formulas

Ars=Im[2m/ (u+u15—1k)
~+ (nu/ km) (Evs+ips) 2,
Bis=A15(1+3u1s’/km)—% (u1s/k) Im Q,

9 2[1 (M‘Hﬂs‘l’ik)
= nf ———m

(4.3a)
(4.3b)

2u
) 1 +ik—p\ "

+72 (Mls - )] (4.4)
n=1n(n—mn) \ p1g+ik+u

are obtained. In the region where these series must be
used for the terms of Eqs. (3.12) which contain jo(kr),
the terms containing j7s(k7), which would vanish if
retardation were neglected, are negligible. It is possible
to put a bound on them by replacing j.(%r) by the
first term in its power-series expansion, (1/15)(kr)%
The resulting integral is found to contribute no more
than a few percent of the intensity in argon at photon
energies below .

For photons with energies comparable with the rest
energy of the electron, intermediate states in which the
electron is bound become less important and an expan-
sion of the Coulomb Green’s function in powers of Za
becomes feasible. When the computation is carried out
with the initial wave function also expanded to first
order in Za at small distances from the nucleus, the
result is:

A1s=1—Za{ (u/k)+2[1— (m/k)] tan™*(k/w)}, (4.5a)

Bis=1—Za{ (u/B)[1+ (m/F)]
+2[1—(m/k)*] tan"(k/w)}. (4.5b)

[In these expressions, the terms of Eqs. (3.12) which
involve 7:(kr) have been retained, since for photon
energies larger than s, they become significant.] The
values obtained from Eqs. (4.3) used at low energies
and from Egs. (4.5) have been found to agree in light
elements for photon energies in the neighborhood of
half the electron rest energy ; the spectrum has therefore
been determined by the latter formulas at higher
energies. The values of A5, Bys, and Ryg, for argon,
are plotted against photon energy in Fig. 2.

For three particular photon energies, better approxi-
mations to A1 and Big for moderately heavy elements
can be obtained directly from Eqgs. (3.12). The first of
these is vanishing photon energy (k=0); the second,
a photon energy equal to the total energy of a 1§
electron (p=0 and k=Mm); and the third, a photon
energy equal to that liberated when a 1S electron is
annihilated by a stationary positron [u=0 and %
= (14N)m]. In each case, simplifications occur which
make it possible to determine more accurate expressions
conveniently.
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In the neighborhood of 2=0, the integrals, 415 and
Bys may be expanded in a power series in the photon
energy. The integrations over » may then be performed,
and the resulting integrations over s may be reduced to
beta functions. The first terms in these series, exact to
all orders of Za, are

Arg=5(2A+1)[1— (k/m)], (4.6a)
Bis=0+0(k/Zam). (4.6b)

When =0, the integrals in Egs. (3.15) also simplify
and it is possible to evaluate them to second order in
the charge. The result of this calculation is

A1s=1—Za+3in(Za)?, (4.7a)
Bis=1—2Za+ (4—3im) (Za). (4.7b)

The simplifications which occur when p=0 and
n=— are somewhat less extensive. In this limit, the
Whittaker function occurring in the Green’s function
becomes a modified Bessel function of the second kind.
The integrals, 4;5 and Big, are then to second order
in Zao,

Ar15=1—3rZa+2(Za)?, (4.82)
Bis=1—3rZa+(9/2) (Za)2. (4.8b)

Although the first-order effect of the Coulomb field
is generally quite large, the fairly small magnitude of
the second-order terms in Eqs. (4.7) and (4.8) suggests
that the first-order results, (4.5), are fairly reliable, at
least for the lighter elements.

To complete the relativistic treatment of radiative
capture, it would be necessary to determine the spectra
of all shells as accurately as the spectrum of the K
electrons. For the other most important states, the 2P
states, which contribute independently the majority of
the low-energy photons, relativistic corrections would,
however, presumably be less important. It is perhaps
worth noting that these calculations need not be per-
formed in order to make careful comparison between
the 1§ spectrum and its predicted form. The spectra
associated with capture of electrons from different
shells can be separated experimentally by means of
coincidence techniques. By analyzing only those hard
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Fi1c. 2. The values of the amplitude functions A1s(k) and
Bis(k) defined by (3.12a,b) for argon-37 (Z=18). The relativistic
correction factor Ris(k) defined by (3.16a) is also shown.
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4 rays occurring in coincidence with characteristic
K-shell x-rays, a direct test of the predictions of this
section can be made.

5. SCREENING

Screening affects the rate of radiative capture both
by changing the initial configurations of the electrons
being captured and by altering the probability ampli-
tude than an electron reach the nucleus after virtually
emitting a quantum. In order to study these effects, an
approximate model may be used. In this model, corre-
lations are ignored and each electron is taken to occupy
some stationary state of a fixed external potential. The
potential, in turn, is chosen to resemble the one the
electrons themselves give rise to, in addition to the
nuclear Coulomb field. With this approximation, as
proven in (I), all the other electrons may be neglected
in computing the transition probability for a single one.

The first and more important effect of screening is to
alter the wave function of each initial state. The
correction to the rate of radiative capture which results
from this change is quite similar to the one occurring in
ordinary capture. Ordinary capture only takes place
when the electron is initially within the small nuclear
volume. Radiative capture is relatively likely to occur
when the electron is initially within the region where
the Green’s function is sizable. For the photon fre-
quencies of interest, lying above the binding-energy
region and below the threshold for positron production
(k~2m), the range of this Green’s function has been
shown to be comparable with the electron Compton
wavelength. Although the latter is considerably larger
than the nuclear radius, it is still very small on an
atomic scale. This suggests that the radiative proba-
bilities may be corrected for screening in the same way
as the ordinary capture transition probabilities. In
that case the matrix element for capture from a given
initial electron state may be determined merely by
multiplying the unscreened result by the ratio of the
values near the origin of the screened and unscreened
wave functions for that state.

That the second effect of screening, the alteration of
the Green’s function, is quite small, may also be
understood qualitatively. Over the short distance in
which the Green’s function is sizable, the electric field
may be well approximated by the Coulomb field of the
nucleus. In this region the presence of the electron
shells acts only to add a constant, A, to the electrostatic
nuclear potential, or equivalently, to displace the energy
variable in the Green’s function by that amount. This
energy occurs most sensitively in the Green’s function,
Egs. (3.5)-(3.6), through the variable u?=m?— (B:—k
—A)? where E;=m—g; is the total energy of the ith
state in the screened field and & its binding energy.
By neglecting terms of relative order (Za)?, this expres-
sion may be reduced to 2m(k+e+A—A;)—k* where

=m—E; has been introduced for the binding energy
of the corresponding state in the unscreened field, and
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A; for the difference ¢;— &;. Since both A and A; are very
small with respect to k4-¢; the difference between the
screened Green’s function §'s¢(H,—k)=G'(E;\—k—A
+A) and G'(Ei—k) is quite small. Actually, the
approximation G's¢(E;—k)=2G'(E;,—k) is even better
than this argument indicates since the two shifts in
energy due to screening, A and A;, tend to cancel. To
the extent that the electronic charge cloud can be
considered to lie outside the region in which the wave
function of the captured electron is appreciable, the
energy shift, A;, must equal A. In this limit the shells
of atomic electrons play no real role, serving only to
redefine the zero of energy.

The arguments thus far presented depend on the
short-range nature of the Green’s function. Conse-
quently they need not be accurate for photons of very
low energy. Such quanta may be emitted far from the
nucleus and an accurate theory for them might require
a more elaborate treatment of both the wave functions
and the Green’s function. Since part of the energy
region of experimental interest is not very far from the
binding-energy region, it is necessary to check quanti-
tatively the wvalidity of the simple approximation
scheme previously suggested. The methods by which it
has been tested and shown to be sufficiently accurate,
will now be indicated.

To make the screening problem tractable, the
screened Coulomb potential has been approximated by
a Hulthén potential 4

Zeye "
A Osc=

5.1)

1—e

This potential behaves like (Ze/r)—3vZe near the
origin, and decreases exponentially when » is larger
than the atomic dimension, 1/y. By neglecting the
terms which contribute the fine structure, the equation
for g’*¢(E) corresponding to Eq. (I, 3.2) may be written

[V E2—m2+2¢EA ¢ (r) ]G (E; 0,r)=—58(r). (5.2)

The S-state wave functions for this potential have
simple forms (Jacobi polynomials), and the Green’s
function, §'*°(E; 0,7), may also be expressed in closed
form as the hypergeometric function

G'*°(E;0,)
26_1’ T(1+2p/v+09/OTA+2u(1—8) /v)
dar I (142u/7)

XoF1(—n/& 2ué/v, 14-2u/v;e77)  (5.3a)

3 gur 1—e ntlué 7l
dtet| —————— .
f edrr — gy (r+t/ud)

14 The Hulthén potential is discussed in L. Rosenfeld, Nuclear
Forces (Interscience Publishers, Inc., New York, 1948), Vol. 1,

p. 79.

(5.3b)
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In these expressions, the parameters
w=m—F, n=ZaE/u,
g=3[14+A+2ny/w)]

have been introduced. At the origin, the difference
between the Hulthén and pure Coulomb potential
energies is the constant A=%4Zay. The pure Coulomb
Green’s function for the displaced energy, E'=E
—%Zavy, is

e a H2u'r\ "
g(m)=— [ dte—t( ) :
Aoy J, t

where, consistent with the approximations made in
originally deriving Eq. (5.2),

W' =Er—mi—u(14my/w)?k,
' =ZaE /W'—ZoE/u .

A comparison of Eq. (5.3) and Eq. (5.5), which assumes
that the electrons contribute a constant potential shows
that the latter representation is correct to order (yy/u)%.
Since the effective range, 1/v, of the Hulthén potential
is of atomic size (larger than the Bohr radius of an
inner electron and therefore larger than the range of
the Green’s function, 1/u, at even the lowest energies)
and since, in addition, the parameter n decreases
rapidly with increasing %, from its value, unity, for
zero-frequency photons, the approximation of Eq.
(5.3b) by Eq. (5.5) is indeed a very good one. The
error made in replacing the screened Green’s function,
g's(E;—k), by the unscreened one, §'(E;—k—A,), is
somewhat larger than the difference between the former
and G'(E;—k—A). It is smaller, however, than the
difference between G'(E;—k—A) and G'(E;—Fk). An
overestimate of the error may therefore be obtained by
subtracting from the integral in Eq. (5.5) the same
integral with u’ replaced by u. The result shows that
the difference between the screened and unscreened
Green’s function is at worst proportional to the first
power of 7y/u and hence is still quite small.

As discussed earlier, the corrections to the simplest
approximation for screening (multiplication by the
ratio of screened to unscreened electron densities),
should be greatest for low-energy photons and for
electrons in shells outside the K shell. It was therefore
decided to test the approximations by calculating the
corrections of order 7y/u for the 2P state in iron. The
screening parameter occurring in the Hulthén potential
was determined by two independent methods. First,
since the Hartree calculations' had been done for iron,
the screening constant was directly fitted to the com-
puted potential. Secondly, the screening constant was
chosen to fit the observed S-state energy levels. Both
methods yielded about the same value, y=20.23Zam.

In order to determine the matrix element in the
screened potential, it was also necessary to make use

15 M. Manning and L. Goldberg, Phys. Rev. 53, 662 (1938).

(5.4)

(5.5)

(5.6)
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of screened P-state wave functions. Since these wave
functions of the Hulthén potential could not be ex-
pressed in closed form, they were approximated by
wave functions Coulombic in shape but with a scale
factor determined by variationally minimizing the
energy. The energy bound derived from this wave
function was close to the observed energy, and more
significantly, the wave function agreed fairly well with
the 2P Hartree and Hartree-Fock functions. Using this
wave function and the Green’s function correct to
order 7y/u, the probability of radiative capture was
evaluated at a photon energy roughly equal to the
K-electron binding energy in iron and at another energy
three times as large. The predicted intensity was also
computed for these energies on the basis of the un-
screened wave function and Green’s function. The
difference between the latter result multiplied by the
ratio of screened to unscreened probability densities at
the origin, and the former answer determined with the
screened wave function and Green’s function amounted
to less than twenty percent at the lower energy and
about two percent at the higher one. In the present
calculations, therefore, screening has always been
included by multiplying the unscreened probabilities
by the factor

Si= [¥#2(0) |2/ |¥:(0) 2. (5.7

The quantities, .S;, which this procedure requires,
may be found from various sources. In obtaining them
for the K and L shells, use was made of graphs computed
by Rose and Brysk and contained in an unpublished
report.’® For convenience, their graphs are reproduced
here in Fig. 3. In the case of more distant electron
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Fi1G. 3. Approximate values of the screening factors S,; defined
by (5.7). These have been derived from the work of Rose and
Brysk!® and Hartree self-consistent field calculations.!”

16 M. Rose and H. Brysk, Oak Ridge National Laboratory
Report 1830 (unpublished).
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shells such graphs were not available, and instead,
recourse was made to various Hartree self-consistent
field calculations.”” Fortuitously, both argon and iron
are among the elements for which these calculations
have actually been performed. For other elements it
has been possible to interpolate between the various
available calculations to obtain rough values of the
desired ratio. Generally, these rough values are quite
sufficient for the M and higher shells. Their spectra,
which were previously less intense than those of the
lower shells, are so greatly diminished by screening
that they become quite negligible.

6. CONCLUSIONS AND COMPARISON
WITH EXPERIMENT

With the aid of the approximate forms derived in
Secs. 3 and 4, it is possible to determine both the
polarization and intensity of inner bremsstrahlung in
the presence of the Coulomb field. The polarization, P,
is defined as the difference in intensity of right and left
polarized radiation, divided by their sum:

wy1s(k) —w_15(k)

Pisll)=———-"—.
& wyas(k)+w_15(k)

(6.1)

The required expressions for the intensities of polarized
radiation are given by Eq. (3.14). For a two-component
neutrino theory the expression for the polarization
reduces to

P1s(k)=p1s(k)

>f:{l<l>ﬁ!2(|05|2— |C7[3+[{o)ss*(ICT 2= [C4[%)}

X )
Z/:{](1>fi|2(|cslz+]CV|2)+I<U>ﬁl2(fCT]2+ICAIZ)}
6.2)
where
(A15+Big)*— (A1s— Bis)*

(A15+Bi1s)*+ (A1s— 313)2.

prs(k)= (6.3)

At very low energies, the polarization vanishes since
Bi1s=0 while 4;s=1. As the energy rises, 4,5 and Bz
both approach unity except for terms of order Za. At
the higher energies, (41s—Bis)? is therefore of order
(Za)? relative to (Ai1s+Bis)? and the polarization is
not appreciably affected by the Coulomb field. In
particular, the fraction, p, which multiplies the ratio of
nuclear matrix elements is given approximately by

prs(k)=1—%(Za)*(m/k)*{ (u/k)

+2[1—(m/k) ] tan(u/k)}?, (6.4)

17 The elements on which D. R. Hartree and W. Hartree have
performed calculations reported in the Proceedings of the Royal
Society (London), Section A, include : K and Cs, A143, 506 ( 1934) ;
F, Al, and Rb, AlSl 96 (1935) Be, Ca, and Hg, Al49 210 (1935);
Be, AISO 9 (1935) Cl, A156, 45 (1936) Cu, A157, 490 (1936),
Ca, A164 167 (1938) KandA Al66, 450 (1938)
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(where u?*=m?— (E15—k)?) for photon energies which
are not very small compared to the electron rest mass.

If the two-component neutrino theory is assumed,
and in addition the coupling is either entirely scalar
and tensor, or entirely vector and axial vector, then the
ratio of nuclear matrix elements is unity and the polar-
ization of high-energy gamma rays is essentially com-
plete and of one sense for all nuclei. On the other hand,
if the coupling were purely vector and tensor, for ex-
ample, the polarization of pure Fermi ((¢);;=0) and
pure Gamow-Teller ({1);;=0) transitions would both
be complete but the senses would be opposite. If this
combination were to prove correct, the extent of polari-
zation would provide a method for determining the
relative strength of Gamow-Teller and Fermi nuclear
matrix elements of nuclei which undergo allowed K-
capture transitions.

For convenience the intensities predicted by the
calculations in this paper have been expressed as
correction factors multiplying the formulas obtained
by simpler methods. Thus, the ratio of the probability
of radiative capture of electrons in the shell #l to the
ordinary capture probability of 1.5 electrons is given by
the expression

Wni O (* (emax)nt/3Z%2m k .k
__.=_.f (%22(12)2[”1( )d( )
wg T 2%m 12%%m

[(kmax)ls—' (k+eni—€15) T2 S
x |

(6.5)

(kmax) 18 S1s

Here the functions, I,;, are the intensity functions for
the various shells which were discussed in (I) and
defined to contain the relativistic correction factors R,
as in [I, (10.2)]. The constants e,; are the (positive)
binding energies of the electron shells, and the quantities
(Bmax)ni=m—AE—¢, are the maximum photon fre-
quencies which can accompany capture from them.
For the K shell Eq. (6.5) reduces to!8

w18 a (kmax)18
= k(1
WK 7I'7'}’L2 0

The factor S, in (6.5) represents the correction due
to screening. For the energies of interest it is given by
the ratio |¥n°°(0)|%/|¥1(0) |2, that is, by the relative
likelihood of finding the electron in the state %l at the
origin with and without taking screening into account.
Graphs of these factors S,; for the most important
shells are reproduced in Fig. 3. For the remaining shells,
for which these factors are much smaller, they may be
interpolated from available Hartree calculations.” The
most notable effect of the screening corrections is to
reduce the 2P-state spectrum relative to that of the
1S state, and to do so to a larger extent when the
charge is small.

)2R1s(k)dk. (6.6)

max/18

18 Except for the factor Rig this term is just the result of
P. Morrison and L. I. Schiff, Phys. Rev. 58, 24 (1940).
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¥ Fic. 4. Tllustration of the effects of relativistic and screening
corrections on the intensities of the internal bremsstrahlung
spectra accompanying orbital electron capture. The curves labeled
I show the uncorrected theoretical spectra for capture from the
1S and 2P states in Sb', while those labeled II show the intensity

reductions brought about by the corrections.

The relativistic factor, Rys(%) has been evaluated in
the high-énergy region only for the 1S state, where it
is most important. It leads to a correction which varies
relatively slowly with energy. Expressions for it have
been obtained at all energies for light nuclei and at
certain energies for somewhat heavier ones. These
results are contained respectively, in Eqs. (4.3)-(4.5)
and Egs. (4.6)-(4.8). For a given energy, these cor-
rections tend to decrease the intensity ratio given in
Eq. (6.5) from the estimate with no Coulomb field
[R(k)=1]. The decrease becomes more significant as
the charge increases.

The calculations carried to completion are most
accurate for fairly light elements but are probably
qualitatively correct for heavier ones. They have been
performed with the experiments on allowed transitions
in A%, V% and Sb' in mind."*# Figures 4 and §
compare the spectra obtained by using the simple and
more accurate theories. The absolute intensities pre-
dicted by the two theories differ considerably, as Fig. 4
indicates. (The example of antimony has been taken
since the P-state spectrum is more conspicuous in this
case, but comparable changes are produced in most
elements.) Since the relativistic correction varies more
slowly with photon energy than the intensity functions
do, the shapes of the spectra predicted for the individual
electronic states are not so appreciably altered. In Fig.
5, where the two total spectra for A*” have been normal-
ized to produce the same integrated intensity for the 1.5-
state portion of the spectrum, the shapes of the curves

19 T, Lindqvist and C. S. Wu, Phys. Rev. 100, 145 (1955).

2 R, W. Hayward and D. D. Hoppes, Phys. Rev. 104, 183
(1956).

21 Qlsen, Mann, and Lindner, Phys. Rev. 106, 985 (1957).
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differ only slightly. This is due partially to a compen-
sation of the relativistic reduction (=309%,) of the 15
spectrum and the screening reduction (=609) of the
2P spectrum, and partially just to the small region in
which the P intensity is significant in a light element
with a large energy release.

Some other general features of radiative capture
spectra, exemplified by these figures, bear mention.
The shapes of the 1S-state spectra are primarily
determined by the available energy, £max, of the nuclear
reaction. The elementary shape, & (kmax— k)2, which has
a maximum at §8max, is reduced in intensity, and may
be altered in shape by the relativistic factor, R(%),
which in light elements, first increases and then de-
creases with increasing photon energy. In argon, where
the maximum of the elementary form coincides with
the maximum of the factor R(k), this factor tends to
slightly accentuate the maximum; in antimony, the
intensity at all energies is reduced to about 0.4 the
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Fic. 5. Comparison of the uncorrected and corrected shapes of
the total spectral intensity distribution (1.542S42P) for A%,
To compare the shapes alone the spectra have been normalized
to yield the same integrated intensities for the S-state contribu-
tions.

value predicted without taking relativistic Coulomb
effects into account.

The shapes of the P-state spectra, which must be
added to these S-state spectra are primarily dependent,
not on the maximum energy but on the nuclear charge.
These spectra increase in absolute magnitude with
increasing charge and begin to rise steeply as the y-ray
energy decreases to a few times the K-shell binding
energy® (that is, an energy proportional to the square
of the charge). When screening is taken into account,
the intensities are cut down, but to a lesser extent with
increasing charge. Hence the corrections reenforce the
tendency for the P-state spectra to become more
dominant with increasing charge. This effect is apparent
in the argon spectrum and is more pronounced in the
spectrum of antimony. It is probably most graphically

% This effect was first observed and reported in the experiments
of L. Madansky and F. Rasetti, Phys. Rev. 94, 407 (1954).
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illustrated by the spectrum?® of cesium-131, where the
low-energy release and large charge combine to give a
P-state spectrum which dominates the S-state spectrum
at all energies.

Comparison of the experimental results for A%, V4,
and Sb'® with those computed theoretically are con-
tained in Figs. 6-8. The experiment on argon was
performed by Lindqvist and Wu,*** the vanadium
experiment by Hayward and Hoppes,” and that on
antimony by Olsen, Mann, and Lindner.?

The experiments which have been discussed thus far
do not discriminate among the spectra of the various
initial electron states, measuring only the sum of these
spectra. A number of the theoretical predictions may
be checked in greater detail and with greater accuracy
by determining which electron is captured when a given
photon is emitted. An experiment of this kind, where
the gamma rays are observed in coincidence with the
characteristic x-rays which follow capture, has recently
been performed by Michalowicz.?® This experiment

A7
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Fi6. 6. Comparison of the theoretical and experimental spectra
for A%. The corrected theoretical spectrum of Fig. 5 has been
modified to allow for the efficiency of the scintillation counter
in comparing with the observations of Lindqvist and Wu.1

indicates the correctness of qualitative features of the
theory described in (I) and here. If only gamma rays
which occur in coincidence with K-shell x-rays are
observed, there is no precipitous increase of gamma-ray
intensity as the photon energies decrease.?® The steep
rise observed when the total intensity is measured is
therefore presumably explained by P-state capture.

As Figs. 4 and 5 indicate, the relativistic and screen-
ing corrections may affect the absolute intensity of a
spectrum more noticeably than they affect its shape.
A second kind of useful experiment, therefore, is one
which measures the intensity of the radiative capture
spectrum relative to the nonradiative process. In the
antimony experiment, this relative intensity has actu-

28 B, Saraf, Phys. Rev. 94, 642 (1954); 95, 97 (1954).

2¢ The comparison of theory and experiment for A% has been
previously reported by Glauber, Martin, Lindqvist, and Wu,
Phys. Rev. 101, 905 (1956).

25 A, Michalowicz, Compt. rend. 242, 108 (1956).

26 A partial separation of the spectra by coincidence techniques
has also been carried out by N. Rasmussen (private communi-
cation),

ELECTRON CAPTURE 1323

YEXPERIMENTAL POINT AT ! I I I
10H 50.2 -
V49
. d

8l d . R
E >
% ek ) . -
[ .
P . 1S
wi
>
g4 ]
o |
@ .

2k _

2P
2s
o = . 1 T
0 200 200 600
ENERGY (KEV)

F1G. 7. The theoretical y-ray spectra for electron capture in
V# and a comparison of their total with the intensity observed
by Hayward and Hoppes.?

ally been measured and found to agree approximately
with the reduction predicted here. The theoretically
determined reduction factor to be applied to the Born
approximation!® is about 0.44:0.1; the experimentally
determined value is 0.48-£0.10. The theoretically deter-
mined energy at which the two spectra should have
equal intensity is 10345 kev; the experimentally
inferred value is the same.

The calculations presented in these papers treat in
complete detail allowed transitions from the K shell in
moderately light elements. Although only allowed
transitions have been treated, the large magnitude of
the corrections found casts some doubt on the existing
Born-approximation treatments of forbidden radiative
transitions. For quantitative predictions about the
K-shell spectra in heavier elements, the spectra of
other shells in allowed transitions, and all the spectra
accompanying unallowed transitions, the same tech-
niques developed here may be employed. It is to be
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Fic. 8. Comparison of the total y-ray intensities for Sb1® as
predicted theoretically, and as observed experimentally by
Olsen, Mann, and Lindner.2! The separate theoretical contribu-
tions of the .S and P states are also shown.
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hoped that some of these additional calculations will
also be undertaken.
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APPENDIX A

This appendix describes briefly the solution of the
radial part of the second-order Dirac equation (2.13).
This equation may be written in the dimensionless form

@ 7 1 MNAZED
[ i - ]Ui(x)=0, (A.1)
st x 4
by introducing the variables
F=m—E2 = Ze*E;/ s,
pid=m ni=Ze'E;/u (A2)

0i(r)=LUs(2)/x X\¥.

The solution of Eq. (A.1) is a linear combination of
Whittaker functions

Ui(%) =W pine 3 (0) FHdaaW _pinas(—x).

A necessary condition for ¢; to be an admissible wave
function may be obtained from its relation to the
physically meaningful function, ¥;. For the latter to be
admissible, it must predict a finite charge, e/ y¥*¢dr,
in every volume of space. This restriction may be
imposed on a dimensionless form of the first-order wave
function,

x=2ux,

(A3)

1 d 1+=M\1U;
Vi(w)= ——[m+ﬂEi+iﬁar2ﬂi( 8 )} ) . (A4)
%

2m dx x

The restriction that V; vanish at infinity eliminates
from Eq. (A.3) the term with coefficient dy). The
requirement that V; be square-integrable in the
neighborhood of the origin is equivalent to the restric-
tion, ¥V ;(x)—0 as x—0. The Whittaker function, U;
of Eq. (A.3), may be represented as a contour integral
in the positive sense about a branch cut extending from
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zero to infinity

Ui() =y (3/2m)T (ni-5—NF3) e teah i
o+
% f (=B (- f) mi—haEdgtgr, (AL5)

Since the expression in front of the integral behaves as
x M 43V, (x) will behave as %% and hence be
inadmissible, unless the coefficient multiplying this
power vanishes,

0+
(¢/2m)T (pit+3— )\:;:%) f (— )it tig—tgy

= () sin[r (ni+3 —AF ) I (ret3—AFHL(2A£1)
=D(2A£1)/T (3—nArE3) =0, (A.6)

that is, unless #:-+3—A7F3 is a positive integer. This
condition is equivalent to the requirement
ﬂ£=”7-+>\+%i%,
or (A7)
E;=m[1+Z¢/ (n,+N 33T,
where 7, is a non-negative integer and the alternative
signs refer to A===X. For these energies the functions,
u;, may be considerably simplified. The contour inte-

grals, (A.5), reduce to integrals about poles at the
origin, which may be evaluated by the Cauchy formula,

L%}%V@ﬁ=%ﬁ(%)3@lo. (A.8)

Since the function, f(#), in question, has the form,

@) =eg(x+0),
g(§)=efgnrinna,

the derivatives with respect to { may be replaced by
derivatives with respect to x, and # set equal to zero.
Apart from normalization, the functions for which
Eqgs. (A.6)-(A.7) are satisfied, are therefore given
alternatively by

Ui(®) =CxWoina1(2) = corn (= 1) "Wy, a3 (2),
= Careb e FH(d /dug) v (grrtDhtlg—e)
= [T (n, 20 4+1£1) /T (A +1£1) Jo 3=
XMty By (—n,, A +1£1; 2).

(A9)

(A.10)

These functions behave as #*¥%} near the origin, and
consequently, x}V;(x)~a** for both A==\, Each of
these functions, U, therefore leads to an eigenfunction
of the Dirac equation.

APPENDIX B

The normalization of the eigenfunctions derived in
Appendix A, and of the first-order Dirac wave functions,
is simply accomplished by virtue of the relation of the
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latter to the Green’s function, G(E),

Yi()a(r')

G(E;r,r’)=z (B.1)
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In particular, the residue at E; of the function G(E) is
equal to the sum of bilinear combinations of eigen-
functions with that energy. In practice, it is convenient
to express ¥, ¥, and G in terms of the corresponding
functions of the second-order equation. On account of
these definitions, Eqs. (2.2), (2.5), and (2.33), the
relation between the Green’s function and wave
functions takes the form

Res G(E;1,r)=— 2 oa, 2% (1) oar, 25 (1)
E=E; K’'A

X[m+BEA+iay (ipr+(1+A")/r') ]/ (2m)*.
When Eq. (B.2) is multiplied on the left by X,¥(Q)

and on the right by X4,¥(©'), and the products integrated
over 2 and €/, an equation for the radial variables,

(B.2)

—1 UA,Ei(z,U.ﬂ‘)
Res ga(E;rp’)= ————————fdﬂ'
E=FEi (@2m)*  (2ur)
Jd 14A
x(mK(ﬂ’)[erﬁE,--waﬂ(—— )]
a7
UnE;(2u’)
X——LXAK<QI)): (B.3)
2ua’ :

results. The radial Green’s function occurring here has
been defined in Eq. (2.27) and the radial wave functions
in Eq. (A.2). On performing the indicated angular
integrations, the term involving #8a, is eliminated and
B replaced by x/A, so that
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Res ga(E; ")

E=E;

1
=——( 1+
4m

In order to determine the normalized wave functions
Uy, g it is sufficient to identify this expression with the
residue of the radial Green’s function computed ex-
plicitly in Sec. 2. For this purpose it is simplest to
use the form of g (E; 7,7") given by Eq. (2.31) in which
r is confined to small values. The factor in the latter
expression which becomes singular as E—E; is the
function T'(32=31+N—2), whose residue at E=E; is
easily computed,

ResT(3E1+4+A—7)

E=E;
E E;
= Res I‘(—nr——Zé(———))
E=FEi I %

=(—1)nrH {Zezn’!;i[(_lz?——%E]E -5 }-l

= (—=1)Hu3/Zeemdn,!.

K Ez UA,E,‘(ZM{?’) UA,Ei(Z,uﬂ’/)
——) . (B4)

\m 2ua Quqa’

(B.5)

Use of this relation in finding the residue of Eq. (2.31)
followed by identification of the result with (B.4) leads
to a direct identification of the radial functions (A.10),
together with their normalization constants,?

n fm k
Cn= [ (“‘*“) (AN +343)
S8uls\E; A

~4
XI‘(n,—i—Z)\-i—l:{:l)] . (B.6)

27 Another procedure for normalizing the Dirac wave functions
without integrating them has been brought to the attention of
the authors by W. H. Furry and W. H. Lamb. This method is
due to H. A. Kramers and is contained in his book, Quantentheorie
des Electrons und der Strahlung (Akademische Verlagsgesellschaft,
Leipzig, 1938), p. 312. -



