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Note added in proof—Cross sections for ionization
and excitation of Helium by protons to the levels
2p, k, 3p, k, 4p, k, 3d, k, and 4d, k have been calculated
by A. Dalgarno and M. R. C. McDonald.!® Their

1 E. B. Armstrong and A. Dalgarno, The Airglow and The
Aurorae (Pergamon Press, New York, 1955).

MAPLETON

results differ considerably from the corresponding
calculations of this paper. This is not surprising since
the calculated cross-sections of this paper can vary
from zero (Z;=1.6875) to a maximum value for some
choice of Z;. In conclusion the author expresses his
gratitude to Professor A. Dalgarno for informing him
of these calculations.
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The ratios of the hyperfine interaction constants “‘a”

and the nuclear g factors of the stable isotopes of

antimony have been measured. From these measurements the hyperfine structure anomaly, defined as
A= (@121/@123) (g123/g121) — 1, was found to be (—0.35240.005)%. A has its origin in the difference in the
spatial distribution of the nuclear magnetic dipole for the two isotopes, which is related to the structure of
the two nuclei. The experimental result is compared with theoretical values of A based on a variety of

nuclear models.

The determination of @i21/a12; makes use of the electron nuclear double resonance technique (ENDOR)
which is discussed in some detail. The sample used in the experiment was silicon doped with antimony and
the microwave resonances were observed at ~9000 Mc/sec at a temperature of 1.2°K.

The ratio of the nuclear g factors was determined by conventional nuclear magnetic resonance techniques.

A. INTRODUCTION

HE hyperfine interaction constant e is a measure

of the strength of the interaction between the

nuclear magnetic dipole moment u; and the moment

due to the orbital electron. For two isotopes (subscripts

1 and 2) of the same element in the same electronic

state one might expect (@1/as)= (g1/g2), where we have
written g=uzr/I.

By measuring the ratio of the interaction constants
(e.g., by methods described in this paper or by atomic
beams) and the ratio of the nuclear g factors (e.g., by
nuclear magnetic resonance experiments) to high pre-
cision, deviations from this equality have been found.

It was pointed out by Kopfermann' and Bitter? that
one should expect (ai/az)=(gi/g2)(14+A) for certain
pairs of isotopes, where A is of the order of a fraction
of one percent and is usually called the hyperfine
structure (hfs) anomaly. Physically the origin of A can
be traced to nuclear size effects, the most important of
which is due to the difference in the distribution of the
magnetic moment inside the nuclei under considera-
tion.*=3 A quantitative discussion of A from a theoretical
point of view is left to a later section. Suffice it to say
that such a calculation usually depends on the par-
ticular nuclear model chosen so that an experimental

1 H. Kopfermann, Kernmomente (Akademische Verlagsgesell-
schaft, Leipzig, 1940).

2 F. Bitter, Phys. Rev. 76, 150 (1949).

3 A. Bohr and V. F. Weisskopf, Phys. Rev. 77, 94 (1950).

determination of the hfs anomaly should be capable of
adding to our knowledge of nuclear structure.

Hfs anomalies have been measured for several pairs
of isotopes. Such experiments have been restricted
until now to elements which lend themselves to de-
tection in atomic beam experiments, i.e., mostly
alkalies.2*7 Recent advances in the techniques of
paramagentic resonance experiments® have made it
possible to measure “e” with greater precision than had
previously been possible. The method employed is
called electron nuclear double resonance (ENDOR)3
and will be described in detail in a later section.

In the present experiment® the precise ratio of the
hyperfine interaction constants was determined by the
ENDOR technique and the ratio of the nuclear g factor
was redetermined by the NMR method for the two
stable isotopes of antimony, Sb**! and Sb*®, The experi-
mental value of A obtained in this manner was compared
with values based on a variety of nuclear models.

B. ENERGY LEVELS AND TRANSITIONS

The magnetic interaction of an atom whose angular

momentum J=% and whose nucleus has a magnetic

4 Ochs, Logan, and Kusch, Phys. Rev. 78, 184 (1950).

5 Eisinger, Bederson, and Feld, Phys. Rev. 86, 73 (1952).
( 55]73,)ccarino, Stroke, Edmonds, and Weiss, Phys. Rev. 105, 590

1957).

7Y. Ting and H. Lew, Phys. Rev. 105, 581 (1957).

8 G. Feher, Phys. Rev. 103, 83 (1956).

9 A preliminary account of this work has been given [ J. Eisinger
and G. Feher, Bull. Am. Phys. Soc. Ser. II, 2, 31 (1957)].
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moment u7 and spin [ is given by the Hamiltonian
Je=al-J+gsuod -H—grud-H, 1

where H is the externally applied magnetic field, uo is
the Bohr magneton, and ¢ is the hyperfine interaction
constant which for a nuclear point dipole is given by
the Fermi-Segré formulal®!' (see below). The eigen-
values W (F,mr) of Eq. (1) are given by the Breit-Rabi
equation,’?

AE
W(Fmp)=—3————gpoHmr
(2I+1)
AE dmp H
:l:—[l—}— x—l—x2] , (2
2 2I+1

where F=TI43%. The positive sign in the above expres-
sion corresponds to /4% and the negative sign corre-
sponds to I—%. mp=m;=+%. The zero-field splitting
AE=a(I4%) and x=(gs+gnumoH/AE=grudd/AE,
where g and g; are the electronic and nuclear g factors.!

The energy level diagram for =% (corresponding to
Sb2) is shown in Fig. 1. We show only the strong-field
part of the diagram since in all of our experiments
x>15. The quantities that we need to determine in
order to calculate the hyperfine structure anomaly are
a, g5, and gr. We can observe experimentally two types

Ve o 9000 MC/SEC
Vy ¢ 100 MC/SEC

m;=5/2 Mg=3

sp'' (1=5/2) 3/2 2
1/2 1 ol
my=+z
-1/2 o
-3/2 -1
-5/2 -2
Ho
Ve Ve Ve Ve Ve Ve —_—
m;=-5/2 Me=-3
-3/2 -2
-1/2 -1 _1
m,=-%
2 o J 2
3/2 !
5/2 2

Fi1c. 1. Energy levels for Sb™?! in Sb-doped Si in a high magnetic
field. The electronic transitions v, and nuclear transitions »y™ and
vn~ observed in the experiment are indicated.

10 B, Fermi, Z. Physik 60, 320 (1930).

1 E, Fermi and E. G. Segre, Z. Physik 82, 729 (1933).

2 G, Breit and I. 1. Rabi, Phys. Rev. 38, 2082 (1931).

13 The nuclear g factor gs is defined as the ratio of the nuclear
moment in Bokr magnetons to the nuclear spin. All other nuclear
g factors (g, g1, gs, gexp, €tc.) which we will have occasion to use
in later sections are understood to have units of nuclear magnetons
divided by the appropriate spin quantum number, i.e.,
gr=(m/M)g.
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of transitions:
(a) Amy==41; Amr=0 (e, Amp=-41, AF=41).

These are the microwave transitions that are observed
in an ordinary paramagnetic resonance experiment and
are labeled v, in Fig. 1. There are 2741 such transi-
tions. The unknown quantities are gr and @, the experi-
mentally determined quantities are », and H. From
Eq. (2) we obtain the expressions

o ErmoH Y’ L
|3 ———— ) — (T+2)? |- a[2mrgrucH ]
vetgruwol

+ (votgruoH)?— (gruH)?=0, (3)
ﬂoH
| ()

ol 2 moH
o) [reem(5)
vetgrumod a
etgmoH \ 2
+(1+%)2-(ﬂ) —0 ()
a

which are to be solved for ¢ and gr.

(b) Am;=0, Amr==41

e

(e, Amp==+1, AF=0).

These transitions occur at a much lower frequency
than the microwave transitions and may be con-
veniently detected by the ENDOR technique.® They
are labeled vy* and vy~ in Fig. 1. As discussed in the
next section they provide a more accurate way of
determining a. From Eq. (2) we obtain

1

where the upper sign refers to the upper set of levels
(i.e., my=+1%) and the lower sign to the (m;= —3%) set.
The absolute value of gr is to be used in the above
equation. However, for a positive g the m; corre-
sponding to the higher of the two levels, and for a
negative gr the m; corresponding to the lower level, is
to be taken.!

If one takes the difference between two transition
frequencies which occur between levels of the same
mr’s, but different m s, one can show from Eq. (2) that

S

_guwoll — (I43)? |— al[2mrgruoH ]
(otamt) =477

vn=tgruod
+ (va==gruoH)*— (gruoH)*=0, (5)

yat—vy=—2g1uH (mp—mzp'). (6)

Expression (6) provides a method for determining g;.
However, there are only 27 —1 such “lucky’ intervals.
(See, for example the encircled vy in Fig. 1.) In order
to minimize the experimental error it is desirable to
make use of the 47 available pairs of transitions which
occur between levels characterized by the same mr

14 This enables one to determine signs of unknown moments,
since a self-consistent set of a’s will be obtained only with a
particular sign assignment.
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rather than mr. Under those conditions an equation in
gr is found from Eq. (6):

g (woH )[4 (vyt+vy) ]
+ g2 (ol )*{6[ (va*)*— (va)2]—2agr (noH) }
+gr(pol) {4L (va*)*+ (vn™)*]—dagruoH [ mrvn*
+ (mr— vy~ ]—[26*(I+3)
+2(gruol)*](vat+va) }+L (o) — (v )]
—[a®(I+3)*+ (grucH)* I (va")2— (va)*]
—grapcH[mr(vyt)?~ (mr—1) (vy)*1=0, (7)

where as before for a positive gr the my refers to the
higher of the two upper levels and for a negative gz to
te lower of the two upper levels.

Since in our case vy~ —wyT is about an order of
magnitude smaller than e, we cannot hope to get g; to
the same accuracy as a. For this reason the conventional
NMR technique was used to obtain g; to the desired
accuracy. Equation (7) is presented for cases in which
an NMR experiment is difficult to perform (e.g.,
radioactive nuclei or the nuclei of the rare-earth group).
In order to evaluate gs, gr, and @ from the above
expressions one proceeds as follows: Egs. (3) and (4)
are solved for gr and e, taking the published value of
gr. The value of gr thus obtained is put into Eq. (5)
which gives a more precise value of a. This new value
may be substituted back into Eq. (4) to get an improved
value of gr. It should be noted, however, that only a
small fraction of the inaccuracy in gr is reflected in the
final answer for @ (the fraction being of the order
a/gruoH ; the same is true for an error in the deter-
mination of the magnetic field). If one is dealing with
an unknown nuclear moment, Eq. (6) or (7) may be
used to determine g;.

The preceding discussion and some of the considera-
tions to follow are more general than appears necessary
for the experiment which is of immediate concern here,
but since some of the experimental methods employed
are novel a comprehensive discussion seems to be in
order.

C. EXPERIMENTAL PROCEDURE
(a) Nuclear Spectrometer

The ratio of the nuclear moments of the Sb isotopes
was determined with the aid of a commercial Varian
V-4210A nuclear spectrometer.

The nuclear moments of Sb*?! and Sh'*® were reported
by Proctor and Yu'® and Cohen ef al.1® to an accuracy
of 1 part in 10% Since we are merely interested in the
ratio of the moments, but this to a higher accuracy,
we repeated the NMR experiments. The sample,
similar to the one used by Proctor and Yu, was a

solution of KSbFs in HF with approximately 0.1/ -

15 W. G. Proctor and F. C. Yu, Phys. Rev. 81, 20 (1951).
( 16 Cohen, Knight, Wentink, and Koski, Phys. Rev. 79, 191
1950).
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of MnSO4!” The dc magnetic field was kept constant
and the rf frequency was varied. The resonance fre-
quency corresponding to the center of the pattern was
determined to 1 part in 10% Since both nuclei see the
same magnetic field, no corrections for shielding fields
or chemical shifts need to be applied and the ratio of
the resonance frequencies equals the ratio of the
nuclear g-values.

(b) Microwave Spectrometer

The spectrometer used in this work operates at
X-band (#9000 Mc/sec). It is a balanced-bridge
type, so that the signal can be made proportional either
to the real or imaginary part of the electronic sus-
ceptibility!® and it employs a superheterodyne detection
scheme with an intermediate frequency of 60 Mc/sec.
The magnetic field is modulated at 100 cps. A signal
of this frequency is thus observed when passing through
a resonance line and is detected by a phase-sensitive
detector which follows the 100-cps audio amplifier. Its
output has an integrating network which in all our
experiments was adjusted to have a time constant of
0.25 sec. This output is fed directly into a recorder. In
order to observe the microwave transitions the magnetic
field is varied linearly and monitored by means of a
nuclear probe, whose signal is superimposed on the
electron resonance signal providing convenient field
markers (see Fig. 2). The electron spin resonance
frequency, the output of the nuclear probe and the
frequency corresponding to the hyperfine transitions
are all monitored by means of a frequency counter.

A rectangular cavity operating in the 7TFE;o; mode
was used. It was made out of Pyrex and coated with
silver on the inside. A slit was provided to allow the
nuclear frequency, necessary for the ENDOR tech-
nique, to penetrate the cavity. This frequency was
applied to a coil wrapped on the outside of the cavity
which terminated in a 50-ohm transmission line. The
cavity containing the sample was immersed in liquid
helium at 1.2°K.

A more detailed description of the spectrometer is
given elsewhere.!

(c) The Sample

The sample used was antimony-doped silicon. The
paramagnetic resonance of such a sample was first
observed by Fletcher ef al.® Antimony is known to
form a donor in silicon, four of its valence electrons
forming covalent bonds with its neighboring silicon
atoms and the fifth being bound to the Sb nucleus with

17 We are indebted to Dr. T. C. Loomis and Dr. R. G. Shulman
for supplying the sample.
18In view of the long relaxation times encountered, we were
always tuned to the dispersion mode.
1 G, Feher, Bell System Tech. J. 26, 449 (1957).
( 2°5F§etcher, Yager, Pearson, and Merritt, Phys. Rev. 95, 844
1954).
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F16. 2. Experimentally observed spectrum of the microwave transitions for Sb1?! and Sb12,
The field markers are derived from a proton resonance.

an ionization energy of 0.039 ev.2 The wave function
of this donor electron has been described in detail by
Kohn and Luttinger.? In order to obtain the maximum
signal-to-noise ratio one would like to dope the silicon
with as many antimony atoms as possible, the upper
limit being given by undesired exchange effects arising
from an overlap of the electronic wave functions.
These occur at a concentration of approximately 107
atoms/cm?? The sample that was used in our experi-
ments had a room temperature resistivity of 0.17
ohm-cm corresponding to 5X10' donors/cm?. Three
pieces of silicon with dimensions 8X12X1 mm were
placed at the maximum microwave magnetic field
region in the cavity. The low temperature of 1.2°K
provided a convenient way of improving the signal-to-
noise ratio by increasing the electronic Boltzmann
factor. The electron spin lattice relaxation time at this
temperature was of the order of a minute. Before each
run the sample was allowed to come to thermal equi-
librium at the desired magnetic field for at least 10
minutes.

121 Morin, Maita, Shulman, and Hannay, Phys. Rev. 96, 833(A)
¢ 2253\/)': Kohn and J. M. Luttinger, Phys. Rev. 97, 883 (1955).

2 C, P. Slichter, Phys. Rev. 99, 479 (1955).

2 Feher, Fletcher, and Gere, Phys. Rev. 100, 1784 (1955). Note

that the figure captions in this reference should read 1017 donors
per cm® and 4X 10 donors per cm?.

(d) The ENDOR Technique

The principle of the electron nuclear double resonance
(ENDOR) technique has been discussed earlier.? It is
based on the possibility of changing the population
difference between two microwave levels (and hence
the amplitude of the electron spin resonance signal) by
inducing the hyperfine transition vy (see Fig. 1). A
typical trace of the microwave resonance (dispersion)
signal for Sb'?* when the two transitions (3, —3<%, —3%
and (—%, —5<>—1%, —$%) are being induced is shown in
Fig. 3. We note that (1) the second line traversed is
approximately twice as large as the first and (2) the
lines are highly asymmetrical, having a steep rise and
a slower “decay.” In order to understand the difference
in amplitudes of the two lines we consider the popu-
lation of the four levels which are involved in the
transition under discussion as illustrated in Fig. 4. We
make the following assumptions: (a) the electronic
line can be completely saturated, (b) the hyperfine
transitions vy are performed under fast adiabatic
passage conditions? and therefore result in a complete
reversal of the population, and (c) the only relaxation
process by which thermal equilibrium is established
involves Amy= =41, Amr=0 transitions.

25 F. Bloch, Phys. Rev. 70, 460 (1946).



1176 J. EISINGER

AND G. FEHER

ki
it

e

ke
B

e

el

=
i

F16. 3. Observation of the hyperfine transitions via the electron spin resonance line (ENDOR technique). The ratio of
amplitudes is explained in Fig. 4. The asymmetry is caused by the long spin-lattice relaxation time [see Sec. C(d)].

Figure 4 shows the population of four levels during
various stages of the ENDOR experiment. Figure 4(a)
corresponds to thermal equilibrium, the lower states
having a population of N (14-¢), where V is the total
number of nuclei divided by the number of levels and
2¢ is the electronic Boltzmann factor (gsucH/kT). In
Fig. 4(b) we saturate one of the electronic lines and
thereby equalize the population of the levels involved
in it. The amplitude of the electronic signal at this
stage is very small (see Fig. 3). After inducing the »y*
transitions we get a population difference between the
two microwave levels of € and the electron resonance
signal will increase [see Fig. 4(c)]. After resaturating
one electronic transition and waiting long enough for
the other transition to come to thermal equilibrium,
we arrive at the population as indicated in Fig. 4(d).
After the vy~ transition is induced, the population is
redistributed according to Fig. 4(e). We now see that
the population difference between the two microwave
levels is 2e. This means that the second signal is expected
to be twice as large as the first. This corresponds ap-
proximately to the experimentally found ratio as can
be seen from Fig. 3. If one induces the vy~ and then the
vy transition one would expect by a similar analysis a
symmetric situation, i.e., the second line should again
be twice as large as the first. Experimentally we find a
small asymmetry in the ratio of the amplitudes de-
pending on the direction of the nuclear frequency
sweep. This can be traced to a breakdown of our
assumption that the relaxation proceeds only via
Amy=21, Amr=0 transitions. If we have a simultane-
ous electron-nuclear flip (ie., Ams;==41, Am;=F1)
we would not expect a symmetrical situation.26 If this
“cross relaxation” is the predominant process and one
does not wait long enough for the Am ;=21 relaxation
process to establish thermal equilibrium, one can show
for our case that the expected ratio of amplitudes should

26 This asymmetry will be different for positive and negative
moments and may be used therefore to determine the sign of
unknown moments. The asymmetry is also helpful in determining
the various relaxation times.

be 3:2 and 3:1 depending on the direction of the sweep.
The magnitude of the cross relaxation time was calcu-
lated by Pines, Bardeen, and Slichter? to be 40-100
minutes and is therefore expected to affect the sym-
metry only to a small extent.?

The assumption of complete saturation is also an
oversimplification. If one deals with an inhomogene-
ously broadened line®* and uses magnetic-field modu-
lation which sweeps over a fraction of the line under
fast adiabatic passage conditions one can show that
only the portion of the line corresponding to the center
of the field sweep should be completely saturated. The
rest of the line covered by the sweep has different
degrees of saturation. The portion near the extremes
of the sweep are not saturated at all.

The assumption of inducing the hyperfine transitions
under fast adiabatic passage conditions is in our
experiments easily satisfied although it should be noted
that this is not a necessity for the ENDOR technique
to work. For instance, a saturation of the hyperfine
transition would be sufficient. It would merely reduce
the observed signal by a factor of two.

The asymmetry of the line arises from the fact that
it takes a time of the order of a relaxation time to
resaturate the electronic resonance line. This is re-
sponsible for the slow trailing off of the signal. The
steeper rise during the first half of the traversal through
the line is given by the inherent line width of the
hf transition.

D. EXPERIMENTAL RESULTS
(a) Nuclear Resonance Transition

We find for the ratio of the nuclear resonance fre-
quencies of Sb*?! and Sbh'#

v121/v123= g121/8123= 1.8466140.00001. (8)

27 Pines, Bardeen, and Slichter, Phys. Rev. 106, 489 (1957).

28Tn a high-concentration sample where exchange effects
become important, a different cross relaxation mechanism takes
place which also permits the determination of the sign of the
magnetic moment [see Feher, Fuller, and Gere, Phys. Rev. 107,
1462 (1957)7].

2 A, M. Portis, Phys. Rev. 103, 834 (1956),
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F16. 4. Population of the
four levels which are re-
sponsible for the resonance
spectrum of Fig. 3. Note
that after the first hyper-
fine transition the popula-
tion difference of the micro-
wave levels is € [see 4(c)]
and after the second transi-

my=+3
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This is in agreement with previous determinations!®16
within their experimental errors.

(b) Microwave Transitions

Figure 2 shows the paramagnetic resonance lines
with a linearly varying magnetic field. We see six lines
due to the Sb®! (I=%) and eight lines due to Sb'®
(I=1%). In addition small background lines are observed,
whose position correspond to arsenic and phosphorus
which were accidental trace impurities in the sample.
The lines are inhomogeneously broadened® and have
a shape similar to the dispersion under adiabatic fast
passage conditions.?® A more detailed discussion of the
line shape will be published later. The magnetic field
markers which are superimposed on the trace are
derived from the proton signal and have the usual
characteristic shape of the derivative of an absorption.

In order to improve the statistics, we made four
pairs of runs similar to the one shown in Fig. 2. Each
pair consisted of one run with increasing magnetic field
and one with decreasing magnetic field. The results are
summarized in Table I. From the above data we find,
with the aid of Eq. (4),

g7=1.99853--0.00001. (9)

The error in (9) is the most probable error obtained
from the spread of data given in Table I. The error in

TABLE 1. Magnetic fields at which the microwave resonances
occur. The listed values are averages of 8 runs. From the above
data one can obtain gs and the hyperfine interaction constant
“a”. The latter may be obtained more accurately from the data
in Table IIL.

SblZS SblZl
Transition Transition
H oersteds mr f 44 H oersteds mi 144

2974.63 % 1.99857

3009.63 % 1.99858 2933.63 2 1.99856
3045.13 2 1.99854 2997.48 3 1.99860
3081.04 3 1.99851 3062.99 3 1.99849
3117.28 —3 1.99854 3129.71 -3 1.99853
3154.02 -3 1.99853 3197.92 -3 1.99854
3191.21 -3 1.99848 3267.65 -3 1.99850
3228.75 -3 1.99851

v,=8678.46 Mc/sec Average gs=1.99853-40.00001

TRANSITION
NQ NGO

EQUILIBRATE TRANSITION

N(H‘E)

[3
N(|—~2-)

__,_’i'_:/N(H%e)
NC+3e)

NG -£)

© (d) e)

the absolute value of g; may however be somewhat
larger due to the field differences between the positions
of the nuclear probe and the paramagnetic sample
which may amount to as much as 430 milli-oersteds
depending on the cycling procedure used in establishing
the magnetic field. This may result in a systematic
error in the g-determination of 2 parts in 10°,

In any event the accuracy of the final result will not
be affected by the error in g since it enters only through
correction terms arising from the fact that we are not
quite in the Paschen-Back field region.

From the data of Table I one can, with the aid of Eq.
(3), calculate the following values of a:

a11=186.8020.04 Mc/sec,

(10)
125=101.512£0.02 Mc/sec.

The values given in (10) lead to a value of the his
anomaly A= ej21— €193=— (0.3520.03)%. In order to
improve this accuracy we resorted to the double reso-
nance technique as discussed before.

(c) The ENDOR Transitions

The asymmetric shape of the signal obtained when
sweeping through vy (see Fig. 3) was discussed in a
previous section. The frequency determinations were
made at half the height of the steeply rising part. Two
such determinations were made for each transition;
one with the rf field varying from low to high frequencies
and the other from high to low frequencies. The differ-
ence between the two frequency determinations corre-
sponds approximately to the nuclear line width and was
found to be about two orders of magnitude smaller than
the width of the microwave transition. This reduction
in line width is possible because of the inhomogeneous
broadening® of the electron spin resonance line and is
the basis of the higher accuracy attainable by the
ENDOR technique. The average of the two readings
was taken as the center of the resonance line and cor-
responds to the hyperfine transition frequency tabu-
lated in Table II, together with the transitions
involved, the magnetic field strengths and the micro-
wave frequency. From the tabulated data we obtain,
with the aid of Eq. (5), for the hyperfine structure
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TasBLE II. Determination of the hyperfine interaction constant “a” for Sb'?! and Sb'® by the ENDOR technique.
: The values for “a” are obtained from the above data by means of Eq. 5.

Saturated electronic transition Hyperfine transitions
MJImI <> mrmr ve(Mc/sec) H (oersteds) MIMI > mI,mr vv (Mc/sec) a(Mc/sec)
Sbl2l
I e -1 % 906 6.3 3072.1 150 403 93.457 186.800
B IDUGN 1 85.402 186.784
5o 85.441 186.805
Lot b 906 6.3 31362 Hict §7.19 186,803
-1 - i 95.434 186.789
, 3o L 87.190 186.812
bieosowesowes CPIEED O BR ER
-1 i —1- 97.464 186.795
1o 3— 88.973 186.808
T AT R L =R
—3,—1 o -1 99.547 186.807
Lt o - 90.791 186.804
b=t e —4-3 904 4.5 3328.8 [ O DG 92799 186816
S gl DG Sl 101.668 186.799
1 3 1 5
s e s L-3o 3% 92.646 186.800
e R 904 2.3 3397.5 1o -1-3 101.639 186.806
Average value 186.802--0.005
S
Ll =3 1 906 6.3 31132 Loteo 3 0% 47.034 101.506
S A DG (| 51.010 101.515
L1 3 47.042 101.520
ERY R 905 6.5 3136.6 S G AP 51.040 101.529
S DRGNS ¢ 47.566 101.509
S Y DI 51.584 101.522
L 5o 3 47.565 101.516
—1 —1
b ode - 3 905 6.5 31800 8 D B 35.106 101317
S AP ¢ 52.170 101.504
PR Y 48.096 101.515
bbb 3 904 7.0 3213 B g 38 Sout 101,303
S DG i 52.774 101.525
1 e 48.633 101.515
b=t o —3—4 904 7.0 3249, B D 35,202 101,323
S U SDIGU Gl 53.336 101.504
L1 3 49.178 101.519
—i—1 o - 53.384 101.517
5—§ e —5—i 904 5.7 3285.5 gl DIGH il 49756 101.519
—1 -3 —1- 53.982 101.516
L3 o 3— 49.730 101.524
L5 o —3-3 904 4.5 3322.1 Ot Dadha Ot PRt 101528
. DG Gl 54.598 101.515
L% o 31 50.284 101.521
5L—F ¢ —§—3 904 3.1 3358.9 S L IDIGE N 54.508 101.520
Average value 101.5162-0.004
constants, : From (8) and (12) we finally obtain, for the hfs
anomal
@121=186.802=:0.005 Mc/sec, an ¥
a123=101.5164-0.004 Mc/sec @121 §123
12 /sec, A=——T—1=—(0.35240.005)%.  (13)

@121/ @123=1.84012-4-0.00009. (12) @123 g121
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The nuclear g values may be obtained with the aid
of Eq. (7). The values including a diamagnetic cor-
rection® of 0.529, are

g(Sh™2t) =1.3440-£0.0006,
g(Sb™2) =0.7281-£0.0003.

The values in (14) agree with the previously published
values.”®1® As mentioned earlier we used the more
precisely determined ratio of g values (8) in the deter-
mination of A. The results in (14) are merely quoted to
illustrate the use of the ENDOR technique in deter-
mining nuclear g values.

(14)

E. THEORETICAL CONSIDERATIONS

The magnetic interaction is given by the Hamiltonian
of Eq. (1). The hyperfine structure constant “a” has
been calculated by Fermi and Segré!®! with the
assumption that the nucleus is infinitesimally small
and its moment a point dipole. They obtain

16w ux
hapa=-—no—|¥(0)]?, (15)
3 I

where ¢(0) is the electronic wave function at the
nucleus.

If we allow the nucleus to have a finite extent, we
must modify (15) by taking the electronic wave func-
tion and the distribution of the magnetic moment
inside the nucleus into account. Expression (15) may
then be rewritten

16 pxy
ha=—ur— PO (A+EN (1), (16)

The factor (1+€B%) takes into account the so-called
Bohr-Weisskopf? effect which has its origin in the
distribution of the nuclear magnetic moment and whose
existence was suggested by Kopfermann! and Bitter?
before being calculated by Bohr and Weisskopf. The
factor (1+€®B) is due to the Rosenthal-Breit?—# effect
which is caused by the electron moving in a Coulomb
field modified by the finite size of the nucleus. It follows
from equation (16) that, if we are dealing with two
isotopes of the same element identified by the subscripts
1 and 2, then

(a1/az)= (g1/g2) (14 APV ARB), 17)

where A~e;—e; and where we have assumed that the
electronic wave functions at the nucleus are the same
for both isotopes. In the following sections we shall
attempt to calculate ABW and ARB for the two stable
antimony isotopes and compare our results with the
experimental value of A.

% W. E. Lamb, Jr., Phys. Rev. 60, 817 (1941).

31 J. E. Rosenthal and G. Breit, Phys. Rev. 41, 459 (1932).
32 G. Breit, Phys. Rev. 42, 348 (1932).

3 G. Racah, Nature 129, 723 (1932).
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(a) Rosenthal-Breit Effect

Owing to the finite size of the nucleus the potential
field in which the orbital electron moves is cut off at the
nuclear boundary. This results in a lower value of the
electronic wave function ¥ than would obtain for a
point nucleus so that ¢*B will always be negative. A
method for calculating this effect is given by Crawford
and Schawlow.** One obtains for Sb*®! a value for e®B
of 2X1072 In order to calculate ARB=RB (Shi2)— (RB
(Sb'?®) one has to know the change in nuclear radius,
0R, in going from Sb'* to Sb'®. This may be estimated
from a semiempirical relationship based on a com-
pressible model of the nucleus and discussed by Wilets,
Hill, and Ford.®® In this way we find (8R/Ro)
= —4X107? which leads to a value of ARB= —8X1075.
This effect is many times smaller than the Bohr-
Weisskopf effect discussed in the following section.

(b) Bohr-Weisskopf Effect

The effect of the finite extent of the nuclear moment
was considered by Bohr and Weisskopf? for a spherically
symmetrical magnetic moment distribution taking into
account the variation of the radial electron wave
function inside a uniformly charged nucleus. The
nuclear moment is made up of a contribution due to
spin and one due to orbital moment. These have
essentially different spatial distribution and therefore
need to be considered separately. Bohr and Weisskopf
find

AW = — (2,40.620;) b(R?/ Ro*) v, (18)

where a; and «; are the fractions of the magnetic
moment due to spin and orbital angular momentum,
respectively, and b is a parameter which depends on
Z and R, the nuclear radius. It is 1.179, for antimony.
(R?/R®)n describes the mean radius of the portion of
the nucleus which contributes to the magnetic moment.
R is therefore a sort of mean magnetic moment radius.

Bohr®37 refined these calculations by taking into
account the angular asymmetry of the spin distribution
which may have a considerable effect on the hfs
anomaly. He obtains

W= —[(140.38{)as+0.620: Jo(R?/ R,  (19)

where {=0 for the uniform model of the nucleus but ¢
differs from zero for the single-particle and collective
models. Its value depends on the particular model
chosen and is discussed by Bohr.%”

(c) Consideration of Solid-State Effects
on the hfs Anomaly

All previous theoretical and experimental work on
the hyperfine structure anomaly was performed on

( 34 l\/§ F. Crawford and A. L. Schawlow, Phys. Rev. 76, 1310
1949). :

36 Wilets, Hill, and Ford, Phys. Rev. 91, 1488 (1953).

38 A, Bohr, Phys. Rev. 81, 134 (1951).

37 A. Bohr, Phys. Rev. 81, 331 (1951).
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isolated atomic systems. In this section we wish to
explore whether any of the relations [e.g., Egs. (17),
(18), and (19)7] have to be modified in the solid and
whether any interaction peculiar to the solid have to
be taken into account.

The wave function of the donor electron in silicon
has been calculated in detail by Kohn and Luttinger.?
They find a wave function of the form

V@)= §F<> ey

where N is the number of equivalent minima (the
conduction band in silicon having 6 minima along the
[100] direction), ¢;(r) is the Bloch wave at the ith
minimum, and F(r) is the envelope wave function
obtained by solving an effective mass Schrodinger
equation. It resembles a hydrogenic s state having a
much larger effective radius because of the high
dielectric constant of silicon. This is also the main
reason why the hyperfine interaction in the solid is
much smaller than in the corresponding atomic case.
However, in the hfs anomaly the magnitude of this
interaction is not important since only the ratio of the
interactions enters the calculation. Also the detailed
behavior of the electron outside the nucleus will be of
little importance since the hyperfine interaction arises
essentially when the electron is inside the nucleus and
its behavior there will be the same whether one deals
with an isolated atom or an atom imbedded in a solid.
(This is evident from the fact that the ionization energy
which is characteristic of the behavior of the electron
outside the nucleus is many orders of magnitudes
smaller than the energy of the electron inside the
nucleus.)

An effect that could perturb the observed hf splitting
arises from an interaction of the nuclear quadrupole
moment with electric field gradients in the crystal.
Although the tetrahedral symmetry of the donors in
silicon precludes a quadrupole interaction, a strain in
the crystal would destroy this symmetry and thereby
produce an electric field gradient at the donor site.
However, since the magnitude of the quadrupole
interaction depends on mr, the measured hf splittings
should be different according to the m; levels involved.
From Table IT we see that such a variation was not
found experimentally. From this we conclude that
quadrupole effects if any were negligibly small in our
experiment.38

Another effect which has to be considered is that
due to zero-point lattice vibrations. In order to make
a rough estimate of this effect we assume that the
electron can follow the motion of the nucleus. The

# It would be instructive from a solid-state point of view to
apply an external force and measure by the ENDOR technique
the electric field gradients produced. Experiments along similar
lines were performed by Shulman, Wyluda, and Anderson [Phys.
Rev. 107, 953 (1957)7] using standard nuclear resonance tech-

niques. Their method, however, is not applicable to donors in
silicon.
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change in the electronic wave function will then be given
approximately by

[Ap(0) 2/ |¢(0) [P~ (/a)?,

where a is the donor-silicon distance (2.5X10~8 cm)
and « is the amplitude of the zero-point vibrations
(~107° cm) which causes the distortion of the wave
functions. We are only concerned with the difference
of this effect for the two isotopes having masses M,
and M, which will be 1— (M1/M5)*~10"2 of the total
effect. From this estimate we find that the measured
hfs anomaly may be numerically too large by about 2
parts in 105 Since in our case this is smaller than the
quoted experimental error, the effect was neglected in
the analysis of the data. For nuclei with lighter masses
this effect will of course be larger and for the H!, H?
pair may become a fraction of a percent, exceeding the
hfs anomaly as measured on atomic systems by an
order of magnitude.

(d) Description of Nuclear Models

The hfs anomaly is one of several nuclear parameters
which can be measured and calculated on the basis of
different nuclear models,® so that it may hopefully
contribute to the understanding of the structure of
various nuclei. In what follows, we shall discuss the
two antimony isotopes Sb?! and Sb® in the light of
four models: the extreme single-particle model (SP),
the collective model (C), one that we might call the
configuration mixing model (CM), and the single-
particle—uniform-interpolation model (SU).

1. Extreme Single-Particle Model (SP)

This is the simplest model and forms the basis of
the more sophisticated models discussed below.

The two Sb isotopes contain an even number of
neutrons (70 and 72) which are assumed to form a
closed shell with no net angular momentum, and 51
protons, 50 of which form a nuclear core along with the
neutrons, leaving one proton to describe an orbit about
the core. The odd proton is thought to be the sole
contributor to the spin, moment, quadrupole moment,
and hfs anomaly of the nucleus. In view of the fact that
50 is a magic number, the SP model can be expected
to be well adapted to Sb. The state of the odd proton
is obtained from the known spin and the systematics
of the available energy levels?® and is ds and g7/» for
Sb®2t and Sb!#| respectively.

It is readily seen that the magnetic moment is given

by
S-I L1
= gst 142
I(I+1) I(I+1)

8

3 Many of the models discussed below are reviewed in R. J.
Blin-Stoyle, Revs. Modern Phys. 28, 92 (1956).

© M. G. Mayer, Phys. Rev. 78, 16 (1950); Haxel, Jensen, and
Suess, Naturwissenschaften 35, 375 (1948); L. A. Nordheim,
Revs. Modern Phys. 23, 322 (1951).
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from which
pse=Ig=1I[gi% (g&—g)/(2I+1)]; I=I%x3, (20)

where / is the orbital angular momentum quantum
number of the odd particle and g, and g; are its spin
and orbital g factors, respectively; g,=5.585 and
—3.826 and g;=1 and O for protons and neutrons,
respectively. The values of usp calculated in this way
are only within some 409, of the experimental values,
texp, and are given in Table IIT. They are the well-
known Schmidt values.*

In order to calculate a value for the hfs anomaly, we
must estimate the contributions of spin and orbital
moment, @, and «;. Using (19) and (20), we find that

a,= (S-D)g./[T(I+1)g]
==+g/[(2l+1)g] for I=i+3, (21)
and

A= 1—C¥s.

In order to reconcile the SP model on which (21) is
based with the experimental magnetic moment, we
postulate that the g, of the odd proton in the nucleus
is not that of a free proton but has an effective value,
g.(eff) chosen in such a way as to make (20) ‘predict
the observed magnetic moment. Such a procedure has
been proposed by Bloch,*? de-Shalit,*® and Miyazawa*
and can be justified physically by the effect of meson
exchange currents in the nucleus.

Proceeding with this scheme, we calculate an effective
value of g, by equating the right side of (20) to pexp
and using it in (21). We find

Sht: ¢,=0.405, a;=0.595,
Shi%: a,=—0.535, a;=1.535.

The value of (R?/R¢*)a depends on the orbital angular
momentum of the odd nucleon and Bohr745 calculates

(22)

TaBLE III. Comparison of the experimental and theoretical
values of the nuclear moments and hfs anomaly of Sb'* and
Sb1%, The models used are described in the text.

Shizt Sh2s

Model x (am) BV (%) & @m) SV (%) A (%)=

SP 4.8b —0.63 1.7v —030 —0.34

C 3.75¢  —0.65 23%4  —036 —0.30

SU —0.80 —0.08 —0.73

CM 3.54¢ —0.54 247 —0.17 —0.37
Exptl.  3.36 2.55 —0.3524-0.005
a A= ABW+ARB

b u is the strict SP value but esp is calculated by using gs (cff) (see text).
¢ Strong-coupling case—see A. Bohr and B. R. Mottelson, Kgl. Danske
Vldenskdb Selskab, Mat.-fys. Medd. 27, 16 (1953).
d Some go/2 admixture—see (c).
e See reference (53) and Sec. E(c) IV of this paper.

4T, Schmidt, Z. Physik 106, 358 (1939).

2 F. Bloch, Phys Rev. 83, 839 (1951).

BA. de—Shaht Helv. Phys Acta 24, 296 (1951).

“H. Mlyazawa, Progr. Theoret. Phys (Japan) 6 263 (1951).
45 A. Bohr (private communication quoted in reference 6).
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(R?/R¢®»n=0.66 and 0.90 for protons in € and g orbits,
respectively. For the SP model,*”

¢=2I-1)/4I+1), (I=1+3)
¢=2I+3)/4I, (I=1-3).
We are now in a position to calculate egp, and find
esp(Sb?) = —0.6259, and esp(Sb*¥)=—0.2959,
so that AgpBW = —0.339,.

II. Collective Model (C)

Bohr has suggested a modified single-particle model
in which the odd particle is coupled to a rotating
asymmetric core. This model has been very successful
not only in predicting moments but also in explaining
quadrupole moments and rotational excited states of
heavy nuclei.?6-%7

Several limiting cases of the collective model have
been discussed by Bohr.?” They differ principally in the
strength of the assumed spin-orbit coupling compared
with the coupling of the odd nucleon to an axis of the
nucleus and the rotational level spacing of the nucleus.

We shall here consider only the case of intermediate
coupling. The coupling parameter 8 depends on the
strength of the /—s coupling relative to the coupling
between the orbit of the odd nucleon to the nuclear
symmetry axis. Its value is chosen in such a way as to
make the predicted value of the nuclear moment agree
with experiment. )

B is related to o, the average value of the odd-particle
spin component, by

#=(1—=20)/(1+20), (24)

the positive root applying to /=I4s and the negative
sign to the case I =I/—s. The quantity ¢ is given by

(I+1)gr—gr—Ig
g= y
8s— 41
where gg is the g factor for nuclear rotation which is
of the order of Z/A. The quantities «, and «; are given

by

(23)

(25)

a=0g/(I+1)gr, a=1—a,. (26)
From (24), (25), and (26), we find that
Sb¥?:  @,=0.445, «;=0.555, @n
Sb#:  @,=—0.243, o;=1.243.
The asymmetry factor { is given by38
2I—-1 ‘
§= ; I=l+s,
4(I+1)
1 1 (28)
4+ -

X[B*(2I+1)—68(2I+1)4+5—2I7; I=I—s.
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Using the values of (R*/R¢®)w and b given above and
as, @z, and ¢ in (19), we find for the collective model

ec(Sh2) = —0.6529, ec(Sb¥)=—0.3639%,
AGBW = —0.299

I11. Single Particle—Uniform Interpolation
Model*s (SU)

Trigg,*” Davidson,*®% and Feenberg®% have de-
scribed a nuclear model which combines features of
both the single-particle and the uniform model of the
nucleus.

The uniform model developed by Margenau and
Wigner® distributes the orbital angular momentum
more or less at random over all the nucleons so that
2i=Z/A for both protons and neutrons. The value of
g is the same as in the SP model, 5.585 for protons and
—3.83 for neutrons. The magnetic moment according
to the uniform model is given by Eq. (20) with these
values of g; and g,.

In the single particle—uniform interpolation model
(SU) the empirical value of the magnetic moment is
explained by postulating a mixture between the SP
wave function for the nearest Schmidt assignment
(I=12%3%) and the many-particle wave function corre-
sponding to the opposite Margenau-Wigner limit
(I=17%). The quantity / is the appropriate orbital
quantum number to give the same I to both states.
(Tt is not permissible to mix the SP states corresponding
to I=1I4% since they have opposite parity.) Calling
the fractional SP admixture f, we have

gsu= fgsp+ (1— f)gu,

where gsp and gy are those of the nearest Schmidt line
and the opposite Margenau-Wigner limit, respectively.
The parameter f is chosen by setting gsu equal to gexp
in (29) and the hfs anomaly is found from

esu= fespt (1— f)ev. (30)

For Sb®?' and Sh'*, ggp is calculated for the odd
proton in the ds;2 and g2 states, respectively. These
assignments corresponding to the nearest lying Schmidt
lines. On the other hand, gy is determined for the fs2
and fr/2 proton states. In this way we find the following
values of ffrom (14):

f(Sb)=0.74 and f(Sb#)=0.65.

(29)

4 This empirical model has had some success in predicting
magnetic moments but has little physical basis. It is included in
the present discussion mainly to illustrate the sensitivity of the
calculation of A on the model assumed.

4 G. L. Trigg, Phys. Rev. 86, 506 (1952).

48 J. P. Davidson, Phys. Rev. 85, 432 (1952).

4 J. P. Davidson and E. Feenberg, Phys. Rev. 89, 856 (1953).

% E. Feenberg, Shell Theory of the Nucleus (Princeton Uni-
versity Press, Princeton, 1955), p. 36.

51 H. Margenau and E. P. Wigner, Phys. Rev. 58, 103 (1940).
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To calculate ey, we recall that the uniform model
has no angular symmetry so that { =0. (R2/R¢*s, is that
of a uniformly charged sphere, i.e., £, so that from (18)

ev=—2(as+0.620,)b, (31)
with
as==£g/(21+1)gv. (32)

esp is found from (19), (22), and (23) using g,=5.585
and g;=1.

Substituting these values for ey and esp in (30), we
finally obtain

€sSU (Sbml) = 0.80%, €ESU (Sblzs) = 0.08%
and

ASUBW= —072%

IV. Configuration Mixing Model (CM)

Recently Arima and Horie® and Blin-Stoyle and
Perks® have suggested a model which is remarkably
successful in predicting many nuclear moments. The
model is again based on the SP model, the deviations
of pexp from the Schmidt values being explained by
small amplitudes of non-ground-state configurations
being mixed in with the SP states.

The configuration mixing coefficient is determined
from general considerations such as the energy level
spacings between unperturbed ground state and excited
configurations, and estimates of the nuclear pairing
energy. It is a remarkable fact that even quite large
deviations from the Schmidt lines can be explained by
mixing coefficients of the order of 0.1. Only configu-
rations whose spin differs from the SP configuration
spin by unity and which have the same orbital quantum
number need to be considered. Without any other
adjustable parameters ucu is calculated from formulas
derived in the Appendix of reference 52. The results
for Sb*?t and Sbh'* are given in Table III. They are based
on the proton and neutron configurations given below
which are somewhat different from those which were
used by Arima and Horie in their calculations. Only
those proton and neutron states for which configuration
mixing is possible and contributes to the deviation of
u from the SP value are listed.

Sbi pr (go2) n: (dsj2)®(Payj)?,
Sb%; p: gra, n: (dsy2)®(hye)®.

The contribution to ucm of usp as well as of each of the
possible proton and neutron excitations (uexe) are calcu-
lated according to the formulas in reference 52 and the
values of e are determined for each of them according
to (19), using appropriate values of (R?/R¢*»wn. The
various €’s are weighted according to the contribution

5 A. Arima and H. Horie, Progr. Theoret. Phys. (Japan) 12,
623 (1954).

8 R. J. Blin-Stoyle and M. A. Perks, Proc. Phys. Soc. (London)
A67, 855 (1954).
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USP OF Uexe Makes to ucm. The final results® are

eom (Sb2) = —0.5389%, ecn (Sh12¥) = —0.1739,
AcvBV = —0.365%,.

(e) Discussion of Nuclear Models

In the preceding section we have considered four
plausible nuclear models for Sb®?' and Sb'?* which
attempt to reconcile empirical values of the magnetic
moment with the Schmidt value. In the SP model this
is done by postulating a g,(eff) which is different from
that of the free nucleon. The collective model (C)
postulates strong coupling of the odd particle to the
nuclear core, while the CM model mixes excited con-
figurations to the ground state configuration. The SU
model, finally, is a compromise between a strict SP
model and a uniform model in which the orbital angular
momentum is shared. The values of eV obtained from
these models are collected in Table III along with
predicted values of the nuclear moments.

If we use a comparison between theoretical and

5 We are indebted to Dr. V. Jaccarino and Dr. H. Stroke for
illuminating discussions on the calculation of AcuBVW. [See also
I(-I. S’;g(])ke and V. Jaccarino, Bull. Am. Phys. Soc. Ser. II, 2, 228

1957)7.
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experimental values of A as a criterion for the quality
of the models, we can eliminate only the SU model.
All others give reasonably good agreement (see Table
I). In the final analysis we must therefore fall back on
more general considerations in trying to evaluate these
models like predictions of quadrupole moments and
excited rotational states®® which favor the collective
model. :

In conclusion we might say that our results seem to
justify the generally accepted nuclear models without
being very sensitive to variation in details of these
models. The methods used in this experiment to measure
the hfs anomaly are new and should be fruitful in
bringing several other nuclei under experimental
scrutiny.
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Fi1c. 2. Experimentally observed spectrum of the microwave transitions for Sb*®! and Sh®,
e field markers are derived from a proton resonance.



F16. 3. Observation of the hyperﬁne transitions via the electron spin resonance line (ENDOR technique). The ratio of
amplitudes is explained in Fig. 4. The asymmetry is caused by the long spin-lattice relaxation limecl:see Sec. C(d)].



