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Nuclear Symmetry Energy*
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On the basis of a phenomenological theory proposed in an earlier paper the nuclear symmetry energy is
recalculated. The value obtained is smaller than the one given before, which was incorrect. A relativistic
calculation of. the energy with the radius parameter ro= 1.0It )&10 "cm of the electron scattering experiments
yields about the correct symmetry energy. Compensating uncertainties due to inaccuracy in ro, corrections
due to the exclusion principle, and a possible difference in the radius of proton and neutron distributions
make an accurate comparison with the empirical symmetry energy meaningless.

I. INTRODUCTION
' 'N a previous paper' an attempt was made to derive
~ ~ the nuclear forces from a combined vector and
scalar field interaction, in a relativistic sense. The
resulting velocity-dependent forces led to saturation.
The strength of the fields were chosen so as to reproduce
the correct volume energy and density at the minimum
of the energy. It was shown that the nucleons by means
of this interaction behave as if they had only about
one half of their normal mass. The kinetic energy of the
nucleons therefore is electively doubled. Since the
difference between the maximum kinetic energy of the
neutrons and the protons is doubled this also led to an
increase in the symmetry energy. However, the value
given in I was in error. In part II we shall correct this
value in the nonrelativistic approximation and also give
the derivation in the relativistic fo'rm. In part III we
investigate the eGect of the Pauli exclusion principle on
the symmetry energy. In part IV we recalculate the vol-
ume and symmetry energy with a radius parameter as
suggested by the electron scattering experiments.

II. SYMMETRY ENERGY

For equal numbers of neutrons and protons the
volume part of the energy per nucleon can be written'

1
Ev =—Es—Vi+ Vs+A —A,

7
with

Es (3/10m) (3sr'/2) ——lp&, Vi ——a~, Vs =btr4 o)
(2)g, = ts, 'y /p, R = ts

—'cts /p, y=1 —~=m, tt/m

E& is the average Fermi energy of the nucleons; V& and
Vs are the interaction energies due to the scalar field p
and the vector field @0, respectively; E& and E2 are the
meson rest energies. Setting the variation of Ey with
respect to p and ps equal to zero leads to the Geld
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& See reference 1, p. 473.

equations of the infinite nucleus:

( 1 Es)
ttisp=
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After minimizing with respect to p, we finally obtain
for the volume energy at minimum

Since p, p, and ps do not change very much in the
neighborhood of their minimum values p', qP, Ps', the
binding energy for small 6 can be written
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Est =—
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where Ecb is the Coulomb energy. This formula replaces
Eq. (49) in I. The symmetry energy is only

51
E y =——Ej,0= 19.15 Mev,

9 ry0
(9)

in contrast to the value of Green's best fit' to the
Weizsacker mass formula E,~ =23.43 Mev. This result
agrees with the findings of Ross, Lawson, and Mark4
who pointed out that in an independent-particle calcu-

~ A. E. S. Green, Phys. Rev. 95, 1006 (1954).
e Ross, Mark, and Lawson 104, 401 (1956).

Here E&0 is the average kinetic energy for the equi-
librium density pe, and p'= 1—tt4o is the mass reduction
parameter at equilibrium. Kith E~ =19.25 Mev which
corresponds to r0=1.22X10 "cm, the choice y'=0.559
=0.56 leads to the correct volume energy' Ey'= —15.75
Mev. If one treats protons and neutrons as separate
Fermi gases, then the kinetic energy becomes

(6)
with
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lation with a velocity-dependent potential the proton
well had to be chosen deeper than the neutron well in
order to get agreement with experimental binding
energies. As pointed out in I, any positive difference in
volume between the neutron and proton distributions
will make the theoretical value even smaller.

A more exact calculation of the energy minimum
which uses the relativistic expressions instead of their
nonrelativistic approximations does not improve the
theoretical result for the symmetry energy. The expec-
tation values of the Dirac matrices are

If pp is the maximum momentum of the Fermi dis-
tribution (in the case above, pp' ——2mX32.08 Mev), we
have

po' 3 t'3q '
=2X10 s Mev,

8&sms. 7 &5)

which certainly can be neglected.
The variation of the energy Ev' with respect to Q

and gp leads to the Geld equations of the inGnite nucleus:

2EI,
p,'y= Q)amp= 1+ amp,

7'rg-
(13)

where v is the velocity measured in units of the velocity
of light. For equal numbers of protons and neutrons the
total volume energy per nucleon can be written

Ev' =m+Ev= ([p m'+ p'j')A„+ Vs+Xi—Rs. (12)

For the square root an average value over the nucleon
momentum distribution has to be taken. However, we
can approximate.

([~&m~+P&]l) —[~pm&+ (PP)A ]l
with

(p') A.
=2mEo.

The error introduced by this replacement is of the order

The nonrelativistic limit of this expression leads back
to (5). In order to obtain a volume energy of —15.75
Mev, we have to choose

or

Then we have

y'=0.536

~P=0.464.

(17)

byoo 0 3863 (1/&o)E&o= 34.72 Mev

Vg2= Vg —V2= 72.91 Mev,

E~=203.6 Mev, 82=181.2 Mev.

(18)

If we treat neutrons and protons separately we have
to replace in (12)

(p')A~~2mEo[1+ (5j9)6'j.

This leads to the symmetry energy

5 2''
E r = Eoo 1+ =18.75 Mev, (19)

(y')'m

which is even slightly less than the value obtained from
the nonrelativistic treatment.

With these parameters we have also calculated the
energy per particle of an infinitely big polyneutron. '
We 6nd a minimum of the energy at a neutron density
which is 0.595 times the nucleon density in the nucleus.
The strength of the scalar 6eld is reduced to 0.61. of
its value in the nucleus. The average kinetic energy is
29.5 Mev, the potential energy is 49.6 Mev, and the
mass is reduced to 0.72 its normal value. We obtain
very weak binding of about 0.9 Mev per neutron,
However, this result seems irrelevant in the light of
the fact that the symmetry energy is too small in com-
parison with its empirical value. Any effect which will
increase the symmetry energy to its correct value will
very likely also make the energy of the polyneutron
positive.

There are two effects which will increase the sym-
metry energy and we shall treat them separately. The
first one is due to the Pauli exclusion principle and the
finite range of nuclear forces; the second one is con-
nected with the appropriate choice of a radius parameter
fox the infinite nucleus.

@sorts =bmp. (14) III. EXCLUSION PRINCIPLE CORRECTION

BEg' 2 2','
p = Eoo 1+ —&ro+&so=0.

rip 3' . (yo)'m

The energy at minimum then becomes

2EI,' &
' 4

Ev'o=m+Evo= 1+ — m+ . Eoo .
(y')'m. . 3j '

(15)

(16)

If we minimize (12) with respect to p, we obtain the
saturation condition

Because of the Pauli exclusion principle, neutrons are
more densely surrounded by protons, and vice versa.
In case of a finite range of the (attractive) forces and a
larger number of neutrons, protons will experience a
stronger interaction than rieutrons. Hence the sym-
metry eGect will be increased. To express this in a more
quantitative-way, we go back to our original nonrela-
tivistic equations (1) ff. We insert the values of it and
gp from Kqs. (3) and (4) into Eq. (1) and write for the

' M. G. Mayer artd E. Teller, Phys. Rev. 76, 1226 (1949).



density p=A/V with A the number of nucleons and V
the volume of the nucleus. Then the total volume energy
of the nucleus can be written

If we disregard the p (or A) dependence of y, the second
term in Eq. (20) is of the form of a pair interaction, the
strength of which is given by the quantity in square
brackets.

The —,'A (A —1)= 2A' pairs will consist of m pairs with
symmetric space wave functions and (~~A' —e) pairs
with antisymmetric space wave functions. Space anti-
symmetric pairs have to stay apart by a distance which
is of the order of the wavelength of their relative motion.
Since the interaction between the nucleons will have a
finite range, the interaction of an antisymmetric pair
will be in general decreased. We denote by g the relative
probability of finding an "antisymmetric constituent"
within the effective range of the potential due to the
other particle, and by (1—g) the relative probability
for the "symmetric constituent. " Then we have to
replace the number of pairs —,'A' by

X„=2 (1 g)N+—2g (,'A' I-)— (21)

In case of very long-range interaction, we have g= —,
'

and X„=2A', i.e., the same result as before. In case of
a very short range, g tends to zero since the antisym-
metric pair interaction will be completely excluded.
Then we get E„=2n. The exclusion of the space anti-
symmetric pairs from the interaction has the eGect that
essentially every neutron only interacts strongly with
two protons and one neutron, which has opposite spin
with respect to the first one, and vice versa.

The symmetry eGect is readily exhibited by calcu-
lation of the number of symmetric pairs e. For heavy
nuclei one finds approximately

e= —,',A'(1 —-',dP), (22)

with 6 as defined in (7). For the effective number of
pairs we get

with
Xy= I «—(1 «)6']2A—',

n = —+—g.

(23)

(24)

If in (20) we replace —,'A' by the effective number of
pairs (23), and minimize with respect to p, we derive
for the volume part of the binding energy

Ev= E~'
I

——
I
—(—1——«)I —-+-7o

I (25)
Ego 3) (yo 3 3 )

' See, for example, J. M. Blatt and V. F. Weisskopf, Theoretical
NNdear Physics t'John Wiley and Sons, Inc. , New York, 1952).
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and the symmetry energy

1 I5 P 2 8y 17 1
F..„=—E„' —+(1—«) I

+— Iy' ——+— . (26)
I9 (3«9) 9

We have neglected here the fact that g and therefore
mp will depend on the momentum and hence will be a
function of the density p. In this calculation we shall
simply assume that np is constant and taken for some
average momentum.

For g= ~, i.e., « 1(very——long range) we come back
to the previous equations (5) and (8). In case of an
extremely short range g=0, i.e., np=4, we have to
assume y'= 0.513 to obtain the empirical volume
energy. For the symmetry energy we get then (as an
upper limit)

(27)Esym =29 6 Mev,

which is well above the empirical value of 23.42 Mev.
We may estimate what range has to be assumed for the
interaction in order to reproduce the empirical sym-
metry energy. We find that the choice

yP =0.538,

np=0. 883

(28)

(29)

will yield the correct values for volume and symmetry
energy. The relative probability of finding an antisym-
metric pair within the effective range is then

g =2g=4(« —3~) =0.532. (30)

From the graph given in Blatt and Weisskopf' we
estimate that this corresponds to an eGective range of
about twice the average interparticle distance. If we
take into account a possible (positive) volume dif-
ference between the neutron and proton distributions,
smaller ranges have to be assumed.

With the parameters (28), (29) we get for the depth
of the potential

Vg2
——78.3 Mev, (31)

and an eGective mass parameter

1—«~0=0.60 Mev.

Since for a given range of the forces ep will depend on
the momentum and will range between one for high
momenta and 43 for small momenta, this introduces an
additional velocity dependence. For particles with high
momenta we have to use a deeper potential and a
smaller eGective mass. Combined they will eGect a
lower binding energy for these particles as compared
with a calculation which uses a fixed mass and a fixed

' See reference 6, p. 130, Fig. 3.1.

which may appear to be too deep. However, we may
point out that in an independent-particle-model calcu-
lation we rather have to take for the potential depth

epV~2=69. 2 Mev,
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potential. In particular for scattering problems np=1
and hence the parameters (28) and (31) should be
taken.

The relativistic expressions are derived in a similar
fashion. However, it is much simpler not to eliminate
P and @p from the energy equation but rather to mini-
mize the expression

This parameter was taken from Green's best 6t of the
Weizsacker mass formula. In Green's paper' Ezb=rpA~
is the radius of a homogeneous charged sphere which
has the same electrostatic energy as the realistic
nucleus. The investigations of the Stanford group'
seem to indicate that the charge distributions of nuclei
can be well represented by

Ep' m+E——y 1V„[(——y'm'+ (p') A,)**+Vp+Rx R.]—
+ (1—1V,) (m'+ (p')A, )l, (32)

with
p=const[1+e &" ~&$ '

E.=1.07X1.0 "A& cm.

(38)

(39)

with respect to p, p, and po. Only the pair interactions
are treated correctly in this approximation.

We obtain for the volume energy

yoW)
1—(1—np)l 1—

9 yPm E W, )
1 )4E,.o

+(1—np)m 1+~ 1+
Wo- ( 2no&3 m 3

4 El,p

+8' 3 y'm
(34)

where we used the abbreviations

2Ego
W= 1+

m 4 EIp
Ey'= —1+- + (1—np)m

~

1+-
3 yPm Wol 3 m~

1 p 4Epoy——
I

1+- — I, (33)
WE 3yom~

and the symmetry energy

o 0 561, or ~o 0 439 (42)

The effective electrostatic radius for these distributions
is approximately

Rob=1.07X10 "[1+(3/A&)$A' cm, (40)

and agrees on the average with the radius derived by
Green.

For the calculation of the volume energy we refer
to the Fermi energy of an infinite nucleus, for which we
then should take the smaller radius parameter rp=1.07
X10 " cm if we neglect differences in the proton and
neutron distributions. The corresponding average
kinetic energy will be

EI,P =25.22 Mev. (41)

The kinetic energy of a finite nucleus, of course, will be
smaller due to "surface eGects" and more closely
approximated by the bigger radius parameter. We may
point out, however, that we have evaluated the average
kinetic energy of the nucleons by considering the
nucleons to be completely free. Any correlation between
particle motion will increase the kinetic energy above
the Fermi value.

If we insert the value (41) into the relativistic equa-
tions (12) ff., we have to assume

2Ek
Wo= 1+ (36) bPpo =0.3467, (1/yp) EI,o =44.96 Mev,

Vi2=86.6 Mev. (43)

to obtain the empirical volume energy. Further we get

R& ——190.3 Mev, R2= 162.6 Mev.

(44)Esym =23.08 Mev)

which is very close to the empirical value.
In a forthcoming paper we shall use this set of

parameters to calculate nucleon and antinucleon scat-
tering cross sections of nuclei for high energies.

Kith these parameters the energy minimum of the
polyneutron occurs at about 0.51. the nuclear density.
The eGective mass is about 0.77m. However, owing to
the increased symmetry energy this does not lead to
binding, as we expected. The energy per particle is
about +2.1 Mev.

IV. CHOICE OF RADIUS PARAMETER

There is another factor which will inhuence the
energy considerations, and in particular the symmetry
energy. We have calculated the Fermi energy of the
nucleons by assuming a radius parameter

(37)t'p= 1.22X 10 ' cm.

One easily veri6es that (33) and (34) reduce to (25) and
(26) in the nonrelativistic limit, and to (16) and (19)
if we set mp ——1 In case of a volume difference )I/'= p. For the symmetry energy we obtain
—V„between the neutron and proton distributions, the
erst term in (34) has to be multiplied by a factor
L1 —(1/~) (~l'/I')3 '

8 Equation (57) in I contains a misprint. The factor & should
be omitted. ' Hahn, Ravenhall, and Hofstadter, Phys. Rev. 101,1131(j.956) .
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p'=0.523, or aqb'=0. 477.

This leads to

bgo' 0 36—4—6 . or. Vrs ——105.4 Mev.

(45)

(46)

For bound particles this corresponds roughly to a mass
parameter of 0.58 and a potential depth of 84.3 Mev.

In order to obtain with the parameters (45) the
empirical symmetry energy, we have to reduce the first

In this case of a small radius parameter for the
inhnite nucleus, the Pauli principle has only to account
for a deviation of the symmetry energy which may
result from differences in the proton and neutron distribu-
tions. To obtain some insight into. this interrelationship
we shall calculate one example: We shall assume that
the range of the forces are of the order of the inter-
particle distance in which case' co=0.8. To obtain the
empirical volume energy from Eq. (33), we have to
choose for the mass parameter

term in (34) by a factor 0.6, i.e., we have to assume

(1/5) (bV/V) =0.4.

Since 6=0.0082&, we may use the average value

(1/t), )A, =0.1.

Then we obtain for the relative volume diBerence

3V/V =4%,

which is a very reasonable value. We see that small
differences in the volume of the neutron and proton
distributions have quite a strong eBect on the symmetry
energy in agreement with hndings of Ross, Lawson, and
Mark. '
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A series of bombardments using alpha particles from the Berkeley 60-inch cyclotron on rare earth oxides has

resulted in the discovery and mass assignment of two new alpha-emitting isotopes, Dy'" (5 hr) and Dy'"
(13 hr). Mass assignments have been made for two other alpha emitters, Dy"' (2.3 hr) and Tb"' (19 hr).
A new 10-hr electron-capture isotope has been identified as Dy"'. Evidence is also presented for the discovery
of another isotope, Dy"' (8 min), which was produced by a N" ion bombardment on praseodymium.

INTRODUCTION

' 'N 1953 Rasmussen et al. reported on a detailed study
~ - of neutron-deficient isotopes in the rare earth
region. These isotopes exhibited alpha radioactivity.
A number of such nuclides were discovered and studied
individually.

Among the alpha-emitting nuclides reported were
three dysprosium isotopes, whose alpha energies and
half-lives were as follows:

(a) 4.2 &0.06 Mev, 7+2 min.

(b) 4.06+0.04 Mev, 19+4 min.

(c) 3.61&0.08 Mev, 2.3+0.2 hr.

experiment was performed, new information was un-
covered, which stimulated further work in this region.
This paper is concerned with the study of hitherto un-
reported dysprosium activities and additional informa-
tion that has been found in connection with previously
known rare earth nuclides.

Table I summarizes the information available on the
new isotopes. Figure 1 is a section of the isotope chart,
which shows the nuclides that have been studied and
used in the investigation.

EXPERIMENTAL METHOD

In the work reported here, elements of atomic number
Z were bombarded with alpha particles in the Berkeley

A limit was set on the mass numbers of the dysprosium
activities, 153&A & 149.

The study presented here was begun with the intent
of assigning a mass to the 2.3-hr activity, using alpha
particles from the Berkeley 60-inch cyclotron. When the

* This work was done und. er the auspices of the U. S. Atomic
Energy Commission.

r Rasmussen, Thompson, and Ghiorso, Phys. Rev. 89, 33 (1953).

Isotope

Dy149
Dy153
Dy154
Dy155

Half-life

8 min~2
5 hra0. 5

13 hr~2
10 hr

Mode of decay
seen

E.C. and/or P+

E.C.

Alpha-particle
energy (Mev)

3.48~0.05
3.35~0.05

TABLE I. Information on new isotopes.


