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Electron-Hole Recombination Statistics in Semiconductors through
Flaws with Many Charge Conditions
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(Received July 23, 1957)

A flaw with s electronic units of negative charge makes transitions to charge s+1 by hole emission at
rate e(p, s) or by electron capture at rate Nc(s, s) and returns to charge s at rates e(N, s+1) and pc(p, s+1).
Here n is the electron density in the conduction band and p is the hole density in the valence band. The
steady-state ratio of populations 1V.+1 to X, is given by

c (tt,s) [a+I*(s+',)g/c (-p, s+1)pp+ p*(s+-,') g,

where z,*(s+z)=e(p,s)/c(w, s) and p~(s-,') =e(e, s+1)/c(p, $+1). This distribution corresponds to an ef-

fective Fermi level for the flaws only for the condition of thermal equilibrium. Expressions for the recom-
bination rate based on the steady-state distribution are derived. For a given transition s~4 —s+1 the following
special cases are defined: (1) denuded: N&e~, p&p"t (2) I-dominated: e)N", p&p~; (3) p-dominated:
n(n*, P &P*; (4) flooded: n&n*, P &P*. Diagrams which aid in visualizing the relative importance of the
various transitions are presented. Some speculations on the nature of trapping centers are given.

1. INTRODUCTION

'HK nonequilibrium recombination statistics for
holes and electrons through single-level Qaws

have been considered in detail by Shockley and Read'
(hereafter referred to as S-R), Hall, ' and others. ' Re-
cently, experimental results' have shown that gold,
copper, selenium, tellurium, and many other impurities
not in the third or the hfth column of the periodic table,
have multiple energy levels in the energy gap of ger-
manium and silicon, and their presence inQuences

greatly the recombination and generation of the car-
riers. The equilibrium statistics for an impurity center
or a Qaw with multiple energy levels or charge condi-
tions have also been considered recently by Shockley
and Last (hereafter referred to as S-L) and others. '
However, a general and correct nonequilibrium statis-
tics for a multiple-charge-condition Qaw in semicon-
ductors has not appeared in the literature. '

This paper is concerned with the nonequilbrium but
steady-state statistics for holes and electrons in semi-

' W. Shockley and W. T. Read, Jr., Phys. Rev. 87, 853 (1953).' R. N. Hall, Phys. Rev. 83, 288 (1951);87, 387 (1952).' P. T. Landsberg, Proc. Phys. Soc. (London) A65, 604 (1952);
P. T. Landsberg and T. S. Moss, Proc. Phys. Soc. (London)
B69, 661 (1956);S. G. Kalashnikov, J. Tech. Phys. USSR 26, 241
(1956) t translation: Soviet Phys. (Tech. Phys. ) I, 237 (1957)j.
H. Y. Fan, Phys. Rev. 92, 1424 (1953); J. Nishizawa and Y.
Watanabe, Sci. Repts. Research Insts. , Tohoku Univ. 7, 149
(1955).' C. B.Collins et al Phys. Rev. 10.5, 1168 (1957), and references
therein; H. H. Woodbury and W. W. Tyler, Phys. Rev. 105, 84
(1957), and references therein; J. A. Burton, Physica 20, 845
(1954); J. A. Armstrong et al. , Bull. Am. Phys. Soc. Ser. II, 2,
265 (1957).

'W. Shockley and J. T. Last, Phys. Rev. 107, 392 (1957);
P. T. Landsberg, Proc. Phys. Soc. (London) B69, 1056 (1956);
B.H. Champness, Proc. Phys. Soc. (London) B69, 1335 (1956);
H. Brooks in Advances in Electronics and Electron Physics, edited
by L. Marton (Academic Press, Inc. , New York, 1955), Vol. 1,
p. 127.

'T. Landsberg, Proc. Phys. Soc B70, 282 (19.57). This author
considered the case of very small deviation from the thermal
equilibrium condition so that a quasi-Fermi level (or steady-state
Fermi level) can be used to describe the charge distribution of the

-laws.

conductors with one type of multiple-charge-condition
Qaws. The complexity of this problem is simpli6ed by
the use of two diagrams: the charge-distribution dia-
gram (the Rtv diagram) and the recombination-rate
diagram (the Rtr diagram). Through these diagrams,
the most populated charge states of the Qaws and most
important charge states of the Qaws which provide the
major part of the carrier recombination and generation
traffic can be visualized easily under any injection con-
ditions or carrier densities rt and p.

2. DEFINITIONS AND DERIVATION OF
EQUILIBRIUM CONDITIONS

The treatment required is essentially similar to that
given by Shockley and Read for a single-level center,
the essential difference being that sets of values replace
single values. For example, in place of a single capture
cross section (c„)for an electron in the conduction band
(as introduced in S-R), there are a set

c(n, r), c(rt, r+1), —
, c(n,s), — , c(tt, t), (2.1)

$~$+1 rtlV, c(rt,s). (2.2)

Rate of electron emission by Qaws initially in charge
condition s+1,

N,+re(rt, s+1). (2.3)

where —r represents the most positive charge condition
considered for the center, corresponding to net charge
+r times the absolute value of the electronic charge,
and +t is similarly the most negative condition. Each
electron-capture cross section involves a transition of
plus unity increase of s in the sequence and is associated
with an electron-emission probability, denoted by
e(rt, s+1). We shall use the following notation (see
Table I for definitions):

Rate of electron capture by Qaws initially in charge
condition s,
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c(n,s)

c(p,s)

e(n, s)

e(p, s)

tl
t'ai

e ($+-',)
p
p(s+s)

p*($+ )

E
E(s+-',)

E*($+k)
E„(s+i)
Ena

Ena

ZU($)

S($+-'„F,)

U (~, $+-,')

U (p, $+-,')

r (p,s)

TABLE I. List of symbols.

average capture probability of electron by Qaw in
charge condition $
average capture probability of hole by Qaw in
charge condition $
average emission probability of electron by Qaw in
charge condition $
average emission probability of hole by Qaw in
charge condition $
electron density in the conduction band
equilibrium electron or hole density in an intrinsic
specimen
density of electron in the conduction band when the
Fermi level falls at E($+-,')
density of electron in the conduction band when the
Fermi level falls at E*(s+',)-
see Eq. (7.2a)
hole density in the valence band
density of hole in the valence band when the Fermi
level falls at E(s+-,')
density of hole in the valence band when the Fermi
level falls at E*($+~)
index for the $th charge state of the Qaw with $
electronic charges
intrinsic Fermi level
energy associated with the transitions of Qaws be-
tween charge conditions s and s+1
see Eq. (3.9)
see Eq. (7.2)
the nth donor energy level defined by Shockley and
Last, or E(—n+-', )
the nth acceptor energy level defined by Shockley
and Last, or E(n —

&)
Fermi level
quasi-Fermi level for holes
quasi-Fermi level for electrons
Fermi level at the surface
density of Qaw with energy E($+&)
density of Qaw in charge state $
ratio. of Qaw densities in the two adjacent charge
conditions $ and $+1
ratio of the steady-state recombination rates in-
volving energies E(s+~~) and E(s—vs)

surface recombination velocity due to transitions
$+~$+ 1
an activation energy associated with the second
acceptor trapping level
net electron capture rate for transition of Qaw from
charge $ to $+1
net hole capture rate for transition of Qaw from
charge condition $+1 to $
the net steady-state electron or hole capture rate
added electron or hole density
average electron lifetime for unit Qaw density
= 1/c(l, s)
average hole lifetime for unit flaw density = 1/c (p,s)

iV,+,/X, = nc(n, s)/e(n, s+1), .

X,+t/X, = e(p, s)/pc(p, s+1).
(2.8)

(2.9)

The equality of the two right-hand terms of (2.8) and
(2.9) leads to the relationship mentioned above be-
tween the emission and capture constants:

n;2c(n, s)c(p, s+1)= e(n, s+1)e(p,s), (2.10)

where the mass-action law np=n, s has been used.
The first derived constant we shall introduce is an

energy level E(s+2) which is identical with the energy
levels introduced in describing the equilibrium statistics
of Aaws in the Shockley-Last paper. ' The factor —,

' in
the index for the energy level is used in order to empha-
size that the energy is associated with the transitions
between charge conditions s and s+1. The equation
for E(s+-,') is

important, such as the capture of one electron being
enchanced by the presence of another electron or hole
to carry off energy (Auger process).

From the foregoing it is evident that transitions be-
tween charge conditions s and s+1 are characterized
by the four emission-capture constants: c(n,s), e(n, s+1),
c(p, s+1), e(p,s). As we shall show below, there is one
relationship between these four constants and the in-
trinsic carrier density n, so that three constants suffice
to describe the transition. The exact choice of which
three are most convenient depends upon the application
being made of the model. Certain derived quantities
based on the four emission-capture constants and n;
prove to be particularly convenient for some applica-
tions. We shall give the equations for these derived
quantities in this section.

Net electron capture (s ~ s+1):
U(n, s+-', ) =nX,c(n,s) —Ã,~re(n, s+1), (2.6)

Net hole capture (s+1 —+ s):

U(p, s+-,') =PPtt, +tc(p, s+1) 1V,e(p,s). (—2.7)

The principle of detailed balance requires that U(n, s+-,')
and U(P, s+-', ) each vanish under thermal-equilibrium
conditions so that

Similarly, the rates for transitions involving holes are
written as

s~s+1
s+1-+ s

X,e(p, s), (2 4)

P&+tc(p s+1) (2 3)

The assumptions on the basis of which rate expres-
sions like (2.1) to (2.5) may be expected to be valid are:

(1) The electron and hole gases are nondegenerate
and are in thermal equilibrium Lsee S-R, Eq. (3.1)).

(2) The relaxation time of a flaw, after it has under-
gone a change in charge, is short compared to the
average time between changes of charge.

(3) Processes involving three imperfections are un-

E(s+r2) =E;+kT int e(n,—s+1)/n, c(n,s))
=Ec+kT ln[n;c(p, s+1)/e(p, s)), (2.11)

where E; is the intrinsic energy level such that when
the Fermi level P equals E; then n and p are each
equal to n;.

The notation involving s, s+1 and s+at forms a
consistent scheme in the following sense: A constant
describing a transition is identified by the initial charge
condition. In each such case the final charge condition
is obvious; for example, c(n, s+1) clearly concerns a
transition from s+1 to s+2. A quantity associated
with the transition between two conditions but not
specifscally with either directiort of transition is repre-
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sented by the average value of the charge; i.e., E(s+2)
corresponds to average of s and s+1.

In terms of E(s+i, ) two carrier densities are intro-
duced in analogy with ni and pi of S-R. These are the
densities obtained by setting F equal to E(s+—,) in
the expression for electron density under equilibrium
conditions. When these densities are present, equal
numbers of flaws are in conditions s and s+1.

n (s+-', )= n; exp[(F —E~)/kT]
=n; exp{[E(s+-',) —E;]/k T)
= e(n, s+1)/c(n, s), (2.12)

p(s+-', ) =n; exp[(E,—F)/kT)
= n; exp{[E;—E(s+i2))/kT)
=e(p s)/c(p s+1) (2 13)

In terms of E(s+2), n(s+~~) and p(s+2) one readily
obtains from (2.11) and (2.12):

N,+,/N, =n/n (s+ ,') =p (s—+,')/p—
=exp{[F—E(s+-,')7/k2'). (2.14)

This equation is identical with that defined in S-I. for
equilibrium statistics and thus shows that E(s+2) is
identical with the energy level defined in terms of
state-sums in that reference. '

For completeness in this section we shall introduce
three other derived constants:

the distribution

Ã „, . , 2V„,Sg g, Ãg, (3.1)

does not vary in time. Hence the net rate of transitions
to the condition t must vanish so that the efFect of
c(n, t 1) —and e(p, t 1)—must be exactly balanced by
transitions back due to e(n, t) and c(p, t) Sim. ilarly, since
there is no net departure of Qaws from condition t—1

to condition t, there can be no net arrival of Qaws to
condition t—1 from condition t—2. Thus, in general
there must be balance between transitions in the two
directions between any two conditions s and s+1.

This steady-state balance requirement is equivalent
to the principle of conservation of electrical charge
since it says that the Qaw does not accumulate any net
charge in the transitions between s and s+1.

The net rate of recombination may be calculated
either from the net rate of electron capture or the net
rate of hole capture. That the equality of these two net
rates for any transition s —+ s+1 and s+1 —+ s is, in
fact, a consequence of the steady-state condition just
described can be seen as follows:

0= (over-all net rate of transitions s +s+1)-
= (net excess of electron capture over

electron emission) (3.2)
—(net excess of hole capture over hole emission).

n*(s+-,') = e(p, s)/c(n, s),

p*(s+-,') =e(n, s+1)/c(p, s+1),
(2.15)

(2.16)

Thus, the recombination rate due to transitions between
s and s+1 may be written in keeping with (2.6) and
(2.7) as

E*(s+-,') =2E;—E(s+-', )
kT ln[c(n, s)/c(—p, s+1)j. (2.17)

The two starred densities correspond to equilibrium
with F lying at E*(s+i~).The usefulness of these quan-
tities will be made clear in the next section.

As discussed above, a single transiton is described by
three independent parameters which may be chosen in
a wide variety of ways from the larger set of ten
quantities introduced so far:

E(s+l), E*(s+-'),n(s+l), p(+-'), n*(+l) p*( +l);
e(n, s+1), c(n,s), e(p, s), c(p, s+1). (2.18)

The first set of six quantities are related to ratios
(homogeneous functions of order zero) of the capture
and emission constants. In the next section we shall
find that the steady-state distribution is determined by
a two-parameter system chosen from the first set of
six quantities. One additional constant, proportional to
the rate and chosen from the second set of four con-
stants, must be introduced to calculate the rate of
recombination or generation.

3. STEADY-STATE CONDITIONS

In a nonequilibrium steady-state situation, in which
net recombination or net generation of carriers occurs,

U(s+-', ) =N,nc(n, s) N, ie(n—, s+1)
=N,+ipc(p, s+1)—N, e(p,s). (3.3)

In order to evaluate U(s+-', ), which is a function
of the steady-state nonequilibrium densities n and p,
the values of X, and X,+~ must be determined.

We shall determine first the ratio N,+i/N, by equat-
ing the total rates of transition s —+s+1 to that of
s+1 —+s. The total transition rate from s to s+1,
resulting from electron capture and hole emission for
the S, Qaws in charge condition s may be written as

Total s —& s+1: N, [nc(n, s)+e(p, s)j
=N, c(n,s)[n+n*(s+ ,')j, —

where the density n*(s+-,') is given by (2.15) which we
repeat here for convenience

n*(s+2) = e(p, s)/c(n, s). (3.5)

Thus n*(s+—', ) is the density at which electron cap-
ture produces a contribution to sos+1 transitions
just equal to that of hole emission. It is evident that
electrons in the conduction band have a relatively im-
portant effect on transitions sos+1 only if n is
greater n*(s+ —',).

Similarly, the total rate of transitions from s+1 to s
may be written as

Total s+1~ s=N,+ic(p, s+1)[p+p*(s+-,')j, (3.6)
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where p*(s+2) is given by (2.16) which we also repeat
for convenience:

p*(s+-') = e(n, s+1)/c(p, s+1). (3.'7)

The density p*(s+—',) makes hole capture equal electron
emission for s+1 —+ s transitions.

From the relationship (2.10) between the four
emission-capture constants, it follows that

so the starred densities correspond to an equilibrium
situation.

Since n*(s+2) and p*(s+—',) satisfy the mass-action
law for np, they define an energy level. This level is

E*(s+,') =2E,-E(s+—', ) kT I-n[—c(n,s)/c(p, s+1)].
=E(s+ ', ) kT l—n[—e(e, s+1)/e(p, s)] .(3.9)

If the two capture cross sections are equal, an espe-
cially simple condition prevails: the energy level
E( +s-)iis obtained by reflecting E(s+-', ) through E;.

If the emission constants are equal, E*(s+-,') a,nd
E(s+l2) are equal. The relationship of the two E's is
further discussed in Sec. 6.

That a pair of starred densities corresponding to
thermal equilibrium must, in general, exist may be
seen by the following argument. If we imagine the
Fermi level to be gradually raised from the valence
band to the conduction band, the rate of electron cap-
ture for a given transition sos+1 will continually
increase compared to hole emission producing the same
transition. When e=e*(s+2) the two rates become
equal. By the principle of detailed balance, each of
these rates is equal respectively to the corresponding
reverse process and, therefore, the two reverse rates are
also equal. The reverse rates are, of course, s+1 —+ s
by electron emission and s+1 —+ s by hole capture. The
value p*(s+—',), which makes these rates equal, must
therefore satisfy the mass action law when multiplied
by e*(s+2). Thus when F=E*(s+2) all four of the
transition processes proceed at identical rates.

The physical argument of the preceding paragraph
also leads at once to the conclusion that when e
=e*(s+-,') and p= p*(s+-,') the ratio N,+l/1V, must be
the inverse of the emission ratio, i.e., the ratio must be
e(n, s+1)/e(p, s) so as to have the two emission rates
balance. Thisratiomayalsobewrittenasc(e s)e*(s+—,')/
c(p, s+1)p*(s+2). It is helpful to have this relationship
in. mind in considering the meaning of the complete
expression for the steady-state ratio of 1V,+l/1V, .

Equating the two total ra, tes of transition (3.4) and
(3.6) leads to the ratio, denoted by R&(s+~, n,p), for
N,+l/N, :
R~(s+-'„p,n) =1V,+i/tV, =c—(e,s) [n+n*{s+',)]/-

c(p s+1)[p+p*(s+l)] (31o)

For a given nonequilibrium situation, this ratio may
be considered a, known function of n and p, the non-

np=aeP, (3.12)

then the ratio of the two Rz's given by (3.10) can be
reduced to

R~(s+-,', p,n)/R~(s ——',, p,e)

[e+e*(s+-,')][ae+e*(s——,')]
[an+n*(s+-,')][e+n*(s——',)]
)&exp([E(s—~) —E(s+~)]/kT}. (3.13)

It is evident that the fraction multiplying the exp-
ponential will be independent of e only if either a
equals unity (the equilibrium case) or e*(s+-,') and
e*(s—2) are equal (an accidental situation). Thus, it
follows that no eQ'ective value Ii~ can in general be
found unless equilibrium prevails so that a is unity.

If we assume that the values of the E~ factors are
known and the total number of flaws is Xf, then the
distribution E, can be formally expressed as follows:

N r+l RN( «+2—q eqfP)N r f rylN rr——— —

N, =Rii (s——',, n,p)¹i=f,N „—
CV, =R~(t——,', n,P)N, l=—f,N r.

(3.14)

The factors f„defined above, are functions of n and p
and are successive products of the form

f,—=R~(s——,', n, p)
XRy(s —1——,', e,p) . . Ry( «+ '„e,p) (3.15). —-

In terms of the f„ the value N, is

and
N „=Ns/(1++ f,),

lV, =Nif, l(1++ f,),

(3.16)

(3.17)

where the sum ranges from —«+1 up to t inclusive.
(3.17) expresses N, . as a function of 1Vs, n, p with the
capture and emission constants as parameters in the

equilibrium carrier densities. As discussed in connec-
tion with (2.20), the steady-state distribution function
(3.10) has two parameters dependent on the flaw;
these two may be taken' as c(n,s)/c(p, s+1) and
e*(s+-',) with p*(s+i~) given by n;2/n*(s+ —',). In Sec.
4 [see (4.21)] the ratio of capture constants is ex-
pressed in terms of n(s+-', ) and n*(s+—',) and these
latter two are used as the two parameters.

The distribution represented by the E& values cannot
be represented by an effective Fermi level for the flaws.
This conclusion is reached by noting that if an effective
Fermi level Fy does exist, then the ratio of any two
successive E~ s is independent of F~ and is given ac-
cording to (2.14) by

R~(s+-', , p,n)/R~(s ——',, p,e)
=exp([E(s ——',)—E(s+-,')]/kT}. (3.11)

If under nonequilibrium conditions
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relationship. In the next section we shall consider
graphically possible forms for the relationship.

For small disturbances from equilibrium, the E~'s
have the values given in the S-L treatment of the equi-
librium conditions. As shown in that treatment, under
most conditions all of the Qaws are substantially in one
condition of charge. As we shall show below, under
this circumstance, the Qaws act as two sets of S-R
recombination centers.

The net steady-state rate of electron or hole capture
in the transitions between s and s+1 can be expressed
in terms of known functions of n and p in various ways.
From (3.3), (3.5), (3.7), (3.8), and (3.10), we find

~(s+s)
=N, (pn ns)c-(n, s)/[@+p'(s+-,')]
=N.+i(Pn ns)c—(P, s+1)/Ln+n*(s+ rs)]. (3.18)

This net rate can be written as

U(s+ —',) = (N,+N,+i)

pn n"— (3.19)
X

r(n») Lp+ p(s+ s)]+ r(p s+ 1)Ln+n(s+ s)]

p-cbrninqted

n (s+~) p(sw$

)(flsi$)

r-dor [~ted

where the mean life quantities 7 are de6ned as

r (n, s)= 1/c (n,s), —

r(p, s+1)=—1/c(p, s+1).
(3.20)

(3.21)

The interpretation of Eq. (3.19) is as follows: The
fraction is simply the S-R formula for the net recom-
bination for the case of unit density of Qaws char-
acterized by capture cross sections c(n, s) for electrons
and c(p, s+1) for holes. The mean life of an electron
in the heavily acceptor doped p-type material is r(n, s)
for unit density of Qaws. The number of Qaws which
act like such centers is N.+N,+i. This reduces to N,
if the population of all conditions save E, and X,+~ is
negligible.

If one particular condition of the Qaw predominates,
so that

(3.22)

then the Qaws act like one set of Xy centers of the S-R
type with constant c(n,s) etc. , plus another set of Ny
centers of the S-R type with constants c(n, s —1) etc.

The relative importance of the net steady-state
recombinations involving the two adjacent energy
levels E(s——',) and E(s+ s) can be studied by consider-
ing the ratio of the recombination rates, which can
readily be obtained from Eq. (3.18):

R~(s) =~(s+-:)/&(s--:)

c(n,s) n+n*(s ——,')
(3.23)

c(p,s) p+p*(s+-,')

Although this expressioi. is formally similar to (3.10),
it is a three-parameter rather than a two-parameter

Fio. 1.Principle features of the Rir-diagram: (a) The line R~= 1;
(b) the Rir=constant family.

Rri(s) =e(p, s)/e(n, s),

(b) Flooded: n*(s—-', )«n=P))P*(s+-', ),

RU(s) =c(n,s)/c(p, s).

(3.24)

(3.25)

For the denuded case, the relative importance is
determined by the emission processes from Qaws in the
charge condition s. The Qooded case, on the other hand,
depends on the rate of entrance by capture by Qaws in
the charge condition s. A more detailed discussion is
given in a subsequent section.

4. CHARGE DISTRIBUTION DIAGRAM,
R~ DIAGRAM

In order to visualize how the distribution of the Qaws

over the possible conditions of charge depends upon e
and p for equilibrium and nonequilibrium conditions,
it is helpful to represent the dependence of R~ upon e
and p on a diagram. Figure 1 shows a typical case, the
axes being inn and lnp with intrinsic point at the
center of the diagram. In order to understand Fig. 1 in
detail, we note that the ratio of capture constants in

(3.10) for Riy may be re-expressed using (2.12), (2.13),
(2.15), and (2.16) as follows:

c(n,s)/c(p, s+1)
=l p(+l)p*(+l)]'/I. (+l) *(+l)]f. (4.1)

expression because n*(s—s) and p*(s+s) do not satisfy
the mass-action law. We shall brieQy consider two
limiting cases:

(a) Denuded: n=p=0,
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n= n; exp[(F —E~)/kT7,

p= n; exp[(E„—F„)/kT7,

where, for thermal equilibrium

(45)

(4.6)

(4.7)

The characteristics of the four limiting regions
bounded by dashed lines on Fig. 1(b) are as follows:

Denuded n«n*(s+.—-,'), p«p*(s+-,'). The steady
state is governed by emission with

R~(s+-', )= e(p, s)/e(n, s+1). (4.8)

The geometric mean densities [n(s+ —,')n*(s+-,')7'* ap-
pear on Fig. 1 midway between n(s+2), P(s+-,') and
n*(s+ 2), p*(s+ 2)

In terms of these expressions R~(s+2', p, n) can be
expressed in terms of the four parameters n, p, n*, p*:

p(s+-,')p*(s+-,') * n+n*(s+-,')
n(s+-', )n*(s+ 2)- p+ p*(s+-', )

As discussed following (3.10), only two parameters are
independent because of the mass-action law. In order
to see that Rv=1 at the point. n(s+-,'), p(s+-,') it is

helpful to note that

p (s+-,')+p*(s+-', )
=n;2[n(s+-', )+n*('s+-,')7/n (s+-,')n*(s+-', ). (4.3)

The remaining features of Fig. 1 are largely self-

explanatory. The rounding of the corners of lines of
constant R~, which occur over the regions where

~ln[n/n*(s+ —',)7~ &2 and ~ln[p/p*(s+2)7~ &2, (4.4)

is not represented.
Features to be noted in Fig. 1(a) are the fact that the

three points with index (s+2) lie on the thermal equi-
librium line with the geometric mean point halfway
between n(s+-,'), p(s+-', ) and n*(s+-', ), p*(s+-', ). Where
n and p are large, the ratio R~ is proportional to n/p
so that lines of constant R~ are parallel to n= p.

Figure 1(b) illustrates the general features of the
lines of constant R~.. The lines are spaced at equal
intervals of lnR~. It should be noted that the values of
R~ on the equilibrium line are independent fo the value
selected for n" (s+ ,'), p*(s+—~~)and depend only on the
distance from the Rq = 1 point at n(s+-,'), p(s+-,') de-

termined by E(s+-,) as discussed in connection with

(2.14). If we imagine that n*(s+2), p*(s+~~) slides

along the np=np line while n(s+2), p(s+-', ) remains

fixed, then each R~= constant line rotates through 90'
as n*(s+2), p*(s+-', ) passes it but does not change its
value.

In order to interpret certain portions of Fig. 1(b),
we shall introduce the quasi-Fermi levels (q.f.l. or
imrefs) F and F~. In terms of these, the intrinsic
density e; and the intrinsic level E;, the hole and
electron densities become

R~(s+2) = c(n,s)n/c(p, s+1)p,

so that the two rates of capture are equal:

iY,+ic(p, s+1)p= N, c(n,s)n.

(4.9)

(4.10)

This is satisfied by the above value of R&.
n domina-ted n)&n.*—(s+ '.), p«-p" (s+-,'). For this

case, electron capture nc(n, s) dominates hole emission

e(p, s) for the transitions s —+s+1 and the ratio of
importance is nc(n, s)/e(p, s) =n/n*(s+-,'). Similarly,
electron emission dominates hole capture in the ratio
p*(s+-', ),/p. Thus the steady state results from balance
between the electron processes alone and R~ can be
written as

R~ (s+ 2) =c(n,s)n/c(p, s+1)p*(s+-,')
=c(n,s)n/e(n, s+1) (4.11)

=n/n(s+-, ') = exp{ [F„—E(s+-', )7/kT}.

Comparison with Eq. (2.14) shows that the ratio of
population N,+,/V, is that expected for equilibrium
with the electron quasi-Fermi level. In other words, in
the e-dominated region, the transition is in equilibrium
with the electrons.

p dominat-ed n«n*.—(s+ ,'), p))p-*(s+ —', ). This case
is similar to the e-dominated case. The transition gets
into equilibrium with the holes and

R~(s+k) =p(s+5)/p
=exp{[F„—E(s+-,')7/k T}. (4.12)

Small signal n=n, -+An, p.—=p,+8p, and 8n, 8p«n„
p, where the subscript e stands for equilibrium. When
the electron and hole densities are very near the equi-
librium values, the steady-state distribution approaches
the thermal equilibrium distribution given by

R~(s+ ,') = exp{[F—E(s+-,')7/-kT}. (4.13)

This situation corresponds to the region near the line
np=nP in Fig. 1.

As shown in connection with Eq. (3.10), the R~ dia-
gram for a given transition depends on two parameters.
On diagrams like Fig. 1, these parameters may be
chosen as n(s+ —,') and n*(s+ —,') or the corresponding
hole densities related to them by the mass-action law.
Geometrically, it suffices to draw only the R~=1 line;
the intersection with np=nP then gives n(s+-', ) and
the bend point gives respectively p*(s+2) or n*(s+q)
if n(s+-,') is, respectively, greater or less than n*(s+—,').
This geometrical approach is presented in Fig. 2.

Figure 2 illustrates a set of possible RN=1 lines for
the case of a transition with an energy E(s+—', ) greater

This ratio also holds exactly at all points on the line
having the ratio n: p equal to n*(s+-', ):p*(s+—,'). At
the point n*(s+2), p*(s+-,') electron capture equals
hole emission and electron emission equals hole capture.
[See paragraphs following Eq. (3.9).7

Flooded —
n. )&n*(s+,'), -p))p*(s+-,'). The steady

state is governed by capture and R& reduces to
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than E;. Eight possible cases corresponding to di6erent
values of n*(s+i~) or alternatively to c(n,s)/c(p, s+1)
as related by (4.1) are shown. For case (a), the four
limiting regions are shown. Similar diagrams for the
other cases have been omitted to simplify the 6gure.

In terms of the rat~o c(n,s)/c(p, s+1), the various
lines have a fairly simple interpretation:

Case (b): for this case R~=1 for flooding with n= p,
so that c(n,s) and c(p, s+1) are equal. This leads to
perfect reRection of n(s+-', ), p(s+-', ) into n*(s+i~),
p*(s+—', ) through n, , p, as discussed in connection
with Eq. (3.9).

Case (a) corresponds to c(n,s)) c(p, s+1) as can be
seen from the fact that R&=1 only when p)n in the
Qooded condition. It is probable that an ordinary donor
level (a column-five substitutional impurity) is of this
type. Such a level is attractive with charge plus one for
electron capture but neutral for hole capture. Further-
more, the energy to be dissipated is smaller for electron
capture because E(s+-', ) lies above L', and is near to
E, than E.. Hence, the value of c(n, s) is probably much
larger than c(p, s+1) for such levels.

Cases (c), (d), and (e) correspond to hole capture
more easily than electron capture. These cases, as we
shall discuss in a later section may correspond to a
high-lying acceptor level with a multiple negative
charge. For such a case, c(n,s) may be small due to
Coulomb repulsion.

Case (f) represents the improbable situation in which,
when F=E(s+,') each of the fou—r transitions proceeds
at exactly the same rate as the others. It corresponds to

n(s+-', )c(n,s) =p(s+-', )c(p, s+1)
= e(p,s) =e(n, s+1), (4.14)

so that the ratio of capture cross sections offsets the
ratio of carrier densities. The line f thus cuts through
the center of the denuded region as shown. All points
in the denuded region correspond to E& values very
nearly equal to unity.

Cases (g) and (h) are hole-trapping levels. (See Sec.
6 for fuller discussion. ) The R"=1 line lies in the
p-dominated region. This is a consequence of the fact

) varichle
a,h,c,- ---.+

denu

FIG. 2. Possible R~= j. lines for a transition with E(s+~)&E;.

c(n,s)

c(nA
c(p,s)

Fzo. 3. Principle features of the Ep-diagram, the Rfj=constant
family, E(s+ ', ))E;; E(-s—-', ) &Z;.

that even when F=E(s+-', ) and p(s+ —',)«n(s+ —',), the
large ratio of c(p, s+1)/c(n, s) causes the transition to
be in equilibrium with holes.

5. RECOMBINATION RATE DIAGRAM:
RU DIAGRAM

The relative importance of the net steady-state re-
combination rate of two adjacent energy levels can be
studied by comparing the recombination rates as indi-
cated at the end of Sec. 3. This ratio Rtj can also be
represented graphically, but the situation is more
complicated than E& because the family of lines are
specified by three rather than two parameters.

In the graphical representation of E~, the distribu-
tion of charge, such as that shown in Fig. 1, two points,
n(s+2) and n*(s+-', ), uniquely determine RN at any
given densities p and n. However, to consider RU(s, p,n)
= U(s+-', )/U(s —-', ) of (3.23) we need to know n*(s+-', ),
n*(s—-,') and the ratio c(n,s)/c(p, s). The recombination
rate ratio,

c(n,s) n+n*(s ,')—-
RU(s, p,n) =

c(p,s) p+p*(s+-,')
is shown in Fig. 3 as a family of RU = constant lines,
with equal lnR p spacings. The line E&= 1 is not shown
explicitly but can be obtained easily for a given c(n,s) /
c(p,s). The rounding of the corners near the regions
inLn/n'(s —2))&2 or inLp/p*(s+i2)]&2 is also not
shown.

Several important features of this diagram shall be
discussed. The upper level F(s+-', ) or the transitions
sos+1 provides the main contribution to the re-
combination in the e-dominated region and in the lower
right of the flooded region if c(n,s)/c(p, s) is nearly
unity. The lower level Z(s —-,') becomes important in
the p-dominated region and the upper left of the
flooded region.

Now suppose that the s condition of the Qaw has a
negative electronic charge diGerent from zero. Then
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&'( +2) ~«l'able
a,b,c,d,ef

&p= n2
Olato f

O4c to f

p,s)

&c(p,s)

situation for line (5)c is also not likely for which
n*(s+-,') =n*(s—-', ).

The line (1) in Fig. 4 corresponds to a situation where
the steady-state recombination comes mainly from the
transitions between states s and s+1. The lower level
or the s—1 charge condition becomes important only
for highly e-type semiconductors; for ordinary semi-
conductors, it is an electron-trapping state, or an
electron recombination center filled with holes so that
it is rather inactive.

A similar situation exists for line (6)b in Fig. 4 for
holes.

b

ge

O4

O6
C

Fro. 4. Possible Rc = 1 lines for a given n*(s——,'), variable p*(s+—', )
and c(l,s)/c(P, s).

due to Coulomb repulsion and attraction c(n,s)/c(p, s)
would be small compared with unity. Under this situa-
tion the 8~=1 line would be a line with the numeral
label higher than 5 in Fig. 3. Thus, unless the semi-
conductor is sufficiently e-type, the lower level or the
transition s—1~s would be the dominant one.

A second general feature of the RU diagram is that,
under the extreme flooded condition, the line n=p
coincides with the line of Ro-= c(n, s)/c(p, s). This result
states that the relative importance of the two levels
under the Qooded condition is equal to the ratio of the
capture probabilities of the Qaws in the s charge
condition.

In the denuded region expression (5.1) reduces to

RU(s, p,n) =e(p, s)/e(n, s), (3 2)

so that the relative importance of the two levels is
equal to the ratio of emission probabili. ties in the s
charge condition.

The effect of different values of p*(s+-,') and the
ratio c(n,s)/c(p, s) with fixed n*(s—-') is shown in
Fig. 4. Six possible groups of 8~=1 lines are shown.
The dependence of the Au= 1 on the ratio c(n,s)/c(p, s)
is similar to that shown in Fig. 3 in the Qooded region.
The position of p*(s+-,') determines whether the EU 1——
line becomes horizontal or vertical in the small densities
region.

The situation for line (3)b of Fig. 4 is extremely un-

likely. This represents a completely symmetrical case
for which n*(s—s) =p*(s+ 2) and c(n,s) = c(p,s). The

E;&F&E*(sy-',). (6 2)

Inequality (6.1) requires that most of the flaws are in
charge condition s under 'equilibrium conditions. In-
equality (6.2) requires that the semiconductor be n-type
and furthermore that it be in a p-dominated condition
so far as the transition so s+1 is concerned. These
conditions clearly represent a transition which acts as
a trap for minority carriers, holes, in an e-type
semiconductor.

For conditions in which the quasi-Fermi level Ii„ for
holes is several kT above E(s+-,'), most of the flaws
will be in charge condition s+1 and in accordance with
(4.12) the number in charge condition s will be
approximately

N, =Zap/p(s+2) =Kg expLE(s+-,') —F„j/kT, (6.3)

provided p&p(s+-', ) or equivalently F,)E(s+-',). For
greater hole densities than p(s+-,'), the traps will be
filled in the sense that the more negative condition s+1
will be eliminated and S,. will be practically equal to
Ã, . This corresponds to each Qaw trapping one plus
charge or one hole. For still larger values of p, the
condition s—1 may need to be considered.

The criterion that the traps be highly effective in
trapping holes is that a majority of the holes should be
in the traps so that X,)p. This condition can be ex-
pressed in terms of an energy level E'(s+ 2) defined by'

E'(s+-', ) =E;—1sT 1n(Xsln, ). (6.4)

When F falls on E'(s+-,'), p becomes equal to )VS.
If c(n,s) were zero, the trap would be a perfect trap

in the sense that it would play no role in electron-hole
recombination. Small values of c(n,s) or large values of
c(p, s+1)/c(n, s) lead to condition (6.2) which is re-

"See reference t, Eq. (A.tt).

6. HYPOTHETICAL FOUR-LEVEL FLAW WITH
HOLE- TRAPPING TRANSITIONS

In terms of E(s+-,') and E*(s+—',) relatively simple
criteria can be given for the condition in which a
transition s —+s+1 may act as a trap for minority
carriers. Consider the situation

E(s+-,') &F&E(s+2), (6.1)



ELECTRON —HOLE RECOMB I NATION STATI STI CS

s= —1, 0, 1, 2, 3. (6.6)

In the notation of S-L as shown on Fig. 5, the energy
levels are

E(—s) = Eie E(s)=Ei.
E(1-',)=E... E(2-', ) =E,. (6.7)

The energy level scheme resembles that of Au in
germanium, for example.

A point which we wish to illustrate in this section is
that when the Raw becomes multiply charged, the
starred value E*(s—-', ) obtained from E(s—-', ) may lie
on the same side of E; as does E(s—s) and indeed may
lie farther from E; than does 8,. Under such circum-
stances the second acceptor state is in eBect a trap for
holes and the third acceptor state might well be a very-
long-time-constant deep trap.

In the case of a localized Qaw, such as a gold atom,
the neutral condition may well be one in which there are
a number of relatively deep-lying unoccupied energy
levels. Because of the shielding of the dielectric con-
stant, the "electron affinity" may well be positive even
for the second or third electron added. However, when

N3
E(—', )

N2

E(-',)

N)

E(&) Eia

o

N
E(-')

-1
E)d

/

I"Ig. 5. Energy level scheme for a many-le@pl Qawe

quired to make the transition be dominated by holes.
The ratio of c(p, s+1)/c(rt, s) needed to have (6.2)
apply is found from (3.9) to be given by

kT lnfc(p, s+1)/c(n, s))
=E(s+-,')+E*(s+-,') —2E,. (6.5)

Thus, for a transition deeper than half the energy
gap for hole capture, so that E(s+ ',))E;,-large ratios
of c(p, s+1)/c(rt, s) are required to fulfill condition
(6.1) with E*(s+s))E(s+s). Examples of this situa-
tion are shown by lines (g) and (h) of Fig. 2 correspond-
ing to cases with rt,*(s+is))e,(s+is) and thus, to
E*(s+-',))E(s+-',). For ratios of c(p, s+1)/c(N, s) near
unity, trapping levels for holes can occur only if
E(s+is) is substantially less than E; so that E*(s+is)
can lie above Ii for an e-type semiconductor.

Similar considerations apply for electron trapping in
a p-type semiconductor.

We shall illustrate how trapping levels may occur by
considering a hypothetical model of a four-level flow

having five conditions of charge with

c(n,l)= c(~,2ci)

Ey», Co U lomb
wel [

FIG. 6. The capture-emission situation for a second acceptor
level showing the diGerent effects of Coulomb charge on electrons
and holes.

an electron is added to an already negatively charged
Qaw, it will be necessary to overcome a substantial elec-
trostatic repulsion. This situation is represented in Fig.
6.' The top curve shows the potential energy seen by
the second added electron which ends up bound to the
center with an effective energy denoted by E2 . On the
other hand, hole capture involving the same energy level
is represented by a potential energy corresponding to
charge of —2 on the Qaw. Thus, on a semiclassical
model, we see that c(p,2) for hole capture may be
larger than c(tt, 1) by a factor larger than the activation
energy factor exp (Us,/kT).

From (6.5) it is evident that the amount DEs, by
which E2 * lies above the reflected value 2E;—E2 cor-
responding to equal capture constants is given by

AEs, =kT inLc(p, 2)—Ic(rt, 1)))Us, . (6.8)

If the bound electron is several tenths of an electron
volt below E„ then its wave function will be closely
restricted to the neighborhood of the Qaw and thus will
be largely restricted inside of most of the Coulomb rise
of the potential U2, which may also be as large as
several tenths of an electron volt at one atomic diameter
from the center. Thus, AE2, may well be larger than
2(Es —E,) with the result that Es,* lies above Es,.
This situation is represeted in Fig. 7(c).

As a preliminary to considering high injection level
situations for the four-level Qaw, the thermal equi-
librium situation is reviewed in Fig. 8. As has been shown
in S-L, the centers are largely in one condition unless
the fermi level falls on an energy level. In this special
case, the Qaws are half in each of the adjacent condi-
tions. The fraction of the flaws in a given condition fall
off exponentially as with slope 1/kT or 2/kT or 3/kT
on a logarithmic plot as shown in Fig. 8(a).

In Eq. (3.19) it was shown that the flaw acts as if it

' W. C. Dnnlap, Jr. , in Proceedings of the Conference on Photo
condnctivity, Atlantic City, November, 1954 (John Wiley and Sons,
Inc. , New York, 1956), p. 539.
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Fro. 7. Energy levels and
starred energy levels for a
Raw with four levels: (a)
first donor level; (b) first
acceptor level; (c) second
acceptor level and possible
hole trap; (d) third acceptor
level and possible very-long-
time-constant hole trap.

(c)

+la CVr, = 1Vp+Er. , (6.9b)

3Es.=1Vr,+1Vs„(6.9c)

3Es,=1Vs.+Ps.. (6.9d)

These numbers are represented in Fig. 8(b). Thus, in
general the Qaws mimic double their number of recom-
bination centers. The decay constant for small injected
carrier densities (the reciprocal of the lifetime) is
approximately equal to the sum of the decay constants

~la ba
F ~

(a)

E3a Ec

/

I/J
II

/

f

II
I

Vl

I
I

E-la 4aF~
(b)

FIG, 8. Occupany numbers and effective number of recom-
bination centers. (a) Occupancy numbers; (b) numbers of re-
combination centers.

were several sets of simple S-R recombination centers,
the number M, of centers with energies E(s+—,') being
given according to the following scheme:

Eld ~1d +1d++p (6.9a)

calculated by S-R summed over the two levels associ-
ated with the prevalent condition of the Raw.

The equations for any particular case may readily
be worked out on this basis.

In order to explain what may happen at large injec-
tion levels, Fig. 9 has been constructed to correspond
to the energy level scheme of Fig. 7. In Fig. 9(a) the
lines for E&= i are shown for these energy levels. Lines
E»d and E» are normal cases in which the distribution
in the two conditions adjoining the level E(s——,) is
controlled by the majority carriers when the Fermi level
falls on E(s——,'). The cases of Es and Es, are like Fig.
2(g) or (h) and correspond to a trap for minority car-
riers since the occupancy depends on minority carriers
when Ii falls on E2 or E3 .

The lines for Ii »~ and E»~ in the flooded region have
been drawn as if c(n, 1d)/c(p, O) were less than c(n,O)/
c(p, 1u). This may be reasonable if the difficulty of an
electron dissipating energy in falling from the conduc-
tion band to E&d makes c(n, 1d) substantially smaller
than the other capture cross sections involved. The
writers do not contend that this will inevitably be the
case and introduce it chiefly to illustrate a general situa-
tion for which the charge condition zero discussed in the
next paragraph does not exist in this region.

The new feature is shown in Fig. 9(a). Owing to the
crossing of the E»d and El, lines, there is a region where
condition s=o is unlikely to occur for any ratio of n
to P. In the region between the lines Er, and Erd, the
neutral condition is always less favored than either the
ia or id condition. The dashed line divides this region
shown in Fig. 9 into two regions of either the condition
id predominant or ia predominant. The crossing of E»d
and E», corresponds to equal densities of Aaws in the
three charge states 1d, 0, and 1a. The lines of Ep(s)
are not shown in Fig. 9 for the sake of clarity.

Figure 9(b) shows the variation ofnand pundercondi-
tions of injection, neglecting changes in chemical charge.
It indicates that the majority carrier density is un-
a6'ected until the minority carrier density approaches
the majority density. Thereafter, the line n=P is
followed.

It is evident that very complicate dependences of
recombination rate upon injected carrier density can
occur for a situation like Fig. 9. For example, if line L»
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of Fig. 9(b) is followed, the flaws, initially all in con-
dition 2u, transfer to condition 1c, and later to condition
id for the hypothetical case of gold in germanium shown
in Fig. 9(a). If the lifetimes associated with E2, are
relatively long compared to those of Ej, there will be
a rapid increase in recombination as I~ crosses E2,.
Such changes should be observable experimentally and
should furnish a basis for determining location of the
constant R~ lines and the RU lines on these diagrams.

Figure 10 shows another case of four-level Aaws for
which both an electron trapping state and a hole trap-
ping state are present. In Fig. 10(a) both the N, =&V,+~
and S,=E,+2 lines are shown. In general, the X,=S,+2
lines change direction twice. The special feature of this
case is evident in Fig. 10(a): In the denuded region the
neutral charge condition predominates and the charge
conditions —1 and +1 cannot be important for any
ratio of e to p in this region.

Figure 10(b) shows the Ro(s) =1 lines. The regions
are labeled by the dominating transitions such as
sos+1. The dashed-line boundary corresponds to
Rz(1)R&(0)=1 or equal transition traKc for —1~0
and 1~~2 transitions.

Special features of this diagram are: (1) In the region
of small p and n '. n;, the t—ransition 0~~1 cannot be
important for any ratio of e to p; (2) in the denuded
region the transition —1~0 predominates and (3) for

/
I
I
I
I

2
I
I

(b)

FIG. 10. A hypothetical case with both an electron and a hole
trapping state. (a} The lines for RN=1; (b} the lines for RU=1.

FIG. 9. A hypothetical four-level Raw. (a} The RN = 1 diagram;
(b} the effect of heavy injection upon I and p assuming negligible
changes in chemical and Raw charge densities compared to ma-
jority carrier densities,

nondegenerate p-type crystals the transition —1+~0
predominates.

From the discussion made for the case shown in
Fig. 10, it is evident that if an e+P junction is made in

. a semiconductor with this type of four-level Qaw, the
electrical characteristics, under either forward or re-
verse bias conditions can be predicted essentially by a
single-level, recombination generation center corre-
sponding to the transition —1~~0 and energy R(—~~).

7. DEPENDENCE OF LIFETIME OR SURFACE
RECOMBINATION VELOCITY UPON

FERMI LEVEL

The expression for recombination rate can be put into
a form which may be helpful in interpreting data on
1ifetime or surface recombination velocity. Equation
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(3.19) for the recombination rate U'(s+-,') may be
rewritten as follows

V(s+-,') =&V(s+-', )[e(e, s+1)e(p,s)]~
X{exp[(F„—F„)/kT]—1}
—:{exp[(E-(~+I)—F.)/kT]
+exp[(F„—E (s+-,'))/kT]

+2 cosh[(E(s+-', )—E (s+-', ))/kT]}. (7.1)

In this expression E (s+—',) is the energy corresponding
to the geometric mean of n(s+i2) and e*(s+—,') shown
on Fig. i. Its value is thus

E-(~+ l) = [E*(~+l)+E(~+-')]/2
=E+ (kT/2) ln[c(p, s+1)/c(e, s)]. (7.2)

The above expressions may be obtained by rewriting
(3.19) in terms of the mean densities corresponding to
E (s+2). These are given by

e (s+2) =e;2/p (s+-,') =n, [c(p, s+1)/c(e, s)]'. (7.2a)

In terms of them (3.19) becomes

f/(~+-') =~(+l)[e(, +1)~(p, )]*'

Xexp[(F„—F~)/kT —1]
ms g Ãsms g s n ms

+ ( +-')/ -( +l)) (7 3)

The last two fractions are reciprocals and are equal to
the hyperbolic cosine term in (7.1). Because the mean
density is a geometric mean of e and e* terms, the last
two terms can be replaced by ratios of e* to e equally
well.

Ke shall next consider the case of small deviations
from thermal equilibrium so that I'„and F„diGer little
from the equilibrium F. Under these conditions (7.1)
reduces to

U (&y-,') =SS(s+-,') [e(~, s+1)e(p,s)]'*(F.—F„)
—:2kT{cosh[(F —E„(s+-',))/kT]
+cosh[(E(s+-', )—E (s+—',))/kT]}. (7.4)

and the rate of recombination per unit area per unit
disturbance in carrier density is

S(s+-,', F,) =—3II,(s+-,') (pi,+ni) [e(e, s+1)e(p, s)/n; ]'*

—:2e;{cosh[(F,—E (s+2i))/kT]
+cosh[(E(s+-,') —E„(s+-,'))/kT]}, (7.7)

where 3E,(s+-,') is the density of flaws in charge condi-
tions s and s+1 per unit area of the surface and

S(s+~, F,) defined thus by (7.7) is the contribution of
transitions between s and s+1 to the surface recom-
bination velocity S.

Equation (7.7) transforms to equation (5) of Many
ef al. ' by noting that their qgo is E (s+-,') —E;.

As pointed out in connection with (7.5), as the po-
tential g. of the surface, taken as

gq) P (7.8)

varies, this gives a plateau for S(sj-,', F,) followed by
decreasing regions.

In previous treatments, the surface traps have been

with variations in surface potential. Their treatment is
more complete than earlier ones due to Brattain and
Bardeen'0 and to Stevenson and Keyes" who assume
that the capture cross sections are equal and hence
that E (s+-,')=E;. These treatments, of course, deal
with single-level flaws.

If we assume' that the quasi-Fermi levels at the
surface equal those in the interior and that the energy
bands bend going towards the surface so that at the
surface the Fermi level lies at Ii, above E;, and assume
further that in the bulk of the specimen the hole and
electron densities are increased by bp =8m above pb and
eg, then

nP(F„F„)/k—T= (pb+~v)~p, (7.6)

This expression is completely symmetrical in E*(s+—,')
and E(s+2) because cosh is an even function and differs

by equal magnitudes from E(s+-,') and E*(s+-,'). The
denominator is symmetrical about F=E„(s+-',) and is
substantially constant if F lies between E(s+-,') and
E*(s+~).Outside of that range its value is smaller than
the constant value by a factor

Pl
F E-)a E)d EIg E-)~F~

,fTI

Fs

exp( —
I » I/kT), (7.5)

where AF is the amount by which Ii falls outside the
constant range.

Expression (7.4), in a somewhat diferent form has
been used by Many, Harnik. , and Margoninski' to in-
terpret variations in surface recombination velocity

%a ~la
F Fs~

Fxo. 11.Possible variations of surface recombination velocity with
surface Fermi level for a two-level Qaw.

Many, Harnik, and Margoninski, in Semiconductor Surjcce ' W. H. Brattain and J. Bardeen, Bell System Tech. J. 82, 1
Physics, edited by R. H. Kingston (University of Pennsylvania (1953).
Press, Philadelphia, 1957), p. 85. "D. T. Stevenson and R. J. Keyes, Physica 20, 1041 (1954).
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considered as single-level traps. For such cases the total
S is simply the sum of the individual contributions. In
the case of Qaws, there is an additional possible varia-
tion because the effective number of traps may alter
as F, crosses one of the levels F.(s+ ',). —

If we assume a Qaw with three charge conditions and
two levels, say 8&& and F& for example, then if F'1d

(Er (&tq*, the contribution of M, (1d) to S starts to
drop when F, exceeds Fi, because of decreasing 3f,(1d)
and drops still faster when F, also exceeds E1~*, the
slope being 2/'k 1—on a lnS(1 d, F) verses F, plot.

In Fig. 11 several cases are illustrated to show ex-
amples of lnS versus F, that may arise for a two-level
Qaw. Only the individual S curves are shown. The total

S is their sum. It should be noted that in general if
there is overlap of the two plateaus, they will have. at
least one common limit. It should also be noted that
slopes of &2/k T can occur for flaws whereas they cannot
for single-level recombination centers. No significance
should be attached to the relative heights represented.

Diagrams similar to Fig. 11 can also be constructed
for the bulk-recombination constant (1/r) . The plateaus
in this case are concave upward due to the (pb+rbb)
term which has a minimum for F=F;. However, the
relative e6'ects of competition of the levels of the Raw
causes the same sort of changes compared to several
single-level traps for bulk lifetimes as for surface re-
combination velocity.
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Quantum Theory of Galvanomagnetic Effects
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A study is made of the effect of the quantization of the electron orbits in a magnetic field on the galvano-
magnetic properties of an isotropic semiconductor or semimetal in the phonon-scattering range. The con-
ductivity tensor is calculated using the quantum-mechanical density operator. A generalized Boltzmann
equation is derived, in which the scattering for the density matrix elements of interest in the calculation
of the current can be described by a relaxation time r (e), that is for most energies inversely proportional to
the density of electronic states in the magnetic field.

The Hall coefficient and transverse resistivity are studied for a number of different sets of conditions for
the electron density, the magnetic field, and the temperature. It is found that in all cases the resistivity at
very high fields is an increasing function of field. Further the Hal coefficient at high fields does not approach
the classical limit. Both Hall coeKcient and resistivity under some conditions exhibit an oscillatory de-
pendence on magnetic field. The deviation of the resistivity from classical behavior is easily observable. The
deviation of the Hall coef5cient is in most cases quite small; however, it may be possible to observe it.

1. INTRODUCTION

HK various sects of a magnetic field on the
transport properties of a metal or semiconductor

provide us with useful information about the electronic
structure of these substances. Transverse and longi-
tudinal magnetoresistance measurements give strong
indications about their energy-band structures, Hall™
effect measurements determine the type and density of
charge carriers, and cyclotron resonance absorption
affords a direct measurement of the effective mass of
the carriers.

Theories for all these effects have been based in
general on the one-electron band model of solids, and,
ordinarily, on the Boltzmann transport equation. Such
theories with various degrees of generality have been
given by many authors. '

Ke shall concern ourselves here with the observation
that the treatment of the magnetic field in conjunction
with the Boltzmann transport equation is only approxi-

' J. McClure, Phys. Rev. 101, 1642 (1956). This reference
contains references to other relevant work.

mately correct. There are two approximations involved
and both limit the applicability of the results of these
theories to small magnetic fields. The usual Boltzmann
transport equation as applied in the band theory of
solids is an integro-diGerential equation for the distri-
bution function f(k) which gives the probability for a
Bloch state with wave vector k to be occupied. It states
that the total time rate of change of the distribution
function (for homogeneous media) is equal to its rate
of change due to the accelerating fields of force, like
electric and magnetic fields, plus that due to the scat-
tering by imperfections in the crystal. The approxi-
mations we mentioned above are the following. First,
in these treatments the rate of change of f(k) due to
the magnetic field H is taken to be (e/kc)vXH Vf(k),
where v is the average velocity of an electron in the
Bloch state with wave vector k. This was first derived
for a wave packet by Jones and Zener' by neglecting

~ See, e.g. , A. H. Wilson, The Theory of Metals (Cambridge
University Press, New York, 1953).

3 H. Jones and C. Zener, Proc. Roy. Soc. (I.ondon) A144, 101
(1934).


