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The semiempirical mass formula and other data previously extrapolated by one of us indicated possible
existence of nuclei with mass values up to twice the largest now known. Here this mass region is further
explored. Extrapolations are revised and the properties of such superheavy nuclei are estimated in more
detail. Despite Z values substantially higher than 137, the E electrons behave perfectly normally because
of the finite extension of the nucleus. Vacuum polarization and vacuum fluctuations are roughly estimated
to make relatively minor alterations in the E electron binding —which exceeds mc2. The effect of nuclear
attraction in speeding up beta decay is calculated approximately. Calculated beta lives are never much less
than 10 4 sec. Beta decay energies and neutron binding energies are calculated from the semiempirical mass
formula. Fission barriers and cross sections for the (n,y) process are estimated. Branching ratios in beta
decay are calculated for the processes of simple beta decay and for "delayed" neutron emission and "delayed"
fission. The latter quantity sets an irreducible minimum to the losses that occur in the process of buildup
under even the heaviest neutron flux. The calculated fractional yield of nuclei which reach Z= 147, A =500
is )0.05. Under a lower flux the losses are greater. All stability calculations in this paper depend upon sub-
stantial extrapolations, mth complete disregard of shell sects and other particularities that may be important,
and therefore can be completely At error Convers. ely, observation of existence or absence of superheavy nuclei
with lives less than a second should test stringently the semiempirical mass formula and the semiempirical
estimates of spontaneous fission barriers.

I. INTRODUCTION

S of January 1953 there were known 383 beta-
stable —or nearly beta-stable —nuclei; but stable

and beta-active nuclei together totaled 1.134. In the
meantime additional nuclei have been found' with
charges up to Z=101 and mass numbers up to A =256.
How much farther can one go? Recently one of us
analyzed the stability of still heavier nuclei with respect
to spontaneous fission, alpha and beta stability, and
neutron escape. ' The analysis was based on three
assumptions, any one of which may be wrong: (1) The
semiempirical mass formula can be extrapolated [Fig.
1(a)j. (2) Shell effects and other particularities do not
dominate the stability relations of superheavy nuclei.
(3) Available information about fission barriers and
spontaneous fission half-lives and other transformation
processes allows of simple extrapolation. It was con-
cluded that if these assumptions make sense then
nuclei very much heavier than those now known
[shaded wedge-shaped region in Fig. 1(a)j will live
long enough ( 10 ' sec) to be subject to experimental
observation. The exact location of the wedge-shaped

' Ghiorso, Harvey, Choppin, Thompson, and Seaborg, Phys.
Rev. 98, 1518 (1955).We made the January, 1953 count from the
table of nuclei presented by Hollander, Perlman, and Seaborg,
Revs. Modern Phys. 25, 469 (1953l.' J. A. Wheeler, in Niels Bohr and the Development of Physics
(Pergamon Press, London, 1955), Chap. 9. A report of this
work was also given at Geneva: J. A. Wheeler, Proceedings of the
International Conference on the Peaceful Uses of Atomic Energy,
Geneva, August, 1955 (United Nations, New York, 1956), Vol. 2,
p. 155. In the discussion at that meeting the question was raised
by D. I. Blokhintsev (Vol. 2, p. 224) as to the stability of the E
electron in the 6eld of a nucleus of charge greater than 137. The
reply (Vol. 2, p. 224-5) gave a brief report of the present con-
siderations, including the binding energy of about 1.85 mc for
Z=170. A recent paper of Blokhintsev makes brief reference to
the same question: D. I. Blokhintsev, Uspekhi Fiz. Nauk 61, No.
2, 137 (1957).

region is sensitive to the constants in the semiempirical
mass formula. The constants in the earlier formula
used in reference 2 were based upon a nuclear radius of
1.48X10 "A& cm and put the tip of the wedge near
A 650, Z 170. Kith the present constants of Green
the radius is 1.2162X10 13A& and the region of ap-
preciable lifetimes is now calculated to end near A 500,
Z 147 [Fig. 1(b)j.Estimated contour lines for neutron
binding energy B„and fission barrier height E~ are
shown in Fig. 2 and beta decay energy 6 in Fig. 3.

Spontaneous fission lifetimes and fission barriers are
by far the most uncertain features in the extrapolation.
Swiatecki' reasons that the nucleus at the top of the
barrier is so highly deformed that nearly all shell
structure can be considered to be broken up. Therefore
the absolute energy of the top of the barrier should
depend smoothly upon Z and A apart from even-odd
effects, as confirmed (Swiatecki) by the available
evidence. However, the energy of the starting point
and, even more, the equilibrium deformation of the
nucleus, are dependent upon shell efI'ects. Swiatecki's
analysis of the observational evidence suggests therefore
that the major uncertainty in fission barrier heights for
superheavy nuclei will arise from inability to predict
equilibrium deformations in this so far unexplored
region. In lieu of anything better we have extrapolated
barrier heights via the liquid drop theory of fission of
nuclei that are spherical at equilibrium. It is conceivable
among other possibilities that the equilibrium shapes
change drastically from one part of the superheavy
region to another. In this event the nuclei in one region
may be much more stable than the present predictions,
and may not exist at all in the other region. Only obser-
vation can reveal the true stability relations.

' W. J. Swiatecki, Phys. Rev. 101, 97 (1956).
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FIG. 1. (a) Previously estimated limits of nuclear stability (taken from reference 2, where the Fermi semi-
empirical mass formula constants were used). The dotted zone indicated the general region occupied by "nor-
mal" nuclei that live longer than 10 4 sec. Alpha-decay energies were estimated from the semiempirical mass
formula; and alpha-decay rates, from the usual barrier p'enetration formula. The limit for stability against
neutron loss was also calculated from the semiempirical mass formula without allowance for odd-even diGer-
ences and may be significantly in error owing to the long extrapolation from the region of normal neutron-
yroton ratios. Beta-decay rates were estimated on the assumption of allowed transitions, and beta energies
were estimated as if only odd-A values were relevant; both estimates were very crude, as the cross-hatching
was meant to suggest. Spontaneous fission rates were estimated as if all nuclei had even-even character, whereas
spontaneous fission will be hindered by a factor of the order of 10'+' for odd A. No account was taken of oc-
casional nuclei endowed with exceedingly high spin and with low decay rates which can stand outside the
dotted region and still have lives greater than 10 4 sec. Insofar as nuclei with lives of 10 4 sec or more are subject
to experimentation, the dotted region attributed a testable reality to nuclei twice as heavy as known nuclei.
(b) Revised estimated limits of nuclear stability using the Green semiempirical mass formula constants of
reference 15. In comparison with Fig, 1(a} the line of stability against neutron loss now rises to cross the line
of 10 -sec spontaneous fission lifetime at A~500, Z~147. The line of 10 '-sec beta lifetime based upon Eq.
(41) of Sec. III now goes just a little above the neutron loss line.
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FIG. 2. Enlargement
of outlined region of Fig.
1(b) showing estimated
contour lines of speci-
fied neutron binding
B,„(Mev) and fission bar-
rier Ey(Mev).

If superheavy nuclei exist with properties anything
like those predicted by assumptions (1)—(3), what will

happen to their E electrons? What will be their beta-
decay rates? What will be the prospects for building
them up in a heavy neutron Aux, either in the neutron
core of a star or in a thermonuclear test like that of
November 1, 1952? This paper deals with these three
topics.

(1) The Dirac equation predicts for the lowest bound
electron state in a pure Coulomb held the energy

rest energy+binding energy=me'[1 —(Z/137)']-*'. (1)

This formula becomes unphysical for Z)137. This
circumstance has been regarded sometimes as an argu-
ment against the stability of nuclei with charge above
137. However, in the work reported here (Sec. II) we

have integrated the Dirac equation for Z up to 170,

FIG. 3. Estimated contour lines of equal beta-
decay energy, h(Mev).

making allowance for the finite size of the nucleus. With
this very essential refinement we find quite reasonable
values for the binding energies of the innermost bound
electrons, as illustrated in Fig. 4. We estimate that
vacuum polarization and vacuum fluctuations alter the
level position by only a few kev. Consequently we
conclude that the behavior of the bound electrons
around an extended nucleus interposes no limitations
on nuclear stability above those indicated in Fig. 1(b).
(2) Electrons in the continuous spectrum carry away
energy in beta-decay processes. For nuclei with Z&137
will not the wave amplitude for such electrons be
exceptionally high near the nucleus? Will not the rate
of beta decay therefore be speeded up anomalously?
This speed-up is indeed significant, but in reference 2

it has already been taken into account in an approxi-
mate fashion in estimating the limit for 10 sec beta-
decay half-life as indicated by the cross-hatched regions
in Fig. 1(a). Section III reports a more detailed analysis
of this speed-up eGect based on a numerical integration
of Dirac's equation for positive energies.

We veri6ed that (1) the energies of the tightest
bound electron states and (2) beta-transition rates are

perfectly normal for superheavy nuclei, not with the
idea to make precision computations, but only to
clarify the point of principle. We have not provided
accurate tables of electronic binding energies for either
1s or higher states, such as would be needed to fix

charge numbers from the usual Ineasurements of

internal conversion energies.

(3) Neutron capture and beta decay form the two

obvious mechanisms for going to high A and Z (Sec.
IU). However, an added neutron will have a high chance
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FIG. 4. Energy of the lowest bound electron level in the 6eld of a nucleus of Gnite size. Smooth curve: Dirac value
for point nucleus. Circles: Numerical calculation for nuclei of uniform charge density and of radius A&P 1.3)&10 "
cm. Lower insert: Sketch of potential and of large component of wave function, G(r), for case Z= 170, A~654.
The amplitude of the wave function is plotted on a linear scale, but distance and potential are plotted on hyperbolic
sine scales to cover the wide range of these variables.

to destroy the nucleus unless the hssion barrier is higher
than the energy of condensation of the neutron. Yo
keep this condensation energy as low as possible the
excess of neutrons in the nucleus shouM stay as high
as possible. The maximum excess corresponds to the
line of "neutron drip" in Fig. 1(b). We calculate that
to keep the path of buildup close to this line an ex-

ceedingly high neutron Aux must be maintained.
Presumably such a high neutron Aux can be attained
only at the fringe of a stellar neutron core. At the lesser

Qux obtainable in principle by sudden 6ssion of a very
large mass of uranium there are heavy losses by 6ssion

during the process of element building. Also losses by
"delayed" 6ssion are associated with the other essential

process in buildup —beta decay —when the mass
change exceeds the 6ssion barrier, as is the case along
the upper part of the wedge-shaped region in Fig. 1(b).
Buildup of superheavy nuclei by collision of two lighter
nuclei* is not treated here.

~ Note added crt proof Nobelium (102) has b.
—een produced by

cyclotron bombardment of curium with high energy C" ions,
according to Fields, Friedman, Milsted, Atterling, Forsling,
Holm, and Astrom LPhys. Rev. 107, 1460 (1957)g.

IL SOLUTION OF DIRAC EQUATION FOR X LEVEL,
AND CONTINUUM; K-LEVEL SHIFT BY

POLARIZATION AND FLUCTUATIONS

We start with the idealization in which the electron
is treated as a point particle, described by Dirac's
Hamiltonian,

(2)

Throughout Sec. II we express physical quantities in
the following units: H, total energy, mc', ~, potential
energy, rrtc', p, momentum, trtc; r, distance, A(mc;
angular momentum, A. For central forces it is well
known that an integral of the motion is the associated
angular momentum

k=P[(n' rXp)+1],

where o,'=n„n, /i and where the usual one-particle
spectroscopic states belong, respectively, to the fol-
lowing k-values: 's„k= —1; sp;, k=1; 'p;, k= —2;
'd;, k=2; 'd;, k= —3; etc. I et a state be considered
for which II and k take on proper values. Also let a
factorization of the wave function into angular and
radial parts be chosen such that (1) the radial part has
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Fzo. S. Determination of E level eigenvalue by trial and error. Case Z= 170, with nuclear radius 00292 ("/mc) = 11 3X10 "
cm. The so-called large component of the radial part of the wave function is designated by G; the small one, by F. The indi-
vidual curves are labeled according to the trial value of the energy (units mc2).

two components,
pr 'F(r)q

(r—'G(r))
(4)

Then the radial part of the wave equation has the form4

(dG/dr)+ (k/r)G (H —v+—1)F=0,
(dF/dr) (k/r)F+(H —w —1)—G=O.

Ke adopt for the nucleus the model of a sphere of
charge nf uniform density and of radius

R(cm) =N/me=re(cm)Al. (7)

Present evidence about the energy of the 2P~1s
transition of a p, meson in the field of force of a lead
nucleus and the scattering of high-energy electrons by
heavy nuclei' argues for an effective value of ro in the

4 See, - for example, Leonard I. Schiff, Quartern mechanics
(McGraw-Hill Book Company, Inc. , New' York, 1949), p. 323.

' V. L. Fitch and J. Rainwater, Phys. Rev. 92, 789 (1953).
'-Hofstadter, Fechter, and McIntyre, Phys. Rev, 92, 978 (1953).

and (2) the matrices relevant for the calculation of the
radial part have the representation

f'1 0 q f'0 —i'l
l; r '(~ r)=l .(0 —1) 0&

neighborhood of 1.1 to 1.3X10 "cm. Here in principle
the quantity "effective radius" has to be taken to have
slightly diferent values according as one deals with one
physical property or another. Only if one treats the
charge distribution as rounded off appropriately near
the nuclear boundary can one account for both p-meson
levels and nuclear scattering by a single electrostatic
potential. ~ We neglect this re6nement in the present
work and adopt the value

r0=1.3X10 "cm,

b=3.37X10 'A'.

Thus we assume

e(r) = —(Zn/r) for r& b,

u(r) =(Zn/b)[ —1.5+05r'/b'] for r(b,
with +=1/137.04; we consider r and u to be expressed
in units A/me=3. 87X10" cm, and take k= —1,
corresponding to 's; states.

For a point nucleus (b=0) with Z(137, Eq. (6) has
the well-known ground-state solution

F= —X(Zr/137)' exp( Zr/137), — (10)

G=1V(137/Z) (1+s)(Zr/137)' exp( —Zr/137), (11)

' D. L. Hill and K. W. Ford, Phys. Rev. 94, l617 (1954).
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TABLE I. Estimation of eigenvalues for E' levels by the interpolation procedure described in the text. The first four lines test the
linear variation with energy of the "discrepancy from exponential fall-oR, "D of Eq. (17).The next to the last column shows the values
of D computed for comparision from the best fitting straight line, D»near= —32.3101I—28.886. The last column gives the energy
eigenvalues, Z, determined by linear interpolation in D. The quantity b measures the nuclear radius in units A/me=3. 87X10 "cm
and r measures distance to the point of evaluation of the wave function in the same units.

Z

170

170

137

0.02778

0.02778

0.02920

0.02640

1.20

2.00

1.75

2.75

&tr&ai

—0.80—0.87—0.89—0.90

—0.89—0.90

—0.86—0.87

+0.235
+0.250

103G

—3.032
+0.460

1.505
2.033

0.090
1.275

0.851
1.849

6.543
1.123

Results of numerical
integration

103dG/dr

—7.750—3.973—2.823—2.233

—1.204—0.101

—1.250—0.277

—5.245—9.336

D

—2.563—0.741—0.129
+0.194

—0.852
+1.095

—0.087
+0.999

+0.153—0.781

Dlineat

—3.037—0.776

H interpo lated

—0.8940

—0.8944

—0.8608

+0.2375

~ (F'+G')dr=1.
G(r)= I c(r)/d(r)] A exp~ —

~ Ir(r)dr
~

where s'=1—(Z/137)' and where the normalization based on the JWKB method. According to this method
factor E is so adjusted that of approximation, the solution for G in the region of

exponential fall or rise has—for arbitrary energy —the
form

The solution is not normalizable in this sense when
Z~~ 137e

In the case of an extended nucleus the potential has
a finite value and zero slope at the origin. The same is
true of the kinetic energy. The solutions F and G there-
fore start off, respectively, proportional to r' and to r,
as in the case of a free electron of higher kinetic energy.
The coeScients in the power series expansions,

+8 exp~, «(r)dr ~, (15)

where c(r) and Ir(r) are known functions of r and of
energy, H. The departure of the energy from an
eigenvalue is measured by the ratio 8/A, or equiva-
lently, by the quantity

G=r+gsr +gsr + ' ' ',
F=f r'+f r'+ (13) D= (B/A) exp~ 2 ~(r)dr l.

(
) (16)

follow from simple recursion relations:

f2 = fH 1+(1.5Z—n/b) ]—/3,

g,= $H+1+ (1.5Zn/b) ]—LH —1+(1.5Zn/b) ]/6,
(14)

f4 (0.1Zn/b'——)+/V+1+ (1.5Zn/b)]
XLH —1+(1.5Zn/b)]'/30.

With starting values taken from the series (13), the
differential Eqs. (6) were integrated numerically on
the IBM card-programed electronic computer of
Princeton's Forrestal Research Center by the method
of Runge and Kutta' under the supervision of Robert
Goerss and Mrs. Bernice Bender, to whom we express
here our appreciation.

In the case of the E level one has of course to deal
with an eigenvalue problem, to the solution of which
the machine approximated by the method of trial and
error, as seen in I'ig. 5. The best two runs gave the final
estimated energy value by an interpolation procedure

See for example William Edmund Milne, 37NmeicaS Calculus
(Princeton Vniversity Press, Princeton, 1949), p. 135, paragraph
38, Eqs. (1) and (2).

Ke assume that this quantity, calculated for a 6xed r
but for different energies, H, varies approximately
linearly with H in the neighborhood of an eigenvalue.
We checked this assumption in one case as shown by
the first four entries in Table I. Here the value of D
has been obtained from the computed G(r) and dG/dr
by way of a formula where all other quantities are
easily found from the JWKB analysis:

Gga —(d/dr) ln (c/K*') ]+(dG/dr)
D= (17)

G$~+ (d/dr) ln (c/Iri') ]—(dG/dr)

The assumption of approximate linearity, once having
been checked, is used to estimate eigenvalues by
interpolation, as listed in the other entries in Table I.

The E-level eigenvalues were computed for Z=170
for two values of the nuclear radius in order to check
the sensitivity to this parameter. A decrease of the
radius by 0.02920—0.02778=0.00142 A/mc was found
to increase the tightness of binding by

L
—0.8608&0.0002]—L

—0.8943&0.0005]
= L0.0335&0.0005] mc'.
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An independent evaluation of the energy change by
perturbation theory gives

bH=bb(Bv(r, b)/Bb)

= (bb/b)(3Zn/2b) (1—r'/b')

X (F'+G')dr (F'+G')dr. (18)

The product of the erst two factors represents the
change in the central value of the electrostatic potential
energy, 67.008—63.744=3.264 (in units mc'); and the
subsequent ratio of two integrals, for 5=0.0292, repre-
sents the probability for the electron to be within the
nucleus, multiplied by the effective average value of
(1—r'/b'). The perturbation value of 5H=3.264(2.495
X10 '/2. 402X 10 ') =0.03391 agrees satisfactorily with
the less precise difference obtained from the numerical
integrations.

The great binding energy of the E electron, 1.9
mc', evidently makes the E-absorption edge of a super-
nucleus overlap strongly the region of the pair creation
threshold. Presumably also this photo cross section will

show new and interesting features in its energy de-
pendence, as compared with the conventional 1/vs or
1/v's variation of the cross section of light elements.

The Lamb shift and vacuum polarization corrections
to E(1s) that are so small for hydrogen are probably
appreciable for a supernucleus. To estimate the mag-
nitude of these corrections, it is simple but incorrect
to multiply the hydrogenic terms in proportion to Z4:

hE„, n, ~
= —( 4/1 "5)Z4n'mc'/n'
= —27 Mc times h or —1.12X10 ~ ev

for H(2s);
= —8(170)'1.12X10 ' ev= —0.75 kev

for Z= 170, 1s.

AEfl r —+10663Atimesb or +4.41X10 'ev
for H(2s);

SX(170) X4.41X10 ' ev=+30 kev for Z=170, 1s.

The assumption of a point nucleus is wrong for both
effects, and the assumption of Z4 proportionality is
wrong for the second effect. For this reason we calcu-
lated the first-order vacuum polarization for the
extended nucleus, using the Dirac wave functions that
we had found by numerical integration. We got the
result

~E „o,l (erst order) = —9 kev

(1s; Z= 170, R=11X10-rs cm). (19)

The fluctuation part of the Lamb shift is a much more
difBcult problem. The usual helpful division' of this

9 Baranger, Bethe, and Feynman, Phys. Rev. 92, 482 (1953);
see also the summary in J. M. Jauch and F. Rohrlich, The Theory
of Photons and Eteotrons (Addison-Wesley, ™r~dge,1955),
Chap. 15.

with E a cutoff energy of the order of mc'. We replaced
the factor v/c by the Dirac matrix n. In this matrix
element we made no correction for the retardation
factor, e'~ . This factor is unimportant for hydrogen
but for a supernucleus ought to reduce the average
value of the matrix element in a major way. A proper
correction for this big effect would make the simple
Bethe treatment completely inapplicable. We used it
nevertheless in default of anything better. We assumed
that most of the line strength is concentrated in tran-
sitions from 1s LE(1s)= —0.86 mc'j to 2p LE(2p;)=:0.8
mc'], 3p, and other levels near mc'. Accordingly
we inserted for It „—Eo an average value of 1.86 mc'.
The logarithm is of course quite uncertain. It seems
not unreasonable to assume for it an effective .value
somewhere between —1 and +1. The expression
g-~ns-~' according to the sum rule has the value
(n,')so+(n„')so+(n, ')as=3. Accordingly we got an
estimate for the Quctuation part of the Lamb shift of
the order

EEs„,r. &(2n/m. )1.86 mc'

&4 kev. (20)

It is quite possible that the Lamb shift has several
times the total value estimated here,

DEz. b=hE „o,~+DEs„„—9 kev&4 kev (21).
Even so, it seems unlikely to make really substantial
changes either in the qualitative nature of the electronic
wave function or in the binding energy, 1.86 mt,-'=950
kev. Consequently we have neglected both parts of the
Lamb shift in the further analysis of superheavy nuclei.

An appendix reports the details of the calculation
of the 1s level shift due to vacuum polarization by a
finite nucleus.

Charge numbers greater than Z= 137 cause no trouble
for bound electrons. What is the effect of high charge
on the electrons emitted in beta decay, and on the rate
of beta decay?

The solutions of the Dirac equation for 2s; states in
the continuum were obtained by the same method
previously employed for bound states. The numerical
integration was stopped at the second maximum of G.

'0 We are indebted to Professor Freeman Dyson and Dr. Eyvind
Wichmann for helpful discussions of this question.

"H. A. Bethe, Phys. Rev. 72) 339 {1947).

effect into relativistic and nonrelativistic parts is out
of question here owing to the relativistic binding of
the electron in its ground state, 1.86 mc'. No available
analysis of the Lamb shift appears to be suitable for
the present case. '0 Consequently we found ourselves
forced to a very crude order-of-magnitude treatment.
We went back to Bethe's original simple way of esti-
mating the Lamb shift, "

( E
~E= (2~/3~)2 I vo./oI'(E- —Eo)»I

EE —Eo&
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The two components, F and G, were extrapolated from
this region to inhnity by way of the JWKB approxi-
mation, and normalized so that the asymptotic value
of (F'+G'), „,s, took on the usual standard magnitude
of —,'. The results of the numerical integration, so
normalized, are shown in Fig. 6. The portions of F and
6 relevant to beta decay lie of course inside the nuclear
boundary, indicated by the dashed vertical strokes.

For the fast decaying nuclei in which we are inter-
ested, we shall limit attention to high electron energies,

0.8-

oe6.

of the order j.0 mc' to 40 mt,'.For such energies we should
now like to show that the JWKB approximation give's

quite reasonable values, not only for the wave function
near the second maximum, but also right down to the
surface of the nucleus. This circumstance indicates
that it is only necessary to resort to numerical inte-
gration to determine the wave function within the
nucleus for states of other angular momentum; that
the JWKB procedure is adequate outside.

We transform the coupled pair of first order diBer-
ential equations (6) to the standard JWKB form of a
single second order equation by way of the substitution
given by Bartlett and Welton".'

Oo4-

0,2-

G(r) —= (H—v+1)&y(r).

Then the equation for y(r) becomes

dsy/dr'= E'(r)y =~'—(r)y.

(22)

(23)

0.8--

0,6-

0.4-

0.2-

08"

0.6-

0.4-

Oi2-

008-

0.6.

0.4-

Here one form or the other of the right-hand side of
the equation is preferable according as one is dealing
with the region of r where y is oscillatory or exponential.
In either case the coeKcients of y are abbreviations:

K'(r) = ~'(r) = —(0+—')'/r'+ -(H—v)' —1

+LH —v+1)-'L(k/r) (dv/dr) ——,'d'v/dry
4s LH —v+1) '(dv/dr)' (24)

Here a correct use of the transformation (22) would
have given for the fi'rst term —k(k+1)/r', with all the
other terms in (24) as listed. However, the change to
—(k+-,')'/r' is required" (1) to make the JWKB
solution for G(r) behave near the origin as r~~+'*H &, as
demanded by the power series expression for G(r), (2) to
give in similar well-studied problems the proper
asymptotic phase shift, and (3) to make the JWKB
approximation fit closer to the numerical results in
cases previously investigated. This granted, the differ-
ential equation has a turning point, TI', for all k values,
including k=0. Outside this turning point the nor-
malized JWKB solution has the form

G(r) =2—l(1—H ')t(H —v+1)&E—
&(r)

r

X sin (v./4)+ ~t E'(r)dr, (25)

0.2-
and between the turning point and the origin it has
the form

0 I 1 I

0 0.01 0 02 0,03 0.04 0 O.OI 0,02 0,03 0.04

FIG. 6. Normalized solutions of the Dirac equation for energies
in the continuum, H=10, 20, 30 and 40 (units mc~). Left-hand
column, Z=137; right-hand column, Z= 170. The radius of the
equivalent uniform nuclear charge distribution was taken in all
eight cases to be (1/36)(b/mc) (indicated by dashed vertical
lines). The normalization is such that at infinity F~ax2+G~»2= 1.
The straight line segment in the lower right-hand case shows the
initial behavior of the wave function near the origin as it would
have been in the absence of nuclear attraction: G=(121/220)&
XsinL(99) &r].

G(r) = 2—
&(1—H—')&(H—v+1)4—

&(r)

TP

Xexp —" Ir(r)dr . (26)

We do not use (26). We use (25) to get G outside the

'2 J. H. Sarlett, Jr., and T. A. Welton, Phys. Rev. 59, 281
(1941).

"Yost, Wheeler, and Breit, Phys. Rev. 49, 174 (1936),
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This factor is plotted as a function of energy in Fig. 8.
The factor increases monotonically as the energy is
decreased. There is no evident trace of anything like
the Ramsauer eGect found in the interaction between
electrons and atoms. That effect occurs when the
electron wavelength changes strongly over one electron
wavelength. Then the ratio, (amplitude of the wave
function inside)/(amplitude of the wave function
outside), shows characteristic resonances. This effect
does not occur in appreciable measure in the present
problem because we are dealing with a smoothly varying
potential and electron energies large compared to the
depth of the potential.

Another measure of the attraction eGect of the
nucleus is the "average attraction factor, " a
defined as the ratio of the values of the integral
1'o'(F'+G')dr, calculated (1) with the charge and (2)
without charge,

FIG. 7. Comparison of numerical and JWKB solutions of radial
wave equation for case of a nuclear charge Z= 170, radius
(1/36) (it/mc), and rest plus kinetic energy of 10 mc' at inanity.
The numerical solution was normalized to the JWKB formula
at the point r =0.248 (units rt/mc). Particularly relevant is the
close agreement of slopes of numerical and JWKB solutions at
the nuclear surface.

nucleus, and compute F from the formula

F= (H v+1) '[—(dG/dr)+ (k/r) G]. (2/)

Gaverage =
~

(F +G )dr
0 actual field

ps
(F2+G2)dr

I (31)
i,J, ) zero field

This average attraction factor is also plotted in Fig. 8.

2.6-

Consider the cases of numerical integration sum-
marized in Fig. 6. The JWKB fit to these results will
be least accurate when (1) the charge is greatest
(Z=1/0), and (2) the energy is least (H=10). For this
case we have compared numerical and exterior JWKB
results in Fig. 7. Evidently the 6t is good down to the
nuclear radius. Even the slopes at the nuclear surface
agree much better than we have any right to expect:

-70

-60 Jl

-50

2.5-

2,4-

2.3-

2e2

(dG/dr) „„„;„1= —'/. 92,

(dG/dr) pyr;s = —'/. 66.
(28) -40

a
CENTR

2.I—
a

AVERAGE

In the absence of nuclear attraction the radial wave
function, after normalization, has the form

G(r) =2-I(1—H-') I sin[(H' —1)Irji
F(r) =2 I(1+H ')&cocos[(H' —1)Ir)

—(H' 1) Ir ' sin[(H' ——1)Ir7}.
(29)

-30

-20

- IO

2 = l3

2,0-

I.9-

I.8-

[(dG/dr) s'jactuat fie'.d

+central =
[(dG/dr) e'jzero field

(30)

At the origin the component F is negligible compared
to G. Consequently the probability, P*P, to find an
electron at the origin is proportional to G'/r'; that is,
to (dG/dr)s' This circum. stance makes it reasonable to
deine a "central attraction factor, " a.-,„&„1, by the
formula

IO
I

20
I

30
I

40
I

Fio. 8. "Central" and "average" attraction factors as a function
of electron energy for two values of the nuclear charge. At the
origin (where the component of the radial wave function P is
negligible compared to G) the probability, f*P, to find an electron
is proportional to G'/r'; that is, to (dG/dr)ez The ratio of th.is
central probability for the actual field to its value for zero field
is the central attraction factor, ucentral. The average attraction
factor, Qa,vera, ge, is the ratio of the values of the integral of the
probability over the volume of the sphere with radius b, with and
without uniform charge Z within the sphere.
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This quantity is smaller than the "central attraction
factor" for the following simple reason: (1) The
electronic kinetic energy is roughly 40 mc' greater
inside the nucleus than outside. (2) Consequently an
electron with an energy of 10 mc' has its wave number
increased by a factor of about 5. (3) Therefore the wave
function varies more rapidly over the region r=0 to
r=b when the potential is present than when it is
absent. (4) Hence an "interference effect" reduces the
integral Jo'(F'+G')dr more, proportionately, for the
case of Coulomb attraction (5). This interference effect
compensates in considerable measure the direct effect
of the Coulomb field in increasing the probability
amplitude at the center —the eGect seen in a„„t„~.

The "average attraction factor" shows a minimum
for kinetic energies of 20 to 30 mc', depending upon
charge. At lower energies the eGect of the Coulomb
attraction rapidly increases and becomes dominating,
whereas the factor measuring the interference eGect
approaches a constant value. At higher energies inter-
ference begins to cut down the integral Jss(F'+G')dr
even for the free-particle case; and this diminution
proceeds faster for the free-particle case than for the
case of Coulomb attraction, leading to a rise in a, „,~,.

P,=exp(ik, x),

f,=exp(ilr„x).

(32)

(33)

The transition probability, integrated over angles of
emergence of electron and neutrino, would be pro-
portional to

F= ~ ~ ~ ~ y„"'P,*g„*g„docdyCs dQ.dQ, . (34)

The method of analysis into spherical harmonics, Y&,
reduces this expression to the form

F= Z (35)

III. BETA DECAY OF A SUPERNUCLEUS

The detail with which one analyzes the beta decay
of a supernucleus mill depend upon one's objectives.
The most primitive arguments show that heavy nuclei
will have beta half-lives longer than 10 ' sec. A more
careful analysis allows for the reduction of the matrix
elements through interference eGects by way of one or
another idealized model —a free nucleon picture, or a
harmonic oscillator model. A still more precise treat-
ment would decompose the contributions to. the tran-
sition probability by the method of spherical harmonics.
This treatment, though complicated to carry out, would

be easy in principle to formulate, were the four particles
in question described by scalar wave functions. Sup-

pose one could write the electron and neutrino wave

functions in the form

X I'&,„a(8, to) [F&, (k„r)/k„r jP„r' sin8drdgdy, (36)

and where Iiq is that solution of

d F,/dr'+(u; )( +—1)r y, =o

which is regular at the origin and is normalized to unit
amplitude at infinity. To allow for Coulomb attraction
it mould only be necessary to replace the free-particle
solution, FE, of the given angular momentum by the
solution of the wave equation with attractive potential.
The analog of this procedure for spinor wave functions,
with scalar and tensor beta-decay coupling, has been
described by Takebe in three articles. "One can hope
to go further with the program that Takebe has started
when one knows nucleonic wave functions well enough
to justify such precision. In the meantime it is rea-
sonable to proceed with a less detailed analysis.

The most elementary analysis proceeds as follows.
The semiempirical formula for nuclear binding energies"
allows one to estimate for any given mass value the
maximum number of neutrons which a nucleus can
bind, as indicated by the appropriate line in Fig. 1(b).
When one of these neutrons transforms to a proton, the
beta-decay energy will have the maximum possible
value consistent with the given choice of 2, in so far
as one looks apart from odd-even eGects, When this
correction is included, one can get still higher energies,
as indicated in Table II. Consider a s&zgle nucleon
bound in a potential whose value alters by 26 mc' when
the particle changes its character from a neutron to a
proton. Let the region of binding be so small that one
can overlook any decrease of the beta-decay matrix
element by reason of interference effects. Then the
matrix element has the same value as one has for the
decay of a free neutron. The lifetime will be smaller in

H. Takebe, Progr. Theoret. Phys. Japan 12, 561, 574, and
747 {1954).See also M. Yamada, Progr. Theoret. Phys. Japan
10, 245 (1953) and R. Nataf, Compt. rend. 238, 1012 (1954).

"See C. Coryell, in Annual Eeoievo of lltucleor Science (Annual
Reviews, Inc. , Stanford, 1953), Vol. 2 Chap. 13, for a review of
different formulations of the semiempirical mass formula and
agreement with experiment; also A. E. S. Green, Nuclear Physics
(McGraw-Hill Book Company, 1956). We use the semiempirical
formula without odd-even corrections in the form

M (Z,A) =A —CiA+C2A & —CeZ+ C4A (-,' —Z/A)'+CgZ'/A &,

with Green's constants,

C1=7.9357 mMU, C2=19.120 mMU, C3=0.84 mMU,
C4=101.78 mMU, Cg=0.07628 mMU.

~neutron = 1.008982 amu. 10' mMU = 1 amu =931.14 Mev.

H. B. Levy LPhys. Rev. 106, 1265 (1957)j, gives a new em-
pirical equation for atomic masses in terms of first and second
powers of A and Z with diferent coefFicients for different nuclear
shell regions. Separation into shell regions gives considerable
improvement in reproduction of atomic masses. The form of the
equation in each shell region is chosen for maximum algebraic
simplicity and does not purport to have any theoretical justifi-
cation. Therefore it is not suitable for the present substantial
extrapolations beyond the known nuclei.
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TABLE II. Beta-decay energies of nuclei at the limit of stability
with respect to neutron emission, as estimated from the semi-
empirical mass formula.

500
400
350
300

Zdrlp

147.0
11.9.2
105.2
91.2

+A-$

171.2
143.4
128,6
113.2

Fp (odd-A
nucleus)

Mev

13.2
15.8
17,0
18.1

Bp (odd-odd
nucleus)

Mev

13.8
16.5
17.7
1.8.7

inverse proportion to the decay factor, f, of beta-decay
theory. "Consequently one estimates on this primitive
basis a half-life

t;(27 I') = t*(26 m.c'+1l')
=

t f(2.53)/f(27) jt, (1.53+1= 2.53 mc')
= 1.69X768/4. 8X 10'
=2.7X10 ' sec. (38)

(H p H)'(H' 1)—'Hacentral —{H)dH,J, (39)

fmodified central(27)

=: 4.8X 10'X39=1.9X10t (for Z= 147),

and the lifetime diminished to

ti=. 1300 sec/1. 9X10'=7X10 ' sec. (40)

The primitive model of a single well-localized nucleon
endowed with all the transition energy gives a much
exaggerated idea of the speed-up of beta decay for a
supernucleus: (1) in an actual nucleus the strength of
the transition will be divided among many states; the
residual nucleus will be left on the average with a
number of Mev of excitation energy (ordinarily enough
to drive off a "delayed" neutron); and the average
energy of the transition will be less than has been
supposed; (2) the Pauli principle will prevent tran-
sitions of the neutron to a state already occupied by a
proton; and (3) the variation of the electron and
neutrino wave functions over the nucleus will cut. down
the eftective value of the attraction factor by inter-

I.et the idealized bound nucleon be supposed to make
its transition at the center of a charge cloud that (1)
simulates the action of the actual nucleus on the
electronic wave function but (2) does not have any
direct eGect on nucleonic processes. Then the rate
factor of beta-decay theory is speeded up by the
attraction effect (a„„t„,l of Fig. 8) to the value

fmod ified central (Hp)

ference (Fig. 8). Consequently it is easy to conclude
that the mean life for beta decay will be longer than
10 4 sec for a supernucleus with Z= 147, even with the
maximum possible neutron-proton ratio.

It may become interesting to have a better estimate
of mean life for beta decay than allowed by these primi-
tive considerations, For this purpose two extreme and
rather different models present themselves. In one the
binding of the neutrons is idealized by a harmonic
oscillator potential with one force constant; a diferent
force constant is assumed for the protons; spin-orbit
coupling is neglected; and the force constants are so
chosen as to make the mean squared distance of the
average nucleon from the center equal to the value
estimated from p,-meson and electron scattering experi-
ments by Ford and Hill. ' The highest occupied levels
of neutrons and protons are assigned an energy sepa-
ration so as to agree with the mass difference 3f (Z,A)
and M(Z+1, A) as determined from the semiempirical
mass formula. The beta-decay rate is determined by
matrix elements qualitatively of the form (36). Here
the nucleonic wave functions are now harmonic oscil-
lator functions. For the electron the radial function
Ft(kr)/kr in (36) is replaced by the proper spinor wave
function, calculated as already described; similarly for
the neutrino.

This is the plan of one method of analysis, but we

have done nothing to carry it out, because there exists
a still simpler method of analysis. We idealize the
neutrons as one Fermi gas occupying the volume
(4prrp'/3)A, the protons as a second gas filling the same
volume in ordinary space. In momentum space the two
kinds of particles occupy spheres as indicated in Table
III. Beta decay is idealized as the transformation of a
free neutron to a free proton, with different zeros of
nucleon energy because of the diGerent average binding
forces experienced by the two kinds of particle. The
beta decay of 7= 147, A =500 releases at most 26 mc',
according to Table II. The recoil of the decaying
nucleon can at most, be 26 mc. This amount is small
compared to the difference of 136 mc in Fermi momenta
of neutrons and protons. Moreover, the recoil is random
in direction. A nucleon that starts as a neutron outside
the Fermi sphere of the protons will be transformed-
in the absence of the Pauli principle —to a proton inside
that sphere with almost the same probability that a
neutron inside will be transformed into a proton outside.
Therefore it is reasonable to neglect altogether the
recoil of the nucleon in the act of beta decay. This

TABLE III. Occupied spheres in momentum space as calculated
for the example 2=500, Z=147, r0=1.23X10 " cm, from the
formula Prr= 602 mc(tV/A) l

6As tabulated for example by E. Feenberg and G. Trigg,
Revs. Modern Phys. 22, 399 (1950), on the basis of the definition,

f(Hp) =f '(Hp H)P(HP 1)&HdH, — —

where Ho is the upper limit of the kinetic energy of the electron,
plus jts rest energy, in units mP,

Neutrons
Protons
Difference

78.3 mc'
43.6 mc2

34.7 mc'

536 mc
400 mc
136 mc

Fermi kinetic energy, F Fermi momentum, I'
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Here +unhindered= X Z is the number of neutrons with
momentum greater than the Fermi momentum of the
protons. The remaining factors in the denominator
stand for

f(61lf )(aaverage)

JI0

=
J (Hp —H) (H 1)'Hoavera—ge(H)dH& (42)

l

where a, ,„,g, (H) is the volume average attraction
factor defined previously LKq. (31), Fig. 8j and
(Hp —1)mc'=c'AM is the energy difference between
ground states of the initial and final nucleus. Illustra-
tive numbers for two rather extreme cases appear in
Table IV.

The Fermi gas model appears at 6rst sight to be the
very opposite of the harmonic oscillator model. The
one picture treats the variation of electron and neutrino
wave functions over the nucleus as sufhcient to allow
the leptons to feel out the momentum change of the
decaying nucleon. The recoil momentum is regarded as
concentrated in the individual heavy particle, not the
nucleus as a whole. On the other hand, the harmonic
oscillator model makes the source of the oscillator
potential —the nucleus itself—the recipient of all recoil
momentum. The contrast would appear still more
clearly if the harmonic oscillator potential were replaced
by an infinitely high square mell potential, and if a
detailed counting of particle states were replaced by a
statistical analysis. Then the states of the one model
would be identical with the states of the other model.
But in the one case the particles are free, and take up
momentum on an individual basis; in the other case the
potential wall does all the taking up of momentum.

Different as these two models appear, we expect
from them not very different results for the supernuclei;
(1) The actual change of the lepton wave functions
over the nucleus is intermediate between the rapid
variation envisaged in the one model and the nearly
constant behavior imagined in the other. (2) Detailed

TABLK IV. Beta-decay speed-up factor after averaging over
both vo1ume and energy, Eq. (42).

170
137

Ho in mcm

31
31

f(&~)(+average)

2.22X 10'
1.69X 106

(aaverage&

2.33
1.78

simplification leads to this conclusion: Every neutron
outside the Fermi sphere of the protons decays quite
uninhibited by the Pauli principle; every neutron inside
is completely blocked from beta decay. This model
leads to the following formula for the beta half-life of
the nucleus:

1300 sec
0.693/Xp= i';= (41)

lVnnhindered f(+M) (Gaverage)

numerical application of the two quite diGerent methods
to another problem —charge exchange reaction between
a p meson in a E orbit and the central nucleus —led in
the two cases to reasonably compatible results for the
calculated reaction rate. " (3) That problem was similar
to the present problem in the following respects: (a) the
ratio, (lepton wavelength/nuclear dimensions), agrees
at least as to order of magnitude in the two problems
(80-Mev neutrino and the smaller nuclear radius of
0" in the charge exchange reaction; in the P-active
supernuclei, a greater radius but a kinetic energy of the
electron at the nucleus of the order of 25 Mev); (b) as
an incidental and not very important point it happens
that the variation of the wave function over nuclear
dimensions is not very great for the other particle
participating in the reaction (iii meson in the charge
exchange reaction; 10-Mev neutrino in the P decay);
(c) the change in nucleon kinetic energy in both proc-
esses is of the order of 10 Mev. In view of the rough
agreement of the two methods in the y-meson case and
the similarity of that problem to the present one, it
appears reasonable to use the simple Fermi gas model
and Eq. (41) to estimate the rate of beta decay of a
supernucleus, as in the following section.

IV. BUILDUP OF SUPERHEAVY NUCLEI BY
MASSIVE NEUTRON IRRADIATION

Neutron addition moves the representative point
of the nucleus one unit to the right in Fig. 1(b) and
beta decay moves it one unit upward. Both processes are
required to carry a nucleus up into the wedge-shaped
region near 3=500, Z= 147. Upward motion associated
mith beta decay occurs at its own natural rate, while the
rate of motion to the right depends on the neutron Aux.
If this Aux is too small, the representative point will
move up on too steep a slope. It mill intersect pre-
maturely the line where the spontaneous 6ssion rate is
10 ' sec or less, and the nucleus will be destroyed.
Actually the danger point comes even sooner. The
6ssion barrier Ef decreases as the nucleus moves up
step by step via beta decay to higher Z values. The
neutron binding 8„ increases. Soon B„exceeds Ey.
Then the nucleus will be destroyed with very high
probability by the first neutron it captures.

A rough semiquantitative estimate of the Aux re-
quirements for building superheavy nuclei is in order.
For this purpose we shall make some drastic simplifi-
cations in the treatment of both essential processes,
neutron addition and beta decay. (1) We neglect (e,n)
processes altogether. The rate of spontaneous alpha
emission for these very heavy nuclei is calculated to be
much less than the rate of spontaneous 6ssion, and to
rise more slowly with increasing excitation. (2) When

B„exceeds Ef, we assume that neutron uptake leads
to fission with 100% probability. (3) Conversely, when

~' J. Tiomno and J. A. Wheeler, Revs. Modern Phys. 21, 153
(1949).
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{2)We adopt for (Z'/A)„;t;„~ the value 50.37 based on
Green's evaluation of the constants in the semiempirical
mass formula, ." (3) We do Not evaluate the factor of
proportionality between Er and $A' from the mass
formula, but (Fig. 9) from the empirical values" of
E~ for Th"' and U"' These data lead to a proportion-
ality constant of 6.64 Mev, only 37.1%%u~ of the liquid
drop value of 4s.res&( (surface tension) =17.89 Mev
(Green's constants). The liquid drop value refers of
course to a spherical nucleus, whereas the observed
fissionable nuclei are strongly deformed in the ground
state. There is absolutely no warrant for assuming
deformations sufficiently comparable for all the very
heavy nuclei to justify a constant proportionality factor
in the formula

Er=6.64 Mev $(x)A&. (43)

0.8 0.7

FIG. 9. Liquid-drop fission barrier height and reduced pene-
tration ex onent as functions of x= (Z /A)/(Zs/A), »~. The
value (Z' A)„;q=50.37 used here is calculated from Green's
semiempirical mass formula constants (reference 15). Points in
circles are calculated from the work of Frankel and Metropolis
(reference 18), those in triangles from Husinaro and Gallone
(reference 18). The reduced penetration exponents 2I/A'I' for
even-even nuclei from observed spontaneous 6ssion rates are from
Wheeler (reference 2). The smooth line of liquid-drop fission
barrier height g in terms of undistorted surface energy is from the
formula of Swiatecki (reference 18).The dashed line is Swiatecki's
liquid drop barrier height multiplied by the constant factor 0.371
to make it pass between the points for Th"' and U"' calculated
from known barrier heights from Wheeler (reference 19).There is
no theoretical basis for assuming this constant correction factor nor
for using it to extrapolate barrier heights to very heavy nuclei.

's S. Frankel and N. Metropolis, Phys. Rev. 72, 914 (1947);
U. L. Businaro and S. Gallone, Nuovo cimento 1, 629 and 1277
(1955); W. J. Swiatecki, Phys. Rev. 104, 993 (1956). We are
indebted to Dr. Gallone and Dr. Swiatecki for kind communi-
cation of their results, also to Dr. Swiatecki for the formula used
in constructing Fig. 9. See also U. L. Susinaro and S. Gallone,
Nuovo cimento 5, 315 (1957) and V. G. Nossoff, Proceedings of
the International Con ference on the Peaceful Uses of Atomic Energy,
Geneva, August, 1955 (United Nations, New York, 1956), Vol. 2,
p. 205.

Ey exceeds 8„,we assume that radiative capture is the
only neutron uptake process.

The line in Fig. 1(b) where Er =8„is calculated with

8 values from the semiempirical mass formula and
with 6ssion thresholds Ey estimated in the following

very crude manner, neglecting all variations from
nucleus to nucleus due to shell eGects and other par-
ticularities. (1) We take the detailed liquid drop calcu-

lations of I'rankel and Metropolis, Businaro and

Gallone, and Swiateckirs for $= Er/L4vrrs'X (surface
tension) &&A*'j as a function of x= (Z'/A)/(Z'/A)«;t;, ai.

This formula is only an extrapolation formula relative
to which nature may have surprises to offer.

When Er)B„we have only the (N,p) process to
consider. The neutrons will be supposed to have
energies of the order of 5 kev, corresponding to typical
stellar temperatures, whether created naturally or
arti6cally. When the binding energy set free on addition
of a neutron is very low, as it is near the line of "neutron
drip" in Fig. 1(b), then the capture probability will also
be low. Moreover, the spacing of neutron resonances
will be so wide that it will be entirely a matter of
chance whether one resonance does or does not lie in
the 5-kev interval of thermal energies. Odd-even
differences between nuclei will also be important,
Nuclei of such low neutron binding energies are here
said to lie in "the region of particularities" in Fig.
1(b). We shall not analyze neutron capture quanti-
tatively in this region. It does not contribute much to
the build up of superheavy nuclei at the smaller and
more critical neutron cruxes.

At the boundary of the region of particuliarities the
neutron binding rises to a value E=B„„;~.such that
neutron resonances begin to come as close as 6 5 kev.
We calculate E from the formula given by Blatt and
Weissk. opf "

D= G exp) —2 (aE)'*).

The numerical values given for G and a by Blatt and
Keisskopf have been fitted by us with the formulas

G = (0.0652A —1.36)' Mev,

a= (0.05123+0.45) (Mev) '.

We found in this way from Eq. (44) the values of 8„„;t
at the boundary of the zone of particularities as listed
in Table V.

' Summarized for example by J. A. Wheeler, Proceedings of
the International Con ference On the Peaceful Uses of atomic Energy,
Geneva, August, 7955 (United Nations, New York, 1956), Vol. 2,
p. 155.

~0 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley and Sons, Inc. , New York, 1952), pp. 371—372.
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Above the zone of particularities neutron capture
will typically be due to more than one resonance. The
cross section can be estimated from the familiar formula

I'„9&10 'De, ', (47)

where D is the level spacing in the compound nucleus
and e is the neutron energy in ev.

About F~ we cite Blatt and Weisskopf, ' ".. . it is
necessary to admit that the theory does not yet make
any signihcant predictions about the absolute magni-
tude of neutron capture widths. " We therefore make
the crudest kind of estimate,

(n,y) (s.)(~/D) 2mF F„/(F +I'„). (46)

The neutron width may be evaluated in order of
magnitude from the expression"

neutron resonances have widths typically of the order
of 0.1 ev. Consequently (48) becomes

F„0.1 ev (E/7 Mev)&. (49)

(2) At lesser excitations, as at the excitation B 7
Mev, those transitions contribute the most to F~ which
are the strongest and which are therefore in a certain
sense afyPicul. Consequently the width F~ for a low-

energy transition should be taken for the strongest
known transitions, the E2 transitions due to collective
nuclear vibrations. From Sunyar's analysis of such fast
transitions" we estimate for the 43.6 kev E2 transition
in U"' a mean life against radiation of r 4.3&10 ~

sec and a width I'~ 1.5&10 ' ev. Inserting these data
in Eq. (49), we find for the unknown exponent the value

p 3.2. We shall adopt) the simpler value p=3,

I'r constant (excitation) j', (48)
F„0.1 ev (E// Mev)'.

When capture of thermal (5 kev) neutrons produces an
excitation of B„=2 Mev, for example, Eq. (50) predicts
a y-ray width of 2.3X10 ' ev, whereas the power p=3.2

would give F~ 1.8X10 ev. This difkrence is unim-
portant compared to the uncertainty of perhaps as
much as a factor 10 in I'~. In summary, we arrive at
the formula

where the constant and the power p are to be found
from observation. H gamma emission were a single-
channel process like slow neutron emission, we would
think of I'/D as the quantity with the simple depend-
ence upon energy. However, the given level of the
compound nucleus can pass by gamma-ray emission
to a great number of lower levels. Consequently the
level spacing cancels out of the total radiation width,
as it also cancels out of typical sum rules —hence the
absence of D from Eq. (48). To evaluate the two
constants in (48), we use two observations: (1) Slow

Zp(p-stability)
Z„g (B„=Ey)
Z5 i„(D=5kev)
Z&„(B„=0)
B„=Ey at Z~y
B at Z5 iev

300

113.2
106.1
97.9
91.2
3.52 Mev
1.95 Mev

350

128.6
117.2
113.6
105.2

2.39 Mev
1.78 Mev

400

143.4
128.0
128.9
119.2

1.49 Mev
1.64 Mev

"See for example the discussion by E. P. signer, Am. J. Phys.
17, 99 (1949), leading to the formula I.'„~4.4X10 4far~, and the
analysis of E. Vogt, Ph, D. thesis, Princeton University, 1955
(unpublished) and "The.widths and spacings of nuclear reso-
nance lines, " Nuclear Development Associates Report NDA-14,
April, 1955 (unpublished), where f~0 2is concluded to rep. resent
a reasonable average value,

TABLE U. Critical Z values as calculated from the semiempirical
mass formula. Zg, charge of P-stable nucleus (so high that the
nucleus undergoes spontaneous fission almost at once). Z„y, charge
above which B„exceeds Ey, so that neutron addition causes
fission. Z~i„, charge above which the calculated spacing of
neutron resonances is 5 kev or less. Zd&ip, charge so low, and
neutron number so high, that neutrons are no longer bound. The
1.49-Mev fission barrier for Z= 128, 3=400 appears at first sight
too small to inhibit spontaneous fission, when compared to the
5.4-Mev barrier for Z=92, 3 =238. However, the U238 nucleus
makes about SX10" yrX3. 1X10' sec/yr/10 " sec=10"' col-
lisions with the barrier before penetrating. The extrapolation
arguments of reference 2 lead to a penetration exponent propor-
tional to 2"~"Ey'~' or 45.4(400/238)u~" (1 49/5 4)'~'= 21.3
corresponding to a half-life not many powers of 10 different from
10"' ~ sec=0.2 sec. Spontaneous fission of such a nucleus is so
slow that it need not be taken into account in the present con-
siderations of element building.

o (5-kev N, y) 5 X 10 '4 cm'/

[1+(D/16 ev) (7 Mev/B„)'j. (51)

For the nucleus Z=129, 3=400 with a calculated
neutron binding of 1.64 Mev and level spacing of 5 kev,
for example, we estimate o(5-kevts, y) 2X10 " cm'.
Uptake of a neutron on the average within a time of
10 ' sec therefore requires a Aux of 5X10"neutrons/
cm' sec.

In analyzing more fully the competition of beta
decay with neutron uptake, we distinguish three out-
comes for beta decay of the nucleus (Z,A) (Fig. 10):
(1) The residual nucleus is left with an energy less than
B„(which we suppose less than E~). Then it de-excites
radiatively to yield the nucleus (Z+1, 2) in its ground
state. (2) The residual excitation lies between B and
Ey. Then neutron emission occurs so much more rapidly
than radiation that we assume the nucleus is always
transformed to (Z+1, A —1) by "delayed" neutron
emission. (3) The residual excitation exceeds Er.
Radiation is still more negligible compared to heavy
particle processes. We estimate the relative probability
of neutron emission and fission from the crudest kind
of activation formula,

Xr/) „exp[ (Er—B„—)/(rs Mev) $, (52)
~ A. W. Sunyar, Phys. Rev. 98, 653 (1955).The importance of

nuclear spins, odd-even differences, and shell effects in a more
detailed treatment of total nuclear radiation widths is stressed by
A. G. W. Cameron LCan. J. Phys. 35, 666 (1957)j.

f Pote added irl, proof. —See A. Stolovy and J. A. Harvey,
/Phys. Rev. 108, 353 (1957)j, and references cited therein for
alternative empirical formulas for the total gamma-ray width,
designed to cover a much smaller range of nuclear excitation but
to allow for shell effects.
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where

(Ea) 1 for Ea&B ((Er)
0 for E*&8,

' 0 for E&8
~

1 for B„&E"&Er
{1+expL—(Er B„)—/(-', Mev) j} '

for 8 )Ey,
t
0 for E*(Er

w&(E*)= ~ {1+exp/(Er —B„)/(—', Mev)]} '
for E*)Ep. (54)

Eq Typical evaluations of the branching ratios are sum-
marized in Table VI. This analysis of the elementary
processes in heavy-element building permits rough
predictions of the outcome of exposure of uranium, for
example, to a constant flux of Q neutrons per cm'
second for a time $. The transport equation has the
form

dnz, ~/dh= QX (&&)z,~—t+ () pram)z

+ ()tp pn'+) z—t, 8+1 QX

(otal)

z, A. ()tp'+) z, A (~~)

We dehne the averages

Z(/) = g Zrsz, ~/n, 2 (l) = Q Aez, x/I,

where
n(()= gnz

Z, A.

Q= 7Mev

The transport equation allows a calculation of the time
rates of change of Z, A, and e. In the approximation
where the spread of the statistical distribution of nuclei

Fro. 10. Competition between simple beta decay to (Z+1, A),
"delayed" neutron emission, and fission as affected by the ex-
citation E* of the residual nucleus. Here rt=c'LM(Z, A)—M(Z+1, A)g. 8„ is neutron binding energy and Er is the
fission barrier height.

to, (E*)(A —E*)' exp[2 (aE*)i]dE

"o
(6 E*)'expL2 (aE*)'fd—E

"N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

where ~ Mev is a round number adopted for the eGec-
tive temperature. The probability of any given exci-
tation E* of the residual nucleus is taken to be
proportional to the expression

(6—E*)' expC 2 (aE*)i7 (53)

as in the theory of delayed neutron emission. " The
branching ratios pp, p, and py for simple beta decay
and "delayed" neutron emission and fission are repre-
sented by the respective fractions of the excitation
spectrum shown in Fig. 10 and are calculated from the
formulas

Fio. 11. Qualitative sketch of Bow of representative point
(Z,A) in the (Z,A) diagram of Fig. 1(b) during massive neutron
bombardment. The upward component of the Row is due to beta
decay proceeding at its natural rate which becomes less as the
point moves up towards the line of beta stability. The horizontal
component towards smaller A values is due to emission of "de-
layed" neutrons from nuclei left excited in beta decay. This
"backsliding" is greatest near the neutron drip line. The hori-
zontal component of the Qow towards greater A values is due to
radiative neutron capture. It is least near the neutron drip line
where the cross section drops off. Attrition due to 6ssion of nuclei
left excited in beta decay is least near the neutron drip line.
Nuclei which start as U"' would tend to follow a path represented
by the heavy line whose diminishing width represents the di-
minishing portion of these nuclei left after fission attrition.
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TABLE VI. Branching ratios for simple beta decay and for "delayed" neutron emission and Gssion calculated from Eq. (54). Non-
integral values of Z appear only because integral values for 6 made the numerical calculation easier to arrange. The last two columns
give the beta-decay constant Xp from Kq. (41) and cT(n,y) from Eq. (51),

300

350

400

105.6
104.4
103.2
102.0
117.3
114.6
127.9

3.4
3.1
2.8
2.5
2.4
1.9
1.5

3,9
4.8
5.9
7.1
2.3
3.9
1.5

6.0
7.0
8.0
9.0
8.0

10.0
10.0

Bn (Mev) By (Mev) 5 (Mev) eP

0.45
0.15
0.037
0.0082
0.010
0.00034
3.9X10 5

0.47
0.84
0.96
0.99
0.45
0.85
0.53

0.082
0.0079
0,00031
1.0X10 5

0.54
0.15
0.47

)I p(sec 1)

100
220
430
760
530

1600
1900

~(~,~) (~0-~ cm~)

6.1X10-2
2.5X10 '
9.4X10 '
3.4X10 '
4.4X10 '
4.3X10 4

8.1X10 ~

Q,„;, 10' sec '/o 2)&10"/cm' sec. (5g)

Such a Qux is not adequate for buildup. A stays constant
but Z increases, Eq. (57). The fission threshold soon
drops below 8„.The nuclei are all destroyed by fission.
To avoid this fate, the nuclear cluster in its motion in
the (Z,A) diagram (Fig. 11) must stay below the line
Z=Z„r(A) where Eg drops to equality with 8„.The
slope of this line (Table V) is of the order dZ„r/dA
=0.22. To this we equate the slope of the Qow in the
(Z,A) diagram and find a formula for the minimum
Aux needed for element building:

0.22=dZ/dA= (po+v )/(lip 'oQbuud vn) (59)

For example, for A =350, Z= 114.6 (Table VI) we find

Qb„;ig 2)(10"/cm' sec. (60)

A still higher Qux will increase A even more than five
times as fast as g. The representative point will ap-
proach the line of particularities. The cross section will
diminish. Despite this drop in o (n,p), a sufficiently high
Qux will carry the representative across the line of
particularities. Then it will move along in the direction
of increasing 2 nearly parallel to the neutron drip line,
Z=Zd„o(A), but a little above this line. Element
building is guaranteed to the extent that our extra-
polations are valid. Moreover, this building procedure
will take place in a strip of the (Z,A) diagram where the
fission branching ratio is least and the attrition is
smallest (Fig. 11).

is treated as small compared to the ranges of Z and 2
over which cr, q „and Xp vary strongly, these rates take
the form

dZ/dt = (q p+ y „)lip,

dA/d1 =Qo to„)tp,
—

dn/dt = —yr'non,

where the right-hand side is evaluated at the "center
of gravity" (Z,A) of the cluster of transforming nuclei.

Equation (57) makes it clear that a critical neutron
Qux is required for building superheavy nuclei. The proc-
ess of delayed neutron emission lowers A at a rate p„h.p

which, according to Table VI, is typically of the order of
10' sec '. Merely to balance this backsliding tendency,
a Qux is needed of the order

F=exp( —
~

Ldzor~o (. (62)

Table VII indicates that there is a reasonable yield of
nuclei of mass number A =350 under sufficiently intense
neutron irradiation, and a small but still quite appre-
ciable yield of nuclei of mass numbers as high as 3=500.

Fission as neutron source gives a borderline Qux.
Sudden fission of an indefinitely large mass of uranium
of density 19 g/cm' will produce a neutron density of
only (2.5n/U) (6.02&(10"U/Avogadro ((19/238) Avo-
gadro/cm'j=1. 2X10"n/cm' Assumi. ng a velocity of
10' cm/sec, we calculate a flux of 10"n/cm' sec. The
presence of transplutonium elements in the November 1,
1952 thermonuclear test debris has been observed and
discussed. '4

TAaz.z VII. Attrition by "delayed" fission in building up very
heavy elements by massive neutron irradiation along the optimum
path —the neutron drip line.

~clrip
Z& (Mev)
~ (Mev)
Pf
I.

Ld~dr ip

p

300

91
20.3
18.4
0
0
0
1

350

105
16.0
17.4
4.3X10 "
4.3X10-»
(5X10 '4

)1—5X10 ~4

400

119
8.4

15.9
4.9X10 8

4.9X10 8

, &7X10 z

)1—7X10 '

147
0.7

13.2
0.2
0.25

&3
&0.05

~Fields, Studier, Diamond, Mech, Inghram, Pyle, Stevens,
Fried, Manning, Ghiorso, Thompson, Higgins, and Seaborg, Phys.
Rev. 102, 180 (1956).

For a quantitative estimate of the yield under the
most favorable circumstances of high neutron Qux, so
that transport occurs near the neutron drip line, we
find it most convenient to speak of the fractional loss,
I, from the nuclear cluster per unit increase in the
average nuclear charge:

L, = dn/ndZ= q
—r/(1 —yr). (61)

Along the optimum buildup path, the neutron drip
line, this quantity is estimated to have the following
values (Table VII). From this quantity we calculate
the fraction F of the nuclei not destroyed by "delayed"
fission after buildup from a charge Zi d„„ to a charge
~2 drip ~



F. G. WERNER AND J. A. WHEELER

Mechanisms for the production of still higher Auxes
in stars have been discussed. It has been pointed out
that matter at the center of a suKciently massive and
cool star can be compressed to such a high density that
the electrons are squeezed onto the nuclei and a neutron
core is formed. "Formation of heavy elements by boil-
o6 of pieces from such a core and their subsequent beta
decay has been discussed. "The 55-night half-life of the
light curves of Type I supernovae and its identity with
the half-life of Cf'" has been argued as evidence for the
production in stars "on a fast time scale of heavy
elements by neutron capture processes. '"' Buildup of
the known heavy elements in stars by such irradiation
at fluxes of the order of 10"neutrons/cm' sec has been
considered, and found to account for many of the
features of the observed abundance curve. " In a star
one can achieve Quxes much higher than on earth, not
of course by neutron velocities substantially in excess
of 10' cm/sec, but by densities far higher than the
10"e/cm' coming from complete fission of substances
obtainable on earth. Therefore there seems to be no
difhculty on this score in considering the production
of superheavy nuclei.

The real issue is the stability of superheavy nuclei:
How far can one trust the extrapolations of the semi-
empirical mass formula which form the basis of this
paperP On this score it will be surprising if future
experiments do not bring future surprises.
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eave number of the field is also assumed small in
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sphere of radius R=roAl. Here r=r~(A/mc) and
R=R*(h/mc) are position and radius. Ke represent the
electric charge in the form

Pdriving (r) = 3Ze/4g R', (r (R)0, (r&R)

where

= (2~) '~ pariving(k) exp(ikr)d k, (A1)

pd„;;„g(k)= (3Ze /4 gR') (2') &(4g/k')

X (sinkR —kR coskR). (A2)

The induced polarization charge is obtained by multi-
plication with the polarization coefficient, "—ki(k),
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APPENDIX. FIRST-ORDER VACUUM POLARIZATION
BY A FINITE NUCLEUS

Pdriven(k) = ki(k)Pdriving (k),

The substitution,
x=—(1—y

—') l

leads to the alternative expression,

ki(k) = (e'/g. hc) g'(1 —g'/3)
0

4m'c' )
Xi x'—1—

i
dx.

(A3)

Wichmann and Krolp' have considered the charge
and potential induced by a pure Coulomb field to the
third order in the charge, Ze, that induces this polari-
zation. The first-order vacuum polarization had been
calculated by Uehling, the second-order eBect vanishes
identically, and the level shift due to the third-order
vacuum polarization for a charge as great as Z=95 is
only 6% of the first-order term, according to Wichmann
and Kroll. Accordingly, we neglect all terms of order
higher than the first in the strength of the field. The

~~L. Landau, Physik. Z. Sowjetunion 1, 285 (1932); J. R.
Oppenheimer and R. Serber, Phys. Rev. 54, 540 (1938); J. R.
Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).

2 M. Mayer and E. Teller, Phys. Rev. 76, 1226 {1949);Peierls,
Singuri, and %roe, Phys. Rev. 87, 46 (1952).

"Burbidge, Hoyle, Burbidge, Christy, and Fowler, Phys. Rev.
103, 1145 (1956).

28Fowler, Hoyle, Burbidge, and Burbidge, Science 125, 747
{1957).See also P. Fong, Bull. Am. Phys. Soc. Ser. II, 2, 15 (1957).

~ E.H. Wichmann and N. M. Kroll, Phys. Rev. 101,843 (1956).

kr(k) = (e'/~Ac)( ——;))I (2—y
—'—y

—
4)

y=1

4y'm'c')
X

~
1+

~

(y' —1)
—

~dy. (A4)
PPk'

This charge creates a supplementary potential under
the action of which the potential energy, V(r), of an
atomic electron is changed by the amount

8V(r) = (2') ') (4rre/k )ki(k)Pdriv[ng(k)
0

X (sinkr/kr) (47rk'dk) (A5)
~ First derived by W. Pauli and M. E. Rose, Phys. Rev. 49,

462 (1936); for a dispersion theoretic derivation see G. Kallen
and A. Sabry, Kgl. Danske Videnskab. Selskab. Mat. -fys. Medd.
B29, No. 17 (1955) or R. N, Euwema and J. A. Wheeler, Phys.
Rev. 103, 803 (1956).
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Into this expression we substituted the integral formulas
(4) for the polarization coeScient and (2) for the
driving charge and found the formula

8V(r) = —(mc') (3Z/47rR') (e'/kc)'(k/mcr)

f"
X(4/3~)~ dy(y' —1) '(2 —y

'—y ')
y~l

lo-s
-IO

-IO 2 $V
m

IO IO

X (sinkR —kR coskR)k '

X (k'+4y'm'c'/A') ' sinkrdk. (A6)

The integral over wave numbers was performed by the
method of evaluation of residues, and gave the result

(Ill/mc)'(n/4y')

[r*—(2 'y '+R*)e '&"' sinh(2yr*)),
g( gg

X' , (A7)
[R*cosh(2yR*) —2 'y ' sinh(2yR*)]e '""'

~g) gg

- IO —
p

-2-10

where r* and E* are the position coordinate and radius
in units h/mc. Inserting this expression into (6) and
integrating with respect to y, we found the following
expression for the electronic potential energy due to
polarization:

wlO

~«le
ISO

g V(y) = —(mP) (3Z/4~R+ ) (g /hg) (12''+)
t 4r*M;(0) —M, [2(R*—r*)]

+M'~[2 (R*+r*)]—2R*M6[2 (R*—r*)]
+2R*M&[2(R*+r*)]

X' f g(gg
' —M,[2 (t *—R*)]+M,[2(r*+R*)]
+2R*~6[2(r*—R*)]+2R*3f~[2(r*+R*)],

for r*)~R*. (A8)

We have not seen the polarization potential for a point
charge expressed as it is here in terms of tabulated
functions. Uehling gives 5V(r) as a double integral. In
(8) and (9) we have used the abbreviation

M (a)=2Ki, (a) —Ki~ 2(a) —Ki (a) (A10)

for the combination of integrals of the form

t
"exp( —a cosh8)

d8Ki„(a)=
J, cosh"tt

y«s-ay (y2 1-)-$dy (A11)

In the limit where the nuclear radius goes to zero, this
expression goes over to the form

8 V (r) = —(mc') (3Z&4s) (e'/hc)'(4/9r*) M4 (2r*)
—(mc')Z(e'/Ac)'(2/~)*'(2r*) ' exp( —2r*),

for large r*. (A9)

-2OC

FIG. 12. First-order vacuum polarization contribution to
electronic potential energy for two uniform finite spherical charge
distributions and for point charge, all for charge Z=137. Since
these first-order potentials are linear in the nuclear charge they
can be scaled to any other nuclear charge. If the arrow at 137 on
the scale ruler is carried along the appropriate curve, the division
mark for the desired charge Z will trace out the curve for this
charge and that radius.

These integrals have been tabulated" for values of u
from @=0.05 at intervals of 0.05 up to a=0.2 and
intervals of 0.1 from there up to @=2.Values of these
integrals for smaller a we computed by integration of
the appropriate series.

Figure 12 shows the contribution of polarization to
the electronic potential energy for the cases Z=137,
R=0.02, 0.03k/me=7. 7, 11.6X10 " em=0. 912, 1.37
X10 "(600)& cm; and also, for comparison, the cor-
responding curve for the first order efFect of a point
nucleus. Both first-order potentials are linear in the
nuclear charge and can therefore be scaled to any other
nucleus, for two special values of the nuclear radius:
R= 0, 0.02, and 0.03 h/mc. In this way one can estimate
without tedious computation the order of magnitude
of the polarization potential for any Z and any E. that
are likely to be of interest.

The energy shift due to vacuum polarization was

Kio(a) =ED(a) (standard Bessel function). ' Bickley and Nayler, Phil. Mag. 20, 343 ($935).
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calculated from the formula the E-electron wave function as obtained by numerical
integration for Z= 170, E= 11.3)(10 "cm. In this way

bEvac. poi. = bV(r) (F +G )dr (F +G )dr (A12')

SE „p,) = —0.0285 @ac',

Here F(r) and G(r) are the two radial components of as reported in the text.

(A13)
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Capture-to-Fission Ratios for Fast Neutrons in U"'f
B.C. DIVEN, J. TERRELL, AND A. HEMMENDINGER
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The ratio n=o, /or, where o, is the neutron capture cross section and or the neutron-induced fission cross
section, has been measured for U~' as a function of neutron energy. A pulsed and collimated neutron beam
is passed through a U~' sample at the center of a large liquid scintillator. Captures and fissions are detected
by means of their prompt gamma rays; elastic and inelastic scattering events are ignored because of smaller
pulse heights. Fissions are distinguished from captures by means of delayed pulses from the capture of
thermalized fission neutrons. It is found that in the neutron energy range E„=0.175 to 1.0 Mev the value
of a is given approximately by a=0.190—0.1168.„.The accuracy of the determination of n is 10 to 15%
in terms of the standard deviation of individual points.

INTRODUCTION

HE simplest and most widely used method of
measuring neutron capture cross sections is

activation, in which a radioactive end product is
detected. For many nuclides, however, no radioactivity
is produced. For capture reactions leading to stable
or long-lived products, cross sections can be measured

by the use of a mass spectrometer for determination of
the product nuclides; this method usually requires the
high cruxes present in reactors and does not seem to be
suitable for fast monoenergetic neutrons. In addition
to these methods involving detection of the end product
of capture, two other basic methods are available.
One is measurement of the change in neutron Qux

produced by capture, used, for example, in pile oscillator
and reactivity measurements. The other basic method,
used in the work reported here, is detection of the
gamma rays emitted as a result of the capture process.
For capture measurements with fast monoenergetic
neutrons, this is in many cases the only practical
method.

In the present experiment, neutron capture in U23'

is detected by counting the capture gamma radiation
in a large liquid scintillator' surrounding the sample;
the cross section is determined by comparison with the
fission rate of the same sample. Ideally the scintillator
should be large enough to absorb all the energy of the

gamma radiation emitted at its center. In this case,

t Work performed under the auspices of the U. S. Atomic
Energy Commission.

Liquid scintillator technique is described by Reines, Conan,
Harrison, and Carter, Rev. Sci. Instr. 25, 1061 (1954).

capture gamma rays would produce a pulse correspond-
ing to the sum of the energies of the gamma rays, which
is equal to the binding energy of a neutron in U"'
(6.29 Mev) plus the kinetic energy of the incident
neutron. Fission is also accompanied by prompt gamma
emission and the total energy of fission gamma rays
is nearly the same as the total energy of capture gamma
rays. ' 4 Consequently, observation of the gamma pulses
alone is not sufficient to distinguish between capture
and fission. The prompt neutrons emitted in the
fission process produce delayed pulses which enable
us to identify a fission event. The scintillator is large
enough to cause most of the fission neutrons to be
thermalized and finally captured in the liquid. The
addition of cadmium salt to the solution ensures that
most neutrons will be captured in cadmium, and the
resulting 9 Mev of gamma radiation provides an
ample pulse for observation. The cadmium concentra-
tion is adjusted so that the mean life of neutrons in the
solution is about 40 p,sec. The pulses due to fission
neutrons are then spread out in time so that they may be
counted individually with almost negligible losses due
to resolving time. The neutron beam is pulsed so that
the neutrons which cause capture or fission in the
sample arrive in bursts of 0.1-psec duration every
100 p,sec. Pulses in the scintillator which are caused by
prompt gamma rays due to capture or fission are

~I. Francis and R. Gamble and also F. Maienschein et al. ,
Oak Ridge National Laboratory Report ORNL-1879, October,
19SS (unpublished).' Smith, Fields, and Friedman, Phys. Rev. 104, 699 (1956).

'Kinsey, Hanna, and Van Patter, Can. J. Research 26, 79
(1948).


