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interesting alloy and additional results will be published

at a later date.
The extraordinary Hall coefficient has been found to

vary by a factor of two and is correlated with the
neutron diffraction data for the five Fe-Co samples. The
resistivity, on the other hand, has been found to vary
by only 15%Apparently some source of variation other
than a simple p' dependence influences the extra-
ordinary Hall coefFicient during the order-disorder
transition. The Ni3Mn samples show roughly the same

trend; i.e., the larger values of E1* are associated with

the greater degree of disorder. The results for samples

2, 3, and 4 do fit a p' dependence as shown in Fig. 8.

For reasons discussed above, a. reliable value for EI*
could not be obtained for the disordered sample.
Although Rr* for NisMn shows a p' dependence (as
would be expected for a change in impurity scattering
due to ordering), too much significance should not be
attached to this result in view of the failure of R1* for
Fe-Co to follow a similar relation.
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The uniform-background lattice model consists of a body-centered-cubic lattice of point charges of like
sign embedded in a uniform background charge of the opposite sign. The method used by Fuchs to apply
the Ewald sum formula to the case of static shear deformations is extended to apply to spatially periodic
deformations. The dispersion relations (frequency as a function of wave number) are presented for propa-
gation vectors in the L100], L110), (111j,and (210j directions. Comparison is made with the dispersion
relations for the same directions in a Born-von Karman model of a body-centered cubic lattice in which only
central interactions between nearest and next-nearest neighbors are considered. The values of the "Coulomb
part" of the macroscopic elastic constants as calculated by Fuchs are used for this model. The problem of
treating a model in which the background responds to the displacement of point charges is discussed.

INTRODUCTION

General Comments

'HE uniform-background lattice model consists of
point charges of like sign in a body-centered

cubic (bcc) lattice arrangement embedded in a uniform
background charge of the opposite sign. The net charge
is zero.

In the study of the physical properties of metals,
such as the specific heat or thermal and electrical
conductivities, a knowledge of the behavior of elastic
and thermal waves is essential. It has become apparent'
that this behavior depends upon the interaction between
the lattice of positively charged ions and the conduction
electrons. An early attempt to treat this interaction
was made by Staver, ' who used an extension of the

*This work is a part of a thesis submitted to the Faculty of the
Graduate School of the University of Maryland in partial ful611-
ment of the requirements for the degree of Doctor of Philosophy.

t Now at Southern Methodist University, Dallas, Texas.
' J. de I.aunay, Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic Press, Inc. , New York, 1956), first edition,
Vol. II, Chap. 4.

~ T. Staver, Ph.D. thesis, Princeton University, 1951 (un-
published); D. Bohm and T. Staver, Phys. Rev. 84, 836 (1952). .

classical Bohm-Pines plasma treatment. ' More recently
Bardeen and Pines' have extended this type of ap-
proach. The present study of the uniform-background
model forms a. "6rst step" toward the quantitative
application of the Bardeen and Pines results to a b.c.c.
metal.

In much earlier work, Fuchs' has shown that simple
shear disturbances in the bcc metal sodium do not
affect the approximately uniform background of con-
duction electrons. Fuchs, however, considered only
static shear deformations, whereas transverse thermal
waves result in quite a different con6guration. The work
of Fuchs in treating the Coulomb interactions by Kwald
sums will be reviewed brieRy and the method extended
to the case of deformations which are periodic in space.

Kohn' has also carried out some calculations of

' D. Bohm and D. Pines, Phys. Rev. 85, 338 (1952).' J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).' K. Fuchs, Proc. Roy. Soc. (London) A151, 585 (1935);A153,
622 (1935);A157, 444 (1936).

6 W. Kohn (private communications); see also footnote 19 of
reference 4. Professor Kohn's numerical results provided a helpful
comparison during the course of the present somewhat more
extensive calculations, and the author is grateful to him for
making them available.
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dispersion relations for the purpose of studying the
motion and energy of a b.c.c. lattice of electrons in a
positive background (the minimum-energy configu-
ration of a dilute electron plasma).

The secular equations will be obtained for the case
in which the uniform background is assumed to remain
undisturbed despite displacements of the point charges
from their equilibrium positions. Solutions of the secular
equation (circular frequency as a function of wave
propagation vector) for special directions of the propa-
gation vector will be given.

Some approaches to the treatment of the case when
the background does not remain uniform will be dis-
cussed. It should be emphasized that useful information
concerning the pure transverse modes in a metal like
sodium may be obtained from the uniform-background
model, but a truly representative model must allow for
a response of the background.

Ewald Formula for the Coulomb Potential in a
Perfect Lattice

Ewald' obtains the following formula for the Coulomb
potential %(r) at a point r in a perfect lattice:

4m. exp( k'/4g+—ik r)
@(r) =—P' P e, exp( —ik x')

Q k2

where 0 is the volume of a cellular polyhedron, R' is a
lattice vector, the x' specify the basis relative to any
R', e~ is the charge at x' and Pe~ ——0, the k are Fourier
vectors, g is an arbitrary parameter, R""is an abbrevi-
ation for r —R' —x', and G(x) = (2/g~) J~'exp( —s')ds.
This formula may be derived' by introducing two
Gaussian distributions of charge of opposite sign
centered at each lattice point. The sum over k is then
the Fourier series for the potential at r due to all those
Gaussian distributions of signs like the et. This sum

'

will be referred to in the application to periodic defor-
mations of the uniform-background model as %,(r).
The sum over / is the potential due to the point charges,
each surrounded by a Gaussian distribution of charge
of the opposite sign. This sum is referred to as 4~(r)
in the application made in the next section. The
parameter p is then the square of the half-width of each
of the Gaussian distributions. The charge density p~, (r)
due to the Gaussian distribution centered at R'+x'
and with sign like et is given by

p«(r) = ~ (~/~) *' expl: —~(&"")'7 (2)

Because of the lattice periodicity the Fourier vectors
7 P. P. Ewald, Ann. Physik 64, 253 (1921).
P. P. Ewald, Nachr. Akad. Wiss. Gottingen, Math. -physik

Kl. 3, 55 (1938); see also C. Kittel, Introduction to Solid State
Physics (John Wiley and Sons, Inc. , New York, 1953), 6rst
edition, Appendix B.

k needed for the Fourier series are just the reciprocal
lattice vectors multiplied by 2+.

The prime on the symbol for the sum over k denotes
the omission of the value k'= 0 from the sum. Physically
this omission arises from the charge neutrality require-
ment P~ e~= 0, since the zeroth Fourier coeKcient must
then be zero.

Fuchs's Application of the Ewald Formula

At erst glance the requirement Q e~=0 seems to
preclude the application to the present model in which
the signs of all the point charges are the same. Fuchs,
apparently at the suggestion of Bethe, ' included
formally the uniform background in the "basis." In
the sum over t in Eq. (1) one value of t refers to this
uniform background charge. Thus P e,=O may be
satis6ed for the proper density of the background
charge. When the sum over 3 is performed, et is replaced,
in the term where 3 refers to the background charge,
by the constant charge density, and an integration is
performed over a cellular polyhedron. As long as the
Fourier functions exp(ik x') are orthogonal over the
range of integration, this term contributes zero (for
kNO) in the Fourier series part of Eq. (1). Fuchs has
shown it contributes a constant, which can be evaluated,
in the direct lattice sum of Eq. (1).

Ewald's formula, Eq. (1), was derived for a perfect
lattice with all ions in their equilibrium positions. If
the lattice undergoes a static shear, the point charges
may be regarded as forming a "new" lattice arrange-
ment, for which, due to the lattice periodicity, the
Fourier vectors are merely the vectors reciprocal to the
"new" lattice (with the factor of 2z-). For small shear,
the "new" lattice and Fourier vectors may be expressed
in terms of the old ones and the shear angle. The total
Coulomb potential energy may be found from the
potential, and the second derivative of the energy with
respect to the shear angle related to the "Coulomb
part" of the shear modulus. ' By considering shears in
diGerent directions, Fuchs obtained expressions for the
"Coulomb part" of the macroscopic elastic constant
c44 and of the diGerence c»» —c»2. The individual values
of c»» and c»2 cannot be found since the method described
here does not permit the calculation for a "Coulomb
part" of a compressional modulus. Fuchs used empirical
values of the latter for his calculations of c»» and c,2,
and thus, did not obtain a value for their "Coulomb
parts. "His values for the "Coulomb parts". of c44 and
c»» —c»~ will be obtained from the background model
in the limit of infigite wavelength for the space
periodicity.

EXTENSION TO PERIODIC DEFORMATIONS WITH
THE BACKGROUND REMAINING CONSTANT

Calculation of the Potential %', (r)

Let the "point" charge at R'+x' be displaced by
u"=A'sin(x R") where R"=R'+x' and A' is zero
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bj, =4s pg/k' (6)

between the two sets of coeScients. From Eq. (4) by
the usual methods of ending the inverse, and by use of
Eq. (3), the coeKcients p~ can be evaluated from the
relation

1
pz= — g P e, exp[ —ik (R'+x'))

V~

Xexp[ (gg2+ik. R))[ +1g2R. lut g(ult)2

+2' (R u")']d'R, (7)

where V is the entire volume of the lattice being con-
sidered, and the integration is over V. Regarding this
as the sum of four terms, the values in the last three
are zero when t refers to the background charge, since
A'=0. The erst term is just the expression obtained
by Fuchs, so that again the value is zero when t refers
to the background charge. For simplicity of notation
the rest of the basis (if any), now referring only to the
point-charge positions, is absorbed into the R vectors
and u" is replaced by

u'=A sin(x R').

There results the expression

('t1 *

pg= — Q ~

—
~

exp( —ik ~ R') exp[ —(gR'+ik R))
V" & &~)

X[1+2qR u' —g(u')'+2'(R u')']d'R, k~o, (9)

where q is the charge on each of the point charges.
The integrations in Eq. (9) are performed in Appendix

A, under the assumption that the origin for the inte-
gration is far enough from the edge of the crystal that
its effect is not felt (i.e., we are not concerned with
surface effects). There results the expression

pq ——(q/V) Qi [exp(—ik R') exp( —k'/4g)]
X[1—ik.u' —-'(k u')') k~O, (10)

For the value of p~ for k=0, the over-all charge-

when I, refers to the uniform background of charge.
Then Eq. (2) becomes

pi&= e&(g/x) & exp[ —g ~

r—R")')
X[1+2$R&&n.ut& 7J(u&&)&+27p(Rt&n. u&&)&) (3)

to second order in A'. The Fourier-series expansion of
the charge density at point r due to the Gaussian
distributions having signs like the e& can be written

p(r) =Pi Pi pii(r) =P~ p~ exp(ik. r). (4)

Poisson's equation then yields the relation

V'%.(r) = —4vrp(r).

Expanding %,(r) in a series similar to Eq. (4) with
coeKcients b&, there results from Eq. (5) the connection

neutrality requirement must be considered. This may
be expressed in the form J'p(r)d'r=O, which by Eq.
(4) yields

P pk exp(ik r)d'r=P p& exp(ik r)d'rj
=poV=o.

The expression Eq. (10) is valid for k/0. Note, how-
ever, that all terms for 4=0 are automatically zero
except the first. This first term is just the expression
obtained by Fuchs. The k values for that term are just
the reciprocal lattice vectors (multiplied by 2~), k". It
is only necessary then in Eq. (10) to omit the reciprocal
lattice vector corresponding to the origin of the re-
ciprocal lattice in order to have this expression hold
for all k. This argument reveals then that a part of the
Fourier vectors needed are the reciprocal lattice vectors
(excluding the zero vector), which are needed also for
the case of all u'= 0. The remainder of the set of Fourier
vectors will be identified in evaluating the total energy.

I.et 8", be that part of the total Coulomb potential
energy due to the potential 4'„ then we have

W =-,'q Q;%.(R&+u&'). (12)

For use in this equation, %,(r) is evaluated at r =R&'+u&',

using Eqs. (10) and (6). This is done by substituting
R&'+u&' for r, and subtracting the potential due to the
Gaussian distribution centered there. This latter
quantity is a constant and will be denoted by d . Thus,
one obtains

O.(R&+u&) = (4rq/iV) Qp Qi {[exp(—ik R'&)

Xexp( k'/4g—)5/k') {1 ik (u—' —u&')

—-'L . ( '—'))') —d. (13)

where R'&=R' —R'. From the definition in Eq. (12),
one obtains

W.= (4~q'/2V) P, P, P; {[exp(—ik R')
Xexp( —k'/4g))/k') {1+(ku')(k u&)

——,'[(k u')'+(k u')')j ,'Eqd. ,
——(14)

where E is the total number of point charges in V. The
sums of the terms of first order in (k u') and (k u&)

may be shown to be zero.
The lattice will at this point be speci6cally restricted

to the b.c.c. lattice. The lattice vectors R' thus have
components along the principal axes of the cube
(denoted as x, y, s, axes) given by R&'= l&a/2, R2' ——l2a/2,
and R3' ——l,a/2, where a is the cube edge length (about
4.22 A for sodium), and l as a superscript stands for
the triad of integers l~, l2, l3 which are either all odd or
all even. In subsequent expressions the symbol l will

appear not as a superscript, and will denote the square
root of the sum of the squares of the three integers l~,

l2, l3. The components of the displacement u' along the
'three principal axes will be denoted by I', e', and m',
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All those terms on the right side of Eq. (15) which
depend"on / may be expressed by use of Eq. (8) in the
form of exponentials involving products of the form
k R' and (k~ x) R'. The sum over i is then performed,
where use is made of the relation

P( exp(ik' R') =Mph", , (16)

which involves the well-known Kronecker delta symbol.
Since exp(ik" R&') = 1, and since certain terms for +k"
are the same as others for —k", the resulting expression
may be written

BW —/BN'
= —(4vrq'/0) P b {Lexp —(k"+x)'/4g]/(k "+x)'

xL(ki"+Ki)(k"+~).&sine. R']
L(exp k '/4U)/k"']kibk" A sine. R~) (17)

where EQ= V.
Equation (16) determines the Fourier vectors k

since it is found that the k' in that equation are given
by k, (k+x), or (k—x), when the sum over / is per-
formed in Eq. (15). These Fourier vectors correspond
to the reciprocal lattice points (except the origin) and
to two "satellite" points for each reciprocal lattice
point at &x from the latter. The origin of the reciprocal
lattice was excluded by the charge-neutrality require-
ment, but its "satellites" are not excluded. As will be
seen, these latter contribute an eGect of special sig-
nificance to the dispersion relations. To emphasize their
particular contributions, the sum over the reciprocal
lattice space will be rewritten with the origin's satellite
contributions written as a separate term, and the others
included in pb', where the prime denotes the omission
of k"=0. In addition certain of the terms vanish because
of lattice symmetry; these will not be written. The
result then, in component form, can be written

—BW /Be'= —(4rrq'/0) {LSii' —Pb' (J'(k"))(ki")'
++b' (F'(k"+x))(kib+Ki)']I&
+LSi2'+Qb' (E'(k"+v))(ki"+Ki) (k2"+Km)]v&

+$$ib'+Qb'(I'(k"+x)) (kib+Ki) (k3"+Kb)]w&), (18)

respectively. The reciprocal lattice vectors k" have
components ki"——hi(2m/a), k2"——h2(2m/a), and kb"
= h&(2m/a), where h and h, play the same role that i and
/, play for the direct lattice vectors R'. The h; are
integers which are either all even or one even and two
odd, corresponding to face-centered-cubic positions for
a cube edge "length" of 4~/u. The symbol h will be
used for the vector whose components are the h;. Other
vectors will have components denoted by the subscripts
1, 2, and 3, also.

The x-component of the force on the jth ion will

depend on —BW,/Bu&. This derivative is found from
Eq. (14) tobe

BW—./Bu& = —(krq'/2 V) P g P ( Lexp (—k'/4rl)]/k'

)&Pexpik R"+exp—ik R"]kik (u' —u'). (15)

where S; = jexp ( K—'/4rt)) (K;K,)/K', P'(x) = )exp (—x'/
4g)]/x'. The terms S~/ contain the effect of the satellite
points of the origin of reciprocal lattice space. The first
of the sums of type pb' in the coefficient of u& contains
the effect of the reciprocal lattice points, and all of
the other pb' sums in the equation contain the effect
of all the other satellite points.

The situation for the present considerations yields a
similar expression in which R"" stands for ~r—R' —x'
—u" ~, instead of ~r —R' —x'~ which was indicated for
the case considered by Ewald. The expression Eq. (19)
may be derived' by adding three potentials at r. These
are the sums overland i of the potentials due to (1) the
point charge e~ at the point R'+x'+u", (2) that part
of the Gaussian distribution (with sign opposite to e~)

which lies inside a sphere centered at R'+x'+u" and
has r as a point on the surface, and (3) the rest of the
Gaussian distribution of charge.

%hen the value of t refers to the uniform background
charge, the u" are zero, and the resulting term is
identical to the corresponding term treated by I'uchs.
The value of this term will be denoted by d&, and is, of
course, independent of u'. The total potential energy
5 y due to the potential 0'~ is given by

Wb ———,'q Q, +b(R&+u'). (20)

Wb is evaluated to second order in 2, where R&+u' is
substituted for r in Eq. (19) and in the sum over l the
value of l= j is omitted. The expression is

1—G(g2R'~')
Wb ,'q' Q———

(R'&)'

(u' —u')' 3
+ LR'& (u' —u&)]'

2 2(R")'

( rl
~

l exp) —g(R")'] (u' —u')'
+2l-

I

E ~) (R'~)' 2

( 3
+

~
+q ~(R'& (u' —u&)]' +-', &Vedb. (21)

E 2 (R'&')' )

The first-order terms in (u' —u') vanish.
The force on the jth ion depends in part on

—BWb/Bu' This is e. valuated from Eq. (21) by use
of Eq. (8) and the trigonometric identity

sin(x R') —sin(x R') =sin(x R'&) cos(x.R')
—2 sin~(i~+. R") sin(x R').

Calculation of the Potential %'b(r)

As indicated in Eq. (1), Ewald finds for the case of
all u~=0, the expression

+b(r) =pg Qg e~ tl G(g R—"")]/R"" (19)
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F„A=X'A, (23)

where the subscript I indicates the matrix operator
was derived from the uniform background model. The
elements of F are given by

Jg.„,=S,;++'b{[1"(h+ X)](h;+ X,)'—P (h) h, '}
+ (1/2gr) Qg'{Gg(6g';2/P —2)

+&g[(3/P+gg'gg/2) lP 1]}(1——CgC2Cb), (24)
and

~-„;=S,,+Z.'{P'(h+X)](h,+X,) (h, +x,)}
+ (1/2n. ) Q g'([Gg6l, l~/P

+K(3/I'+gb'rg/2)1;1;]S, S;S }, (i,j,ng unequal) (25)

where

gg = X2~/u, F(x) = exp( —w'g'/gg'gg)/g',

S;;=&(X)X,X,, G,=[1—G(-', &b&i)]/P,

and

&g= (2n'~/V'~) exp( ——.'q~'&')/P, C,=cos(x,t,~),

S,=sin(x, l,w).

(Note that the index j on u' does not enter the expres-
sions. ) The X and X, play the sa,me role for gg that h
and h, play for k", except that the h, are all integers.

The dimensionless "frequency" A used here is related
to the actual circular frequency co by

X'= cu'/cobr', cubi'= 4n.nq'/M (2.6)

The constant co~' is the square of the plasma frequency
for particles of charge q, mass M, and numerical density
n For the b..c.c. lattice, n=E/V=1/0=2/gg'. The
secular equation is readily obtained from Eq. (23), and
is a cubic equation in X'.

As previously mentioned, Kohn has worked with this
type of model in which the point charges were electrons.

The resulting expression for —cjWb/Bu&' may be written

—glWb/Bu'= —q' Pg' {[G'g(6R, &g'R &gu& —2ug)

+Hg'(6/(Rg&)'+4gg)(Rig&'Rg&' u' —2ug)]

Xsin'(-'gg Rgg) } (22)
where

Gg'= [1 G—(gl&Rg& )]/'(Rgg)',

&g'= 2(~/~) '{exp[—n(R")']}/(R")'

Secular Equation

The total Coulomb potential energy is W.+Wb. The
equations of motion of the jth ion have the form
Mu'= glW—/Bu' glW—b/Bu', where M is the mass
associated with each of the point charges. The equations
of motion will be written in the matrix form

Bardeen and Pines4 mention that Kohn obtained a
"sum rule" for the three solutions of the secular equa-
tion. This rule is that the sum of the three values of A.',
corresponding to any x, is unity. The derivation is given
in Appendix B.Another interesting feature, also derived
in Appendix 8, is that if one plots the three solutions
for A.

' corresponding to any direction of x, as a function
of the magnitude of the propagation vector, one solution
approaches unity and the other two approach zero as
~ goes to zero. It is easily seen from the derivation that
the satellite points of the origin of reciprocal lattice
space are responsible for both these occurrences.

The dispersion curves have been obtained by solving
the secular equation for the three values of X' for several
values of X when gg is in each of the directions [100],
[110], [111],and [210].The solutions were obtained
for two values of g, agreement serving as a check on the
numerical calculations. (The last figures shown in each
entry of the 6rst column of Tables I, II, III, and IV
are the 6rst 6gures which did not agree exactly for the
two values of gg.)

It seemed desirable to make some comparison be-
tween the uniform background model and the results
of the static-strain considerations of Fuchs. This com-
parison has been made in terms of the dispersion
relations. To obtain dispersion relations based upon
the claculations of Fuchs, one may consider a Born-
von Ka,rman model in which only nearest and next-
nearest neighbors interact, and then only by central
forces. There are then two force constants of this model,
n& and 0.2. The secular equation may be derived in
terms of these force constants [see, for instance, Eq.
(11.5) of reference 1].By considering only pure shear
modes in the directions [100]and [110],one may relate
ng and ggm to c44 and c»—c» [see Eqs. (11.11) and (11.12)
of reference 1].Thus, the force constants of the Born-
von Karman model are determined by the shear moduli
alone. Solutions for longitudinal modes may be deter-
mined in terms of n~ and n2. Of course, the dispersion
relations determined in this manner do not reduce to
the elasticity expressions in the limit of long wave-
lengths, unless the Cauchy relations apply. ' For the
purpose of making comparisons with the uniform back-
ground relations, "Coulomb parts" of n~ and e2 were
determined from Fuchs' "Coulomb parts" of c44 and
c~~—c~~. The results of the calculations are presented
in Tables I, II, III, and IV. The quantity A. ' is dehned
by h.„'=2&)'. The corresponding solutions for the
Born-von Karma, n model are denoted by A~'. The
additional subscripts 1, 2, and 3 arbitrarily identify
the three branches. In the directions [100],[110],and
[111],branches 1 and 2 are pure transverse, while
branch 3 is pure longitudinal. In the direction [210],
the branches are mixed longitudinal and transverse,
except for cases of elastic isotropy' (c»—c»——2c44),
which does not hold for either model. Kohn's results
agreed with those given in Tables I, II, and III.

Some sample plots of the dispersion relations are
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TABLE I. Values of h for the $100) direction.
(X2——X,=O; s& ——x,.)

TABLE III. Values of A. for the $111$direction.
(Xl X2 X3 j ~1 ~2 )

0.0000
0.1912
0.3828
0.5735
0.7611
0.9400
1.1041
1.2451
1.3542
1.4234
1.4472

0.000
0.191
0.377
0.554
0.717
0.862
0.988
1.09
1.16
122
1.22

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

2.50663
2.49196
2.44740
2.37171
2.26393
2.12512
1.96071
1.78381
1.61704
1.49351
1.44719

0.000
0.210
0.420
0,610
0.777
0.919
1.03
1.11
1.17
1.21
1.22

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.90

TABLE II. Values of h for the t 110$ direction.
(Xg = Xg, X3=0.)

given in Figs. 1, 2, 3, and 4. It will be seen from Fig. 2
that the branch which does not approach zero at zero
~ exhibits a behavior similar to that of the "optical
modes" for lattices with an irreducible basis. If the
lattice with irreducible basis is regarded as two inter-
penetrating simple lattices, optical modes may be
described as due to one lattice "moving against" the
other. There is always an accompanying "acoustical
mode" in which the two lattices "move together. "The

0.00000
0.2232
0.48590
0.63678
0.79867
1.13705
1.44718

0.000
0.214
0.420
0.517
0.609
0.777
0.918

0.000
0.173
0.347
0.433
0.520
0.693
0.866

2.50663
2.48664
2.41053
2.33921
2.23766
1.92281
1.44718

0.000
0.500
0.892
1.03
1.11
1.11
0.918

0.000
0.173
0.347
0.433
0.520
0.693
0.866

uniform background model provides an optical-type
behavior in which the point charges may be regarded
as "moving against" the (6xed) uniform background.
Since the latter is fixed, there is no accompanying
acoustical behavior. In a pure shear mode, the density
of the point charges is not changed, and there is conse-
quently no change in the interaction with the uniform
background; hence, the optical-type behavior does not
arise. It might then seem surprising that in a non-
symmetry direction, such as L210j, only one branch
does not have zero frequency for zero ~. However, for
the optical-type mode, as the wavelength becomes
infinite, the points become fixed in their lattice positions
(relative to one another), and the whole lattice moves
back and forth through the uniform background parallel

TABLE IV. Values of A for the $210j direction
(X =ZX, X =0.)

0.0000
0.2665
0.5080
0.6120
0.7012
0.8264
0.8694

0.000
0.266
0.506
0.609
0.697
0.819
0.862

0.000
0.141.
0.282
0.354
0.424
0.566
0.707

0.00000
0.2127
0.66461
0.77171
0.90526
0.99998
1.03875

0.000
0.212
0.649
0.746
0.862
0.936
0.963

0.000
0.112
0.373
0.447
0.559
0.671
0.745

0.0000
0.0975
0.1881
0.2277
0.2624
0.3118
0.3292

0.000
0.098
0.186
0.223
0.256
0.301
0.316

0.000
0.141
0.282
0.354
0.424
0.566
0.707

0.000
0.14
0.468
0.555
0.682
0.797
0.863

0.000
0.124
0.389
0.455
0.544
0.611
0.672

0.000
0.112
0.373
0.447
0.559
0.671
0.745

2.60663
2.49050
2.44737
2.42002
2.39215
2.34588
2.32779

0.000
0.403
0.759
0.919
1.05
1.23
1.30

0.000
0.141
0.282
0.354
0.424
0.566
0.707

2.507
2.493
2.371
2.319
2.236
2.156
2 111

0.000
0.294
0.889
1.015
1.157
1.227
1.247

0.000
0.112
0.373
0.447
0.559
0.671
0.745
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Fro. 1. Dispersion for transverse waves in the 1100j direction.
This is typical of the. results obtained for the acoustical-type
modes. Near the origin the two models agree, while the uniform
background yields values rising above thos& for the other model
as the zone boundary is approached. In this direction the abscissa
has the value unity at the boundary of the first Brillouin zone.

0
0 O. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Dc

Fro. 3. Dispersion for transverse waves in the L111Jdirection.
The greatest difference in the behavior of acoustical-type modes
for the two models occurs in this direction. Notice that even for
the Born-von Karman model the frequency does not reach a
relative maximum until well into the second zone. In this direction
the abscissa value is 3&/2 at the zone boundary.

to x. Since the background is isotropic, the direction of
x becomes immaterial.

In a separate calculation, the solutions for the square
of the circular frequency were obtained for the uniform
background model and expanded to order ~', for the
pure transverse modes corresponding to v. in the L1007
direction and in the L1107 direction. 'These expressions
were compared to those for the same directions ac-
cording to the theory of elasticity, in which the coefFi-

cients of ~' depend upon the combinations of rnacro-

scopic elastic constants c44 and c~~—c~~. The Ewald
sum expressions deduced for these elastic constants are,
of course, exactly the same as those obtained by Fuchs.

COMMENTS ON THE CASE OF A
RESPONDING BACKGROUND

A model in which the background does not remain
uniform but responds to the motion of the point charges
should provide a more realistic picture of the behavior

of sodium metal. Accordingly in this section the point
charges will be considered to be positive ions, and the
background charge as due to electrons. As a first step
in "freeing" the uniform background, the application
of Fermi-Thomas statistics' is suggested. The use of
I ermi-Thomas statistics yields the Yukawa equation

where

(V' —Z') P= —4rr gp+, (27)

ls is the (maximum) Fermi energy per electron at
absolute zero, p+ is the change in the numerical density
of point charges, and p is the change of electrostatic
potential due to the motion of both ions and electrons.

2.5—

2.0—

I.S—

I.O

0.5

0.4

0,2

O. l 02 0.3 0.4 0.5 0.6 0.7

0 O.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O
3I.

Fro. 2. Dispersion for longitudinal waves in the I 100j direction.
The optical-type behavior for the uniform background model
contrasts with the acoustical-type behavior for the other model.
Similar results are obtained for one branch in each of the other
three directions. for which the calculations were made. In this
djrection the abscissa has the value unity at the zone boundary.

FIG. 4. Dispersion for Branch 1 in the L210j direction. The
branches are mixed transverse and longitudinal in this direction.
The behavior of Branch 2 was similar to that of Branch 1.Branch
3 exhibited the optical-type mode for the uniform background
model. In this direction the abscissa value is 5&/3 at the zone
boundary.

9 N. I'. Mott and H. Jones, The Theory of the Properties of Metals
aed Alloys (Oxford University Press, Oxford, 1936), first edition,
p. 48. See also reference 4,
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The solution to Eq. (27) has the form

@(r)=q [exp( —EIr—xI)/I r—xI 7p+(x)d'x. (29)

By using the Dirac delta function, one may write the
change in ion density as

p+ (x) =P i [8(x—R ~ —u ~) —8 (x—R i)7. (30)

The use of Eq. (30) in Eq. (29) yields to second order
in Iu'I the expression

exp( —E'I r —R'I)
4(r) =q Zi

(r Rl)2

[E+
I

r R'
I 7[(r—R') u' —(u')'/27

3 3E ((r—R'). (u'))'
+ + +E' —. (31)

2(r —R')'
I
r—R'

I
(r—R')'

The quantity E ' is called the screening radius. For
sodium on the basis of "free" electron theory, this turns
out to be (1.00)a/2n. , to three significant figures. This
is an extremely short screening radius.

When the procedure discussed in the previous section
was followed, the equations of motion for a represen-
tative ion yielded a dispersion relation, from which an
expression for the macroscopic elastic constants c;; may
be found. In particular the expression for c44 was found
to be

involve erst performing the complicated numerical
calculations of the wave functions.

It should be mentioned that White's calculations for
the elastic constants of copper" yield egg=13.5)&20",
c44———5.6X 10", and ci2 ——18.7X 10", in units of
dynes/cm'. He compares these with the experimental
values c~~=17.0X10", c44=7.5)(10", and c~2=12.3
X10", in the same units. The values calculated by
Fuchs are all in better agreement with the experimental
values. In particular Fuchs obtained a positive value
fOr C44.

For any satisfactory theory for treating the re-
sponding background, the optical-type mode found
from the uniform background model must not appear.
It will then be possible, by extending the method by
which Fuchs's values for c44 and c~~—c~2 were found
from the uniform background model, for one to calcu-
late a "Coulomb part" of c~~, and hence of c~2.

The author wishes to express his gratitude to Dr. R.
Ferrell, who suggested the problem and directed the
work on it. The contributions to the work from many
long conversations with Dr. J. de Launay are gratefully
acknowledged.

APPENDIX A

There are four integrals to be evaluated in Eq. (9)
for p&. In the evaluation u' will be replaced by
A sin(x R'), and certain constants having no effect on
the integration will be factored out (these will not be
explicitly written in this Appendix). The first of the
integrals, then is

c44= (q'/a') Pi' f[(exp( ,'Eel))/137—(3—Eal+6
+-'E'u'i') (l2'li'/i') —2 (-,'Eal+1) li'). (32) Ii )exp[—(qR'+i——k R)7d'R. (A-1)

A calculation for c44 was made for sodium. The above
"free-electron" theory value for E was used. The value
of a was taken to be 4.22 A, as quoted by Fuchs. 5 The
resulting value of the electrostatic part of c44 was only
0.155 times the value calculated by Fuchs. ' Another
calculation was made using a screening radius due to
Pines" rather than the free-electron value. From this
calculation the value of the electrostatic part of c44

was found to be 0.528 times the value obtained by
Fuchs.

These calculations may be taken as one piece of
evidence of the failure of the statistical treatment of
interionic forces, since the values calculated by Fuchs
check well with experiment. As indicated by White, "
the Fermi-Thomas statistics do not yield a change of
electron density which is satisfactory for this purpose.
Evidently the most satisfactory results would come
from a treatment similar to White's in which the change
in electron density is found from the variation in
electron wave functions. Such an approach would

'0D. Pines, Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc. , New York, 1955), erst edition,
Vol. 1, p. 394.

Polar coordinates will be chosen with the polar axis
along k. The point whose position vector is R, has polar
coordinates (E, 8, p).

The integration is over the volume V of the lattice.
The assumption will be made that surface eGects are
not of interest, and the range of E. will be taken to be
from zero to infinity. Thus I& may be written in the form

p co iI w p2w

I,= (exp[—(gE'
"o "o ~o

+ikR cos8)7)R' sin8dgd8dR. (A-2)

The integration over @ yields 2x. The integration over
8 is also straightforward, resulting in

Il= (47''/k)
( [exp( —&R2)7 sinkRRdR. (A-3)

Jo
"H. C. White, Ph. D. thesis, Massachusetts Institute of

Technology, 1955 (unpublished); Phys. Rev. 98, 1552(A) (3954).
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Integration once by parts yields

Ii= (2ir/g) t exp( —qR')] coskRdR.
J0 (g 2 )2)(g 2 g2)(g 2 g2) 0

Let X,' be the jth root of the secular equation for a
value of x. The secular equation may also be written

( 4)
in the form

( )

This last integral can be evaluated by integration in
the complex plane as suggested by Franklin. " The
result is given by

= (m/4q) ~ exp (—k'/4q). (A-5)

The value of Ii can now be found by using Eq. (A-5)
in Eq. (A-4).

The second integral in the expression for pk has the
form

I2 {exp——$—(qR'+ik R)]}R Ad'R (A-.6)

The point whose position vector is A has polar co-
ordinates (A, 8g, Pg). The scalar product R A will be
written as RA coso.. It is readily established that
Jg' cosa~= 2s. cos8 cos8g. The integration over 8
reduces upon one integration by parts to the same as
that encountered in evaluating Ii, Repeated integration
by parts reduces the integral over R to the form Eq.
(A-5). There results the expression

I2 i(~/rl—)—l(—h A/2g) exp( —k'/4i1). (A-7)

The third integral in the expression for p~ is of the same
form as Ii.

The fourth integral in the expression for p~ has the
form

In this way of expressing the secular equation the
coefficient of (X')' is P; ling. It is thus established that

P, X;2=+;F„„;,
where F, ;, is given in Eq. (24). The use of Eq. (24)
yields

Q, XP=Q; S,;1+i,'{tF(h+X))(h+x)'
—LF (h)]k'}+ (1/2s.) Qi'(4Gi+IIi(a'i1P/2))

X (1—CiC2Cg) . (8-3)

[The symbols in Eq. (8-3) are defined following Eq.
(25).] Since the right side of Eq. (8-3) must be inde-
pendent of g, it will be evaluated in the limit as g

—+~.
In this limit, Gi—+0 and II~0, so in Eq. (8-3) the entire
Qi'-+0, also. Since

LF(h+X))(h+X)~= expL —(h+X)2gp~/a~7J)

the Pi, '—&0 in Eq. (8-3). Thus, Eq. (8-3) becomes

P; 1iP= lim P, 5,,= lim exp( —X'm'/a'g) = 1. (8-4)

Equation (8-4) is just the mathematical statement of
the sum rule.

It can also be shown that at ~=0 one of the X is
unity and the other two are zero.

From Eq. (8-1) and the secular equation obtained
from Eq. (23), in the manner used to find Eq. (8-2),
it is found that

I3 , {exp[ (gR'+—i——h R)]}(R A)'d'R (A-8)

and

P &e, ~j = Q (Fu i''u, ij . Ftc, ij )q (8-5)

The expression (R A)' is written (RA)'cos'n. It is
found that

J02 cos'ed' = 2m cos'8~+m sin'8(1 —3 cos'8~).

The use of integration by parts reduces the integral over
8 to the same one met in evaluating I~ and I2. The
resulting expression may be repeatedly integrated by
parts until the form Eq. (A-5) is obtained for the inte-
gration over R. The expression for I3 is given by

Ia= (1/q) (m/g)')exp( k'/4q))/A'—/2
—(k A)'/4g). (A-9)

APPENDIX B

The secular equation (a cubic in X') is obtained from
the matrix equation Eq. (23). If the coefficient of (X')'
is —1, then the coefficient of (X')' is g, F„,;;,i = 1, 2, 3.

"P. Franklin, Methods of Advanced Calculus (McGraw-Hill
Book Company, Inc. , Nerv York, 1944), first edition, p. 248.

Xi9,g9.3'=g F . ..+2 g F„,, QF„„;F„,; . (8—-6)

LF„,;; is given in Eq. (25).)
I.et p;=a;/ii be the ith direction cosine of v. . It can

then be shown that

and

llill F~, ii =p,pi,
x~0

lim F„,;;=p,2.
K—+0

(8-7)

When Eq. (8-7) is used in Eq. (8-6), it is found that
lim Xq92'A, 3 =0. Thus, at least one of the X must be
zero, say X/=0. When this value and Eq. (8-7) are
used in Eq. (8-5), it is found that lirn X~9,P=O, hence
either X2' or ),3' is zero, say A~'=0. Finally, then, from
the sum rule Eq. (8-4), lim X32= 1.Note that the result
is independent of p;, and hence of the direction of
propagation.


