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Simultaneous Ionization and Excitation of Helium by Protons
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Born's approximation is used to calculate the cross sections for ionization and simultaneous ionization
and excitation of helium by collision with protons.
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by collisions with protons appears not to have been
treated previously. This process, apart from possessing
interest itself, is important for the description of auroral
and other upper atmospheric phenomena. The simplest
case to consider is the collision of protons with helium

atoms, and this is the program of this paper.
The nonrelativistic Schrodinger equation for the

problem is

Bethe's formula '

4n t exp(iA r')—exp(iA r) = dr',
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is employed to reduce Eq. (2) to
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g228 28 Here Eo, E are the initial and anal wave vectors of
+ . (1b) relative motion, respectively; k, e label the positive

energy electron and bound electron of the Anal state,
respectively, and 0 labels the singlet ground state of
the helium atom.
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Here the masses are: m—electron; M—proton; MN—helium nucleus, Ml ——M~+m, M2= Mlv+2nz, jul

=mM~/Ml, pp=MMp/(M+3IIp). The laboratory co-
ordinates are: f1, r2—electrons; rN—helium nucleus;
R—proton.

y, = R—t M~rlv+m(rl+ r,)j/Mp,

"(3—&1 &N y

+4= &2—&N

e= electron charge, and 5=Planck's constant-:2m.
Since the center-of-mass coordinate has been elimi-

nated, 8 is the energy of relative motion in Eq. (1a).
The Born amplitude can now be obtained by any of

the standard methods and is
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For inelastic collisions of protons with hydrogen, one
can easily demonstrate that it is permissible to neglect
m as compared to M with little error in the results. In
this problem such an approximation is equivalent to
putting &2 0 +1 + Pl ~ and P2 MMN/(M
+M~). Then Eq. (2a) becomes

2@28
' dvpdv4A. -*(vp,v4)Lexp(iA vp)

O'A'"
+exp(iA V ) ji(o(V,V), (2b)

in which reduction the orthogonality relation (f&, „,fp)
=0 is invoked. The expression given by Eq. (2b) could
have been obtained directly by the use of the relative
coordinate yp' ——R—rw,' however, II; would have con-
tained a term (5'/M~) V7,' (V~,+V~,). Thus, the
neglect of m as compared to M and MN is equivalent
to replacing y2 by y2' and dropping the term
vv, ' (vv, +v~, )

The helium wave functions are approximated by
products of normalized hydrogen wave functions. Thus,
tptl~&2=it'p=pp(Zl f pp)pp(Zl f p4) with Zl= 1.6875, and

+exp(lA'Y&)A, n(YAY4)+Ap(YAY4). (2) 'H. Bethe, Ann. Physik 5, 325 (1930).
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in which relation ap is the Bohr radius, and ep is 13.61 ev.
The cross section, Q, isgivenby Qs" "=J'dkdQ

l
fo" "l',

with dk the volume element in the space of the wave

vector of the ejected electron, and with dQ the solid

angle of the scattered protons. If ep and e„are the
binding energies of the initial and 6nal atomic states,
respectively, conservation of energy requires that

@2+ 2 $2+ 2 $2/2
so= + &n=@)

2@2 2p 2 281

with ep and e„positive. It is convenient to introduce
the momentum-change variables in place of dQ, '
dQ=2rrAdA/(EsE„), and to use spherical coordinates
in k-space, dk= ksdkdQI, .

The limits of integration for dA, in atomic units, are

1 p2~p ~~~
A;„=Ep—E„=' — 1+

2.mEp ep 4Ep.
jVp-

2p2

A .„=Ep+E ='2Ep,

provided that AE&(Es, with Ae= +es( p ee) ail—d eg

is the energy of the ejected electron. A, can be set
equal to infinity, since in the cases considered the
integrands, as a function of A, decrease to negligibly
small values for A (A, . The limit of integration for
dk is k=o to k=k, , k, being derived from the
energy relations, ~is.,

where Ps is the ground state wave function.

1
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pi being the positive energy function for a Coulomb
field of charge (—Zst,') and P„ the bound state case for
a Geld of charge (—Zse). Of course, only singlet exci-
tation need be considered since only electrostatic
interaction terms are included. Atomic units are now
introduced and the symmetry properties are used to
reduce Eq. (2b) to

1 ie & exp(ikY)
&~(ZslY) =

2m 1—exp( —i2m.e) I'(1+I)

XJ
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with n=Zs/ik and g= Y(1—cos8), 8 being the angle
between p and the direction of ejection.

For spherical coordinates in k-space, @q is normalized
so that

~
O*~ (Y)4~ (Y)~Y=

8 (ki—ks) 8 (8i—8s)

2mb ' sin'0
(3b)

That this is correct can be seen from the series repre-
sentation of g~ for large k (small I),

(1 ) & ~ sin(kY ——',lm)
limgs=

l

—
l g(21+1)i'E~(cos8)

(2~) i=o ky

Case I. Z, =l, Zs ——2

There is clearly a violation of orthogonality between
initial and 6nal atomic states for this choice of Z3 and
Z2. Moreover, the violation of orthogonality arises from
the 5-wave part of gq. With this type of Gnal-state
wave function for single excitation of helium to the
bound states e 'I', e 'D, and e ~F by electron impact,
and with the same initial state as Ps in this paper,
Massey and Mohr' obtained cross sections in fair
agreement with experiment. However, to obtain cross
sections to bound states of the e 'S-type, more elaborate
final state functions were required to insure orthogo-
nality and reasonable bound-state energy values. Since
the final state wave function for ionization is a mixture
of states e iS~ e zP~ n iD~ . . .

~ only one being an
ri'5-type (e now labels the overlapping discrete and
continuous spectra), this type of final state function
was tried, although others' have cautioned that the
violation of orthogonality is likely to give absurd
results for the cross-section —energy dependence.

The function g& is given by'

m 2m -s
k, = —Ep' — (eo—e„), E =0.

. p2 A a normalized plane wave. '
= (2~):exp(ik Y)

The 6rst cases considered are excitation to states in

which He+ is in a e 'Sy state.

~W. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, New York, 1949), second
edition, Chap. XI.

' H. S. W. Massey and C. B.O. Mohr, Proc. Roy. Soc. (Londonl
140, 613 (1933).

4 Bates, Fundaminsky, and Massey, Trans. Roy. Soc. (I.ondon)
A243, 93 (1950).

5 A. Sommerfeld, Ann. Physik 11, 257 (1951); also see Chap.
III of reference 2.' See p. 49 of reference 2.
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The integrations over coordinate space and the solid angle of k-space are performed to give the following
results, in which Q is in units of mao, and Eo is in units of kev.
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The previous remarks relevant to the Anal atomic
states do not apply here, since this is simultaneous
excitation and ionization. This will be discussed at an
appropriate place.

AE= eI,+65.293 ev, p2=Z~+-', Z2,

y= [(Z~+Z2)A'+(Z —Z2)P '][A'+P2'] '

Case II. Z3 ——Z» Z2=2, n=Z&/(ik)

Apart from the fact that Z2 ——2, this is the case
treated by Massey and Mohr' for electron impact,
neglecting exchange. Consequently, attention is directed
to the fact that in the approximation used in this

paper, the Born amplitude for electron impact, as given
by Massey and Mohr (see reference 7), is obtained

p &maw

Q=— dk dA[3.615X10'ID~
~0~ 0 4 &min

+1.428X 10'y'I&2 —6.233X10'yI&o].
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hZ= eI,+72.854 ev, p3 Z$+3Z2,

y [9p +6Z (A2 3P 2) (A2+P 2) 1

—8Z2'Pa(A' —P3') (A'+P3') '][A'+P~'] '

Q= —
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X ERSKINE S RESULTS

LOG EIO 15 2N 25 3N Io p

E i PROTON ENERGY IN UNITS OF I KEY —LABORATORY SYSTEMp

+5.225 X 10'y'1~2 1.509X10'yIaz&]—
The cross sections are presented in Figs. 1, 2, and 3,

and are labeled "I."
FIG. 1. Cross sections for ionization. (See text for explanation of

curves I, II, and III.)
' See reference 3, and reference 2, Chap. XI, Sec. 2.2.
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from Eq. (2d) with the replacement of li2 by rN.

ID2=
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(ls)'—+Zs, k

states considered. Thus, the continuum part of the
wave function is

lt', =y.(1lr)—y. (1lr)+y. (z, lr),

with &I,(1lr) as before, and gl,' the l=0 part of gi, .
A calculation shows that
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as in Eq. (3b), so that the normalization is unchanged.

Zi 1 Zi (A+k)'+ZP
eg= —, eg= —, Ug= —ln

ik ik 2k (A —k)'+ZP
These results are labeled "II," in Figs. 1, 2, and 3.

Case III
1 (A+ k)'+ZP

U2= —ln
2k (A —k)'+ZP

In this case Z~=Zi for the /=0 term of &I„and Z3= 1

for /)0. This insures orthogonality of the atomic ID2 is the same as in Eq. (4a) with Za ——1.
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PROTON ENERGY lN UNlTS OF l KEV —LABORATORY SYSTEM
P

FIG. 2. Cross sections for simultaneous excitation and ionization
to the states 2p, k and 2s, k. (See text &or explanation o& I, II,
and III.)

These cross sections are labeled "III" in curves 1, 2,
and 3.

For the configurations 2p, k, 3p, k, and 3d, k of helium,
the final state wave functions with Z3 ——1, Z2=2 are
orthogonal to the ground state function.
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Fro. 3. Cross sections for simultaneous excitation and ionization
to the states 3s, k; 3p, k; and 3d, k. (See text for explanation of
curves I, II, and III.)

k expL —(4Z /k) tan —'(k/Z, )]
L1—exp( —4'2orn) ](k'+Zio) 4

(1s)'~Zp, k

In this case po and AE are the same as in Eq. (4b).

1.651X10o
t
™* I

dk I dA . (7a.)
Eo o ~ &min A(A +po )

DISCUSSION

In all of the following comparisons with other
theoretical calculations, the same initial-state atomic
wave function is used. Ionization cross sections for
n-particle impact and electron impact neglecting ex-
change have been performed by Erskine, s and his work
provides a comparison with the measured cross sections
of Smith' as well as the calculated cross sections of
this paper. Erskine's final-state wave function see t Kq.
(2c)] used Zo ——2 for Pi, (Zo

~ Y) and employed Z, =Zi for
all /N1 in @t,(Zo~Y) Lsee Eq. (3a)]. For /=1, the
p-wave, the radial function was obtained by integra, ting
the radial wave equation numerically for a positive
energy electron moving in the average Geld of the 1 '5;
state of the helium ion. This field, V(r), is given by

1 )2 1q ( 4rq
V(r)= —~' -+] —+- Iexpl ——

/
.

r ia, r) E a)
For 6-Mev n particles, his calculations show that

about 70% of the total Coulomb cross section comes
from the p-wave Coulomb cross section; moreover, for
this same energy, the p-wave cross section derived from
the field V(r) is roughly twice as large as the corre-
sponding Coulomb p-wave cross section. Since the
cross sections for electron impact calculated by Erskine
agreed very well with Smith's' experimental results for
electron energies above 400 ev, and showed a substantial
improvement over the previously calculated results of
Massey and Mohr, " it is believed that the n-particle
cross sections likewise are rather accurate.

The ionization cross sections for proton impact are
now derived from those of o,-particle impact. Let up be
the velocity for both particles, p', E', the reduced mass
and energy for n particles; p&, Ep, the same quantities
for protons. Consequently, the relation for energy is

(1s)'~k, 3p

In this case po and hE are the same as in Eq. (4c).
and thus

1 236X10' &™~ p" dA
dk I I

Eo &o "~;„A(A'+Poo)o

pg
Ep= —pg'vo =—E1 2 I

p

1 (Iiooo ) ' ~E 1 (I4 oo ) '* ~E

2 (mEo) oo 2 KmE')

Zo Pjo—$P oq

X 6+—
I (

. (7b)
Po E A'+Poo )

(ls)o 3d, k.

In this case po and AE are the same as in Kq. (4c).

4 236X 10& ~@max

Q= dk I
Ep

X — . (7c)
(A . o+p o)7 (A o+p )To

These cross sections are displa, yed in Figs. 2 and 3.

if one neglects the small correction factors 1+DE/4Eo
and 1+DE/4E'. Therefore,

A; (p; E,iio)=A;„(n; E',I4').

The cross section for n particles, Q, is

gZ &+~ kmax

Q = dk dAI(A, k)
SEE p Amain(a, B'p),

CZ 'p
dk dA I(A,k), (8a)

m&o o Amin(P 4 &&Its)

' G. A. Erskine, Proc. Roy. Soc. (London) A224, 362 (1954).
P. T. Smith, Phys. Rev. 36, 1293 (1930}.

"See reference 3 and Chap. XI, Sec. 3.3 of reference 2.
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TABLE I. Table of cross sections. Qo" ~= cross section in units of 7iu0, E„=proton energy in units of kev —laboratory system.

n, k Q By =12.50 22.29 39.02 71.09 125.0 222.9 390.2 710.9 1250 2229 3902

3d, k
3P, k
3s, k(II)
3s, k(III)
2P, k
2s, k(II)
2s, k(III)
1s, k(II)
1s,'k(III)

8.60X10 7

1.94X10 5

5.91 X10 ii

4.50X10 6

1.30 X10 4

7.82 X10 6

5.74X10 5

6.46 X10 1

4.56 X10-1

7.88 X10 6

1.15 X10 4

3.12 X10 ~

2.15 X10 ii

6.70
3.65 X10 4

2.46X10 4

9.13
7.43

4.07 X10 6

4.16
1.14 X10 4

7.59
2.20X10 &

1.15 X10 s

7.72
9.97
9.53

1.33X10 4

1.03
3,00
2.18X10 4

5.19
2.50
1.94 X10 ii

8.92
9.93

2.50
1.64
4.72
4.09
8.31 X10 3

3.53
3.21
6.94
8.67

3.21
1.95
4'.91
5.09
1.04 X10~
3.37
3.63
4.83
6.59

3.11
1.89
3.90
4.58
1.07X10 2

2.58
3.12
3.18
4.6S

2.44
1.57
2.63
3.42
9.51 X10 ~i

1.71
2.27
1.96
3.03

1.71
1.20X10 ii

1.71
2.39
7.69
1.10X10~
1.57
1.22 X10 1

1.96

1.10 X10.4

8.59 X10 4

1.07 X10 4

1.58
5.77
6.84X10 4

1.03 X10 I
7.39 X10~
1.23 X10 1

6.78 X10 4

5.95 X10 4

6.66 X10 &

1.04X10 4

4.16 X10~
4.25 X10 4

6.71 X10 4

4.51 X10 &

7.78 X10 '
0 %By (Ers&inc)

1s, k
250

6.21 X10 1
SOO

3.92
750

2.90
1000

2.27
12SO

1.91
1500

1.65 X10 i

with Z =2; thus the cross section for protons, Q„, is

Q. (&o,~ )=,Q-(~',~)
Z.2

effective field, V(r), for the 2 'Si state of He+ is:

'1 (3 1 r' r q ) —2r~
U(r)= —e' —+( + + + [ exp]r&2a, r a. o' ao'& «o &

Equation (Sb) relates the ionization cross section for
protons of energy Eo to the corresponding cross section
for a particles of energy F.', Eo and E' being energies
in the center-of-mass system. (Actually, there is a
difference in the value of k, for the two cases, but
this is unimportant, since the differential cross sections,
dQ/dk, decrease to negligible values for k«k, „ in
both cases. )

Erskine's results translated to the proton case are
shown in Fig. l. These points practically coincide with
the curve of Case III. It thus see~s safe to conclude
that Case III gives the most accurate ionization cross
sections of the three cases treated in this paper. A
qualitative reason for the close agreement between the
two results is obtained by comparison of the final state
wave functions. The s-wave part is the same, for /&2
this paper uses Z3=1, and Erskine uses Z3=Z1, how-
ever, as Erskine showed, the p-wave contribution is the
significant one for the high-energy range. Now the
field V(r) is essentially V(r) = —e'/r for r) ao, so with
the additional assumption that significant contributions
to the p-wave cross section occur over a large range of
the radial coordinate, it is seen why the results of
Erskine's paper and Case III of this paper agree so
closely.

The cross section for excitation to the 2s, k state is
roughly 0.01 of the ionization cross section. This agrees
with the calculated values of Lamb and Skinner, "and
the experimental work of Hagstrum, "both for electron
impact, and the experimental work of Dieterich" for
proton impact. Lamb and Skinner used the results of
Massey and Mohr' for the ionization cross section, and
calculated Qos'" by a sudden approximation method,
whereas Hagstrum and Dieterich failed to observe any
2'Sy states of He+. From the remarks under Case II
relevant to the similarity of the electron and proton
Born amplitudes, it appears that the ratio, Qo" /Qo" ",
should be nearly the same for the two cases. The

"W. E. Lamb, Jr. and M. Skinner, Phys. Rev. 28, 539 (1950).
"Homer D. Hagstrum, Phys. Rev. 104, 309 (1956).
"Ernest I, Dieterich, Phys. Rev. 103, 632 (1936).

For r) 3.50, V(r) =' —e'/r; consequently, on the basis
of the discussion of ionization cross sections, it seems
reasonable to suppose that a Zs) 1 for I) 1 (Case III)
in the 6nal state functions might provide a more
accurate cross section. Similar remarks can be made
relevant to the cross section Qo" ".

Cross sections for double excitation by electron
impact have been calculated in Born approximation
by Massey and Mohr. '4 For Anal states other than
S-states, they obtained fair agreement with experiment
by using as a final state wave function:

Pgniiimi(Zo ( ri)pnsioms(Zs
~
rs)

V2

+$olilml(Z's
~
rs)$'osiom2(Z2

~ rl)),

with the one-electron principal quantum numbers
e»n2, and Z3——1, Z2=2. About the only justification
for using the final state wave functions of this paper in
the calculation of Qo'i' ", Qo'i' ", and Qo'" ", is the fact
that they are orthogonal to Po. The S-state part of the
final state functions could have been modified; however,
such a project was considered inadvisable in the light
of the reasonableness of the relative magnitudes of the
cross sections, as well as the fact that no measured
results exist. For example, the one-electron transition
1s~2p is optically allowed and is—+2s is disallowed,
and a glance at Fig. 2 shows that Qo'i' " is indeed larger
than Qos' ". It is questionable just how much the
approximation to the 6nal state wave function should
be improved without likewise improving the approxi-
mation to the ground state function. One fact is clear,
an improvement of the ground state wi11 greatly increase
the numerical labor.

In conclusion, the author wishes to mention that all
integrals over the variable A under Cases I through
III were calculated on the IBM-704 by the Service
Bureau Corporation of IBM in New York City.

The numerical results are listed in Table I.
~ H. S. %.Massey and C. B. O. Mohr, Proc. Cambridge Phil.

Soc. Bl, 604 (1935).
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Aote added its proof. Cross sections for ionization
and excitation of Helium by protons to the levels

2p, k, 3p, k, 4p, k, 3d, k, and 4d, k have been calculated

by A. Dalgarno and M. R. C. McDonald. " Their

'5E. B. Armstrong and A. Dalgarno, The Airgloz and The
Aurorae (Pergamon Press, New York, 1955).

results diRer considerably from the corresponding
calculations of this paper. This is not surprising since
the calculated cross-sections of this paper can vary
from zero (Ze ——1.6875) to a maximum value for some
choice of Z3. In conclusion the author expresses his
gratitude to Professor A. Dalgarno for informing him
of these calculations.
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Hfs Anomaly of Sb"' and Sb'" Deterinined by the Electron Nuclear
Double Resonance Technique

J. EIsINGER AND G. FEHER
Bell Telephone Laboratories, Inc. , Jtt/INrray Hill, Rem Jersey

(Received July 16, 1957)

The ratios of the hyperfine interaction constants "a" and the nuclear g factors of the stable isotopes of
antimony have been measured. From these measurements the hyperfine structure anomaly, defined as
A= (a~2~/ai23) (g»~/gin) —1, was found to be (—0.352+0.005)%. A has its origin in the di9'erence in the
spatial distribution of the nuclear magnetic dipole for the two isotopes, which is related to the structure of
the two nuclei. The experimental result is compared with theoretical values of 6 based on a variety of
nuclear models.

The determination of a»~/a»& makes use of the electron nuclear double resonance technique (ENDOR)
which is discussed in some detail. The sample used in the experiment was silicon doped with antimony and
the microwave resonances were observed at 9000 Mc/sec at a temperature of 1.2'K.

The ratio of the nuclear g factors was determined by conventional nuclear magnetic resonance techniques.

A. INTRODUCTION

HE hyperhne interaction constant a is a measure
of the strength of the interaction between the

nuclear magnetic dipole moment pg and the moment
due to the orbital electron. For two isotopes (subscripts
1 and 2) of the same element in the same electronic
state one might expect (ar/its) = (gr/gs), where we have
written g= ttr/I.

By measuring the ratio of the interaction constants
(e.g. , by methods described in this paper or by atomic
beams) and the ratio of the nuclear g factors (e.g. , by
nuclear magnetic resonance experiments) to high pre-
cision, deviations from this equality have been found.

It was pointed out by Kopfermann' and Sitter' that
one should expect (ar/as)= (g~/gs)(1+&) for certain
pairs of isotopes, where 6 is of the order of a fraction
of one percent and is usually called the hyperfine
structure (hfs) anomaly. Physically the origin of A can
be traced to nuclear size effects, the most important of
which is due to the difference in the distribution of the
magnetic moment inside the nuclei under considera-
tion. ' ' A quantitative discussion of d, from a theoretical
point of view is left to a later section. Sufhce it to say
that such a calculation usually depends on the par-
ticular nuclear model chosen so that an experimental

'H. Kopfermann, Kersmorwemte (Akademische Verlagsgesell-
schaft, Leipzig, 1940).

e F. Bitter, Phys. Rev. 76, 150 (1949).' A. Bohr and V. F. Weisskopf, Phys. Rev. 77, 94 (1950).

determination of the hfs anomaly should be capable of
adding to our knowledge of nuclear structure.

Hfs anomalies have been measured for several pairs
of isotopes. Such experiments have been restricted
until now to elements which lend themselves to de-
tection in atomic beam experiments, i.e., mostly
alkalies. " ' Recent advances in the techniques of
paramagentic resonance experiments8 have made it
possible to measure "u" with greater precision than had
previously been possible. The method employed is
called electron nuclear double resonance (ENDOR)'
and will be described in detail in a later section.

In the present experiment' the precise ratio of the
hyper6ne interaction constants was determined by the
ENDOR technique and the ratio of the nuclear g factor
was redetermined by the NMR method for the two
stable isotopes of antimony, Sb"' and Sb"'. The experi-
mental value of 6 obtained in this manner was compared
with values based on a variety of nuclear models.

B. ENERGY LEVELS AND TRANSITIONS

The magnetic interaction of an atom whose angular
momentum J=—', and whose nucleus h.as a magnetic

' Ochs, Logan, and Kusch, Phys. Rev. 78, 184 (1950).
e Eisinger, Bederson, and Feid, Phys. Rev. 86, 73 (1952).
6 Jaccarino, Stroke, Edmonds, and gneiss, Phys. Rev. 105, 590

(1957).
~ Y. Ting and H. Lew, Phys. Rev. 105, 581 (1957).
e G. Feher, Phys. Rev. 103, 83 (1956).' A preliminary account of this work has been given LJ. Eisinger

and G. Feher, Bull. Am. Phys. Soc. Ser. II, 2, 31 (1957)J.


