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Born’s approximation is used to calculate the cross sections for ionization and simultaneous ionization

and excitation of helium by collision with protons.

IMULTANEOUS excitation and ionization of atoms
by collisions with protons appears not to have been
treated previously. This process, apart from possessing
interest itself, is important for the description of auroral
and other upper atmospheric phenomena. The simplest
case to consider is the collision of protons with helium
atoms, and this is the program of this paper.
The nonrelativistic Schrédinger equation for the
problem is
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Here the masses are: m—electron; M—proton; Mx
—helium nucleus, Mi=Muy+m, Mo=Mn-+2m,
=mMy/M1, uo=MMs/(M~+M,). The laboratory co-
ordinates are: r;, re—electrons; ry—helium nucleus;
R—oproton.
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= electron charge, and %=Planck’s constant-- 2.
Since the center-of-mass coordinate has been elimi-
nated, E is the energy of relative motion in Eq. (1a).
The Born amplitude can now be obtained by any of
the standard methods and is
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Bethe’s formula,!
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is employed to reduce Eq. (2) to
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Here Ko, K, are the initial and final wave vectors of
relative motion, respectively; %, » label the positive
energy electron and bound electron of the final state,
respectively, and O labels the singlet ground state of
the helium atom.
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= Ko'— Kn, A1=———A, A2=——~A
M

2 M2

For inelastic collisions of protons with hydrogen, one
can easily demonstrate that it is permissible to neglect
m as compared to M with little error in the results. In
this problem such an approximation is equivalent to
putting As=0, A=A, w=m, and p=MMy/(M
+My). Then Eq. (2a) becomes
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in which reduction the orthogonality relation (¥, n,0)
=0 is invoked. The expression given by Eq. (2b) could
have been obtained directly by the use of the relative
coordinate y.’=R—ry; however, H; would have con-
tained a term (#*/My)Vy,’ - (Vy,+Vy,). Thus, the
neglect of m as compared to M and My is equivalent
to replacing y: by ~¢ and dropping the term
Vi’ (V73+ Vn)-

The helium wave functions are approximated by
products of normalized hydrogen wave functions. Thus,
¢(1,)2=¢o=¢o(Z1l‘Ya)(ﬁo(Z;,l‘Y4) Wlth Zl= 16875, and

(2b)

1 H. Bethe, Ann. Physik 5, 325 (1930).
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SIMULTANEOUS IONIZATION AND EXCITATION OF He

where ¢ is the ground state wave function.

1
Vi n(v3,7e) =—L[01(Zs]| Ya)Pn(Z2| v4)
V2
+¢x(Zs| vo)dn(Za] )], (20)

¢r being the positive energy function for a Coulomb
field of charge (—Zz¢) and ¢, the bound state case for
a field of charge (—Zs¢). Of course, only singlet exci-
tation need be considered since only electrostatic
interaction terms are included. Atomic units are now
introduced and the symmetry properties are used to
reduce Eq. (2b) to

2\/211,2Z 13(10

fas™k= de3dY4[¢k* (Zs|¥s)pn* (Za] va)

TmA?
+61*(Zs] v9)ba* (Za] v5) ]
Xexp[iA-ys—Z1(vs+v4)],

in which relation a is the Bohr radius, and € is 13.61 ev.
The cross section, Q, isgiven by Qo™ *= " dkdQ| fo™*|?,
with dk the volume element in the space of the wave
vector of the ejected electron, and with dQ the solid
angle of the scattered protons. If € and e, are the
binding energies of the initial and final atomic states,
respectively, conservation of energy requires that

72K ¢ 7 K,2 Hk
— €= }
2,

(2d)

—e,=FE,
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with € and e, positive. It is convenient to introduce
the momentum-change variables in place of dQ.}
dQ=2rAdA/(K.K,), and to use spherical coordinates
in k-space, dk= k*dkdQs.

The limits of integration for d4, in atomic units, are

1 M2€p 3 AE AE ﬁ2K02
Amin‘:KO—‘Kni'“[ ] —[1 = ], E0= ;

2 mEo €9 4:Eo 2/-12
Amax=K0+Kn'+‘2K0,

provided that AEKE,, with Ae= e+ (eo—¢n), and e
is the energy of the ejected electron. Amax can be set
equal to infinity, since in the cases considered the
integrands, as a function of 4, decrease to negligibly
small values for A <A max. The limit of integration for
dk is B=0 t0 k="FEmax, kmax being derived from the
energy relations, viz.,

m 2m 3
kmax={'—K02~'——(50_ en)] ) K,=0.
B #?

The first cases considered are excitation to states in
which Het is in a % 25} state.
2W. F. Mott and H. S. W. Massey, The Theory of Atomic

Collisions (Oxford University Press, New York, 1949), second
edition, Chap. XTI.
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Case I. Z;=1, Z,=2

There is clearly a violation of orthogonality between
initial and final atomic states for this choice of Z3 and
Z». Moreover, the violation of orthogonality arises from
the S-wave part of ¢r. With this type of final-state
wave function for single excitation of helium to the
bound states # P, n 1D, and » 'F by electron impact,
and with the same initial state as ¥, in this paper,
Massey and Mohr® obtained cross sections in fair
agreement with experiment. However, to obtain cross
sections to bound states of the 7 1S-type, more elaborate
final state functions were required to insure orthogo-
nality and reasonable bound-state energy values. Since
the final state wave function for ionization is a mixture
of states #1S, »'P, n'D, ---, only one being an
7 1S-type (n now labels the overlapping discrete and
continuous spectra), this type of final state function
was tried, although others® have cautioned that the
violation of orthogonality is likely to give absurd
results for the cross-section—energy dependence.

The function ¢ is given by®

1 n Y exp(iky)
w(Zs|y)=—
(el ) 27r[ ] I'(14-n)

1—exp(—1i2mn)
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1(cost)

(3a)

with #n=Z3/tk and n=v(1—cosf), 6 being the angle
between v and the direction of ejection.
For spherical coordinates in k-space, ¢ is normalized
so that
3(k1—k2)0(0:—05)
2 k12 sin201

f *ia()pka (1) dy = 3b)

That this is correct can be seen from the series repre-
sentation of ¢ for large £ (small %),

1\t= sin(ky—3lr)
lime= (——) > (2l4-1)itPy(cosh)———
n—0 2 1=0 y

= (2m)~* exp(ik-¥),
a normalized plane wave.5

3H.S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc. (London)
140, 613 (1933).

4 Bates, Fundaminsky, and Massey, Trans. Roy. Soc. (London)
A243, 93 (1950).

5 A. Sommerfeld, Ann. Physik 11, 257 (1951); also see Chap.
III of reference 2.

6 See p. 49 of reference 2.
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The integrations over coordinate space and the solid angle of k-space are performed to give the following
results, in which Q is in units of 7wa?®, and E, is in units of kev.

(1s)>—1s, k
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Ipp= .
[1—exp(—i2mrn) JA4(R2+Z2)?
pi=Z1+Zs, n=2Zs/ik, AE=e+24.463 ev, y=(A2+p2)2
1 kmax ©
=— dk dA[3.205X 1047 p:41.554 X 10%21 2:+4-6.112X 105yT . ].
Eogo Amin
(1s)>—s2s, k Case IL. Zy=Z,, Zy=2, n="2,/ (ik)

The previous remarks relevant to the final atomic
states do not apply here, since this is simultaneous
excitation and ionization. This will be discussed at an
appropriate place.

AE= 6k+65293 €v, pz——-Zl‘*—%Zz,
y=L(Z1+Z2) A2+ (Z1— Z2) p* LA+ p T3,

1 phoex (4b)
Qz-—f dk dA[3.615X10%] p:
EO 0 Amin
+1.428X 10%32T 52— 6.233X 10*yI 5 ).
(15)2>—>3s, k
AE= €k+ 72.854 ev, ?3 = Zr‘}‘%Zg,
y=[9ps+6Z2(A>—3py") (A*+p5) !
—8Zps(A7— ps*) (A*+ ) J[A*+p5 172,
1 kmax o

=— |
Eoo

(40)
dA[5.810X 107 p:

Amin
+5.225X 1042T g— 1.509X 10°yT 5.

The cross sections are presented in Figs. 1, 2, and 3,
and are labeled “I.”

Apart from the fact that Z,=2, this is the case
treated by Massey and Mohr” for electron impact,
neglecting exchange. Consequently, attention is directed
to the fact that in the approximation used in this
paper, the Born amplitude for electron impact, as given
by Massey and Mohr (see reference 7), is obtained

106, @
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F16. 1. Cross sections for jonization. (See text for explanation of
curves I, IT, and III.)

7 See reference 3, and reference 2, Chap. XI, Sec. 2.2.
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from Eq. (2d) with the replacement of us by .
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272 A2— k-7
47 2R[3AHZ 2+ k7] expl —_ tan—l—J }
kL2 2Z:k
Ipi= _ . n=2/ik. (5a)
[1—exp(—i2rn) JAL(A — )2+ Z 2 PL (A4 Z2
(Is)?—1s, k states considered. Thus, the continuum part of the
5,400 10¢ (ks " wave function is
Q0= P jo‘ ko; ' dAIp:. (Sb) Yr=¢r(1[1)—¢:2(1]1)+¢:°(Z1] 1),
\ ' with ¢(1]r) as before, and ¢, the =0 part of ¢;.
(1s)—2s, k A calculation shows that
6.100X 10? prFmax ® 0(ko—k1)6(02—61)
Q =Tf dk . dATp: (5e) f ¢k2*(r)¢k1(r)dr=~—*2 : » —
0 0 4Amin 27I’k12 sinf
(Ls)*—3s, k as in Eq. (3b), so that the normalization is unchanged.
804X 10 pFmax i
=g__i__f dk dAIpe. (5d) Zy 1 Zy [(A+k)+Ze
EO 0 Amin nl:._’ nz:‘.—" 1=—1n ——-——j’
. ! ik ik 2k L(A—R)HZ22
These results are labeled “II,” in Figs. 1, 2, and 3. 1 1 [(A +k)2—+—Z12}
p=—In| ————1,
Case III % L(A—kptze

In this case Z3=Z; for the =0 term of ¢;, and Z3=1
for I>0. This insures orthogonality of the atomic

Ip:is the same as in Eq. (4a) with Z;=1.

221 m AZ—k2+Z12
3Z,k[(A2— k2 —Z ) sinU1+2Z14 cosU1 ] expl —7[—— tan“(—————) } ‘

2 2Z:\k
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a
. 2w ) A2—RH-Z:2
3k[(A2—R2—Z 1) sinUs+2Z14 cosU: | expl ——[—-—tan‘ (——————)]}
L ) sinlixk 22, ’ kL2 27k
I,= )
’ 4[1— exp(—i2mns) JAT (A — B+ Z2 L (A+E)+ 2,2
(1s)*—1s, k
=178 Q 3205><104fkmax . ® J E ] ( )
-2.0 — 25 = d A [D2+I1—]2 . 6b
e \ Eo 0 Amin
el LoG,Q
o| -2 /, ~ T (I15)2—2s, k
3.615X 102 phmex
FH. / \ | =———f dk dA[Ip+I,—1.]. (6c)
H / Qn\ E, 0 Amin
/ i (1535, &
5.810X10 phmex
: v/ o="——[ @[ aalr+n-nl
-4.0 ny Ey 0 Amin
5 XS o s o o 0%t These cross sections are labeled “IIT” in curves 1, 2,

EP= PROTON ENERGY [N UNITS OF | KEV — LABORATORY SYSTEM

Fi16. 2. Cross sections for simultaneous excitation and ionization
to the states 2p, k and 2s, k. (See text for explanation of I, II,
and III.)

and 3.

For the configurations 2p, &, 3p, k, and 3d, & of helium,
the final state wave functions with Z3=1, Z,=2 are
orthogonal to the ground state function.
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Fi16. 3. Cross sections for simultaneous excitation and ionization
to the states 3s, k; 3p, k; and 3d, k. (See text for explanation of
curves I, II, and III.)

Let
_k exp[ — (4Z;/k) tan='(k/Z1) ]

 [—exp(—i2m) J(B+22)¢
(15)>—2p, k
In this case p; and AE are the same as in Eq. (4b).

_LOSIXI0 e
w4 )

min

(I1s)*—k, 3p
In this case p; and AE are the same as in Eq. (4c).

1 236)(107["“"" f
Amin A (A2+P32)6

Zy fA2—5p2\ P
x[6+—(—~—)] . (1)
ps \ A2H-p3?

(15)*—34d, k.
In this case p; and AE are the same as in Eq. (4c).
4.236X 107 pFmax
—_— f dk I
EO 0
1
X[ - ] (7¢)
(Amin2+P32)7 (Amax2+P32)7

These cross sections are displayed in Figs. 2 and 3.

ROBERT A.

MAPLETON

DISCUSSION

In all of the following comparisons with other
theoretical calculations, the same initial-state atomic
wave function is used. Ionization cross sections for
a-particle impact and electron impact neglecting ex-
change have been performed by Erskine,® and his work
provides a comparison with the measured cross sections
of Smith? as well as the calculated cross sections of
this paper. Erskine’s final-state wave function see [Eq.
(2¢)] used Zz=2 for ¢15(Z2| v) and employed Z;=Z, for
all %1 in ¢x(Zs|y) [see Eq. (3a)]. For I=1, the
p-wave, the radial function was obtained by integrating
the radial wave equation numerically for a positive
energy electron moving in the average field of the 1 25}
state of the helium ion. This field, V (r), is given by

V(r)=— 62[;4- ;2;4-1;) exp( —-i—’;)].

For 6-Mev « particles, his calculations show that
about 709, of the total Coulomb cross section comes
from the p-wave Coulomb cross section; moreover, for
this same energy, the p-wave cross section derived from
the field V(r) is roughly twice as large as the corre-
sponding Coulomb p-wave cross section. Since the
cross sections for electron impact calculated by Erskine
agreed very well with Smith’s® experimental results for
electron energies above 400 ev, and showed a substantial
improvement over the previously calculated results of
Massey and Mohr, it is believed that the a-particle
cross sections likewise are rather accurate.

The ionization cross sections for proton impact are
now derived from those of a-particle impact. Let v be
the velocity for both particles, u’, E’, the reduced mass
and energy for « particles; us, Eo, the same quantltles
for protons. Consequently, the relation for energy is

1 K2 /7
Eo=3usvd= ,E )

and thus
4 l(ﬂzeo)fAE 1(#60 "AE
e mEo € mE’ 60

if one neglects the small correction factors 14-AE/4E,
and 14+AE/4AE'. Therefore,

Amin (p 5 E::uz) = Amin (Ol, E/,M,) .
The cross section for « particles, Qa, is

C 7 aZ ,LLI kmax
Qo= f dk
mE’

CZ a2#2 Fmax *
= f dk
mEy, Yo Amin(p; E,u2)

8 G. A. Erskine, Proc. Roy. Soc. (London) A224, 362 (1954).
9 P. T. Smith, Phys. Rev. 36, 1293 (1930).
10 See reference 3 and Chap. X1, Sec. 3.3 of reference 2.

dAI(A,R)

Amin(a; E'\pu)

(8a)

dAI(A k),
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TaBLE I. Table of cross sections. Qo™ *=cross section in units of ra; E,=proton energy in units of kev—Ilaboratory system.

125.0

n,k \\ Ep=12.50 22.29 39.02 71.09 222.9 390.2 710.9 1250 2229 3902
3d, k 8.60 X10-7 7,883 X1076 4, 07 X1078 1 33 X104 2.50 3.21 3.11 2.44 1.71 1,10 X107 6,78 X107
30,k 1.94X10-5 1,15 X10~¢ 4.1 1.0. 1.64 1.95 1.89 1.57 1.20 X10-3  8.59 X104 595 X10~¢
3s, k(II)  5.91X10~6 3,12 X107% 1, 14 X10~¢ 3.0 4.72 491 3.90 2.63 1.7 1.07 X107 6.66 X107
3s, k(III) 4.50X10-6  2,15X10°% 7.59 2. 1 X10'4 4.09 5.09 4.58 3.42 2. 39 1.58 1.04 X104
2p, k 1.30 X104 6.70 2.20 X108 §.1 8.31X107% 1.04X1072 1.07 X102 9,51 X103 7.6 5.77 4,16 X10-3
2s, R(II)  7.82X107% 3.65X10~% 1.15X1073 2, 5 .53 3.37 2.58 1.71 1. 10 X1078  6.84 X10™* 4,25 X10™¢
2s, R(III) 5,74 X105 2,46 X104 7.72 1,94X103  3.21 3.63 3.12 2.27 1.57 1.03 X102  6.71 X10™
s, k(II)  6.46 X101 9,13 9.97 8.92 6.94 4.83 3.18 1.96 1.22 X101 7.39 X102 4,51 X102
1s, R(III) 4.56 X101 7.43 9.53 9.93 8.67 6.59 4.65 3.03 1.96 1.23 X101 7,78 X102
0O \\Ep (Erskine) 250 500 750 1000 1250 1500
15,k 6.21 X101  3.92 2.90 2.27 1.91 1.65 X101

with Z,=2; thus the cross section for protons, Q,, is

1
Qp(Eo,u2) =E—2Qa(E’,#)- (8b)

Equation (8b) relates the ionization cross section for
protons of energy E, to the corresponding cross section
for o particles of energy E’; E, and E’ being energies
in the center-of-mass system. (Actually, there is a
difference in the value of kwax for the two cases, but
this is unimportant, since the differential cross sections,
dQ/dk, decrease to negligible values for k<Emax in
both cases.)

Erskine’s results translated to the proton case are
shown in Fig. 1. These points practically coincide with
the curve of Case III. It thus seems safe to conclude
that Case III gives the most accurate ionization cross
sections of the three cases treated in this paper. A
qualitative reason for the close agreement between the
two results is obtained by comparison of the final state
wave functions. The s-wave part is the same, for />2
this paper uses Z;=1, and Erskine uses Z3=Z;; how-
ever, as Erskine showed, the p-wave contribution is the
significant one for the high-energy range. Now the
field V (7) is essentially V (r)= —e*/r for r>ao; so with
the additional assumption that significant contributions
to the p-wave cross section occur over a large range of
the radial coordinate, it is seen why the results of
Erskine’s paper and Case III of this paper agree so
closely.

The cross section for excitation to the 2s, & state is
roughly 0.01 of the ionization cross section. This agrees
with the calculated values of Lamb and Skinner,* and
the experimental work of Hagstrum,? both for electron
impact, and the experimental work of Dieterich®® for
proton impact. Lamb and Skinner used the results of
Massey and Mohr?® for the ionization cross section, and
calculated Q¢®*-* by a sudden approximation method,
whereas Hagstrum and Dieterich failed to observe any
225, states of Het. From the remarks under Case II
relevant to the similarity of the electron and proton
Born amplitudes, it appears that the ratio, Q¢?*-%/Qq!*%,
should be nearly the same for the two cases. The

1'W, E. Lamb, Jr. and M. Skinner, Phys. Rev. 28, 539 (1950).
12 Homer D. Hagstrum Phys. Rev. 104, 309 (1956)
13 Ernest J. Dieterich, Phys. Rev. 103, 632 (1956).

effective field, V (r), for the 2 2S§ state of He™ is:

()

For >3.50, V (r)= —e¢?/r; consequently, on the basis
of the discussion of ionization cross sections, it seems
reasonable to suppose that a Z;>1 for />1 (Case III)
in the final state functions might provide a more
accurate cross section. Similar remarks can be made
relevant to the cross section Qg*.

Cross sections for double excitation by electron
impact have been calculated in Born approximation
by Massey and Mohr!* For final states other than
S-states, they obtained fair agreement with experiment
by using as a final state wave function:

V(r)= -eZ[ ;4- (_-_|_ +— +~

2a0 r al® a¢

1
v =7§[¢"lllm1 (Zs|11)prstams(Z2| 1s)
Fntim (Zs| t2)$nstams(Zs] 1),

with the one-electron principal quantum numbers
ni1>ny, and Zz=1, Z,=2. About the only justification
for using the final state wave functions of this paper in
the calculation of Q¢*?*, Q7% and Q¢%*, is the fact
that they are orthogonal to ¥o. The S-state part of the
final state functions could have been modified ; however,
such a project was considered inadvisable in the light
of the reasonableness of the relative magnitudes of the
cross sections, as well as the fact that no measured
results exist. For example, the one-electron transition
1s—2p is optically allowed and 1s—2s is disallowed,
and a glance at Fig. 2 shows that Q¢*?* is indeed larger
than Q¢*F. It is questionable just how much the
approximation to the final state wave function should
be improved without likewise improving the approxi-
mation to the ground state function. One fact is clear,
an improvement of the ground state will greatly increase
the numerical labor.

In conclusion, the author wishes to mention that all
integrals over the variable 4 under Cases I through
IIT were calculated on the TBM-704 by the Service
Bureau Corporation of IBM in New York City.

The numerical results are listed in Table I.

14 H. S. W. Massey and C. B. O. Mohr, Proc. Cambridge Phil.
Soc. 31, 604 (1935).
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Note added in proof—Cross sections for ionization
and excitation of Helium by protons to the levels
2p, k, 3p, k, 4p, k, 3d, k, and 4d, k have been calculated
by A. Dalgarno and M. R. C. McDonald.!® Their

1 E. B. Armstrong and A. Dalgarno, The Airglow and The
Aurorae (Pergamon Press, New York, 1955).

MAPLETON

results differ considerably from the corresponding
calculations of this paper. This is not surprising since
the calculated cross-sections of this paper can vary
from zero (Z;=1.6875) to a maximum value for some
choice of Z;. In conclusion the author expresses his
gratitude to Professor A. Dalgarno for informing him
of these calculations.
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Hfs Anomaly of Sb'*! and Sb!* Determined by the Electron Nuclear
Double Resonance Technique

J. E1sINGER AND G. FEHER
Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

(Received July 16, 1957)

The ratios of the hyperfine interaction constants “‘a”

and the nuclear g factors of the stable isotopes of

antimony have been measured. From these measurements the hyperfine structure anomaly, defined as
A= (@121/@123) (g123/g121) — 1, was found to be (—0.35240.005)%. A has its origin in the difference in the
spatial distribution of the nuclear magnetic dipole for the two isotopes, which is related to the structure of
the two nuclei. The experimental result is compared with theoretical values of A based on a variety of

nuclear models.

The determination of @i21/a12; makes use of the electron nuclear double resonance technique (ENDOR)
which is discussed in some detail. The sample used in the experiment was silicon doped with antimony and
the microwave resonances were observed at ~9000 Mc/sec at a temperature of 1.2°K.

The ratio of the nuclear g factors was determined by conventional nuclear magnetic resonance techniques.

A. INTRODUCTION

HE hyperfine interaction constant e is a measure

of the strength of the interaction between the

nuclear magnetic dipole moment u; and the moment

due to the orbital electron. For two isotopes (subscripts

1 and 2) of the same element in the same electronic

state one might expect (@1/as)= (g1/g2), where we have
written g=uzr/I.

By measuring the ratio of the interaction constants
(e.g., by methods described in this paper or by atomic
beams) and the ratio of the nuclear g factors (e.g., by
nuclear magnetic resonance experiments) to high pre-
cision, deviations from this equality have been found.

It was pointed out by Kopfermann' and Bitter? that
one should expect (ai/az)=(gi/g2)(14+A) for certain
pairs of isotopes, where A is of the order of a fraction
of one percent and is usually called the hyperfine
structure (hfs) anomaly. Physically the origin of A can
be traced to nuclear size effects, the most important of
which is due to the difference in the distribution of the
magnetic moment inside the nuclei under considera-
tion.*=3 A quantitative discussion of A from a theoretical
point of view is left to a later section. Suffice it to say
that such a calculation usually depends on the par-
ticular nuclear model chosen so that an experimental

1 H. Kopfermann, Kernmomente (Akademische Verlagsgesell-
schaft, Leipzig, 1940).

2 F. Bitter, Phys. Rev. 76, 150 (1949).

3 A. Bohr and V. F. Weisskopf, Phys. Rev. 77, 94 (1950).

determination of the hfs anomaly should be capable of
adding to our knowledge of nuclear structure.

Hfs anomalies have been measured for several pairs
of isotopes. Such experiments have been restricted
until now to elements which lend themselves to de-
tection in atomic beam experiments, i.e., mostly
alkalies.2*7 Recent advances in the techniques of
paramagentic resonance experiments® have made it
possible to measure “e” with greater precision than had
previously been possible. The method employed is
called electron nuclear double resonance (ENDOR)3
and will be described in detail in a later section.

In the present experiment® the precise ratio of the
hyperfine interaction constants was determined by the
ENDOR technique and the ratio of the nuclear g factor
was redetermined by the NMR method for the two
stable isotopes of antimony, Sb**! and Sb*®, The experi-
mental value of A obtained in this manner was compared
with values based on a variety of nuclear models.

B. ENERGY LEVELS AND TRANSITIONS

The magnetic interaction of an atom whose angular

momentum J=% and whose nucleus has a magnetic

4 Ochs, Logan, and Kusch, Phys. Rev. 78, 184 (1950).

5 Eisinger, Bederson, and Feld, Phys. Rev. 86, 73 (1952).
( 55]73,)ccarino, Stroke, Edmonds, and Weiss, Phys. Rev. 105, 590

1957).

7Y. Ting and H. Lew, Phys. Rev. 105, 581 (1957).

8 G. Feher, Phys. Rev. 103, 83 (1956).

9 A preliminary account of this work has been given [ J. Eisinger
and G. Feher, Bull. Am. Phys. Soc. Ser. II, 2, 31 (1957)].



