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I

The recombination equations for a system containing an arbitrary number of Shockley-Read recom-
bination centers a.re formulated. Transient solutions are obtained for the decay following the injection of
a pulse of carriers into a system containing one or two centers. The specific cases considered include (1) the
simple one-center case, which enables us to discuss (a) the situation for a large injection of carriers, (b)
recombination through donors in n-type or acceptors in p-type material, and (c) recombination through
centers in the presence of direct recombination; (2) the case of a recombination center with a temporary
trap, and (3) the case of two recombination centers.

INTRODUCTION

TEADY-STATE recombination through a single
recombination center has been treated in detail by

Shockley and Read' and Hall. ' The transient case has
been discussed' and a solution has been given by
Sandiford, 4 a multicenter situation has been analyzed

by Rose, ' and the trapping process has been treated by
Hornbeck and Haynes. '

The attempt is here made to examine certain ele-
mentary cases from a more rigorous point of view.

FORMULATION OF THE PROBLEM

The general recombination problem for a nonde-
generate system may be formulated in terms of the
capture rates U and U„, for electrons and holes by
impurity centers, given by Shockley and Read'.

U, =n;[E,obn (no+nt;+b—n)bN;],

U„,=n„,i'; bp+ (po+ pi, +b,)bN;j.

(The symbols are defined in Table I.) The rate of
recombination by direct processes not requiring the
action of a recombination center is

Ud, =ns(nobp+ pobn+bnbp).

If the direct process is radiative, then

nd= E,/n, ',
where E„has been given by van Roosbroeck and
Shockley. ~

The di6erential equations governing recombination
may then be expressed in terms of these rates:

(d/dt)hn= g
—Ua —P; U„;,

(d/dt)bp= g Us —Q; U„, —
(d/dt)bN, = U„,—U„;, i =1, , k.

' W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).
~ R. N. Hall, Phys. Rev. 87, 387 (1952).
3 E.S.Rittner, Proceedings of the Conference on Photoconductivity,

Atlantic City, November 4—6, 1954 (John Wiley and Sons, Inc. , New
York, 1956).A. Housman, IIalbleiter Problem II (Friedrich Vieweg
und Sohn, Braunschweig, 1955).

4 D. J. Sandiford, Phys. Rev. 105, 524 (1957).
~ A. Rose, Phys. Rev. 97, 322 (1955).' J. A. Hornbeck and J. R. Haynes, Phys. Rev. 97, 311 (1955).
~ W. van Roosbroeck and W. Shockley, Phys. Rev. 94, 1558

(1954).

The requirement of charge neutrality gives the addi-
tional relation

p, bN;+bn=bp (5)

1. Single Recombination-Center Case

Eliminating hN; from Eq. (1), making use of Eq. (5),
and inserting the result into Eqs. (4), we obtain two
diGerential equations of the form

(d/dt)bn= g abn+pbp, —
(d/dt)bp= g qbp+qbn, —

where

n=n (&&o+no+n, +bn)+ns(Po+bP),
P=n (no+ni+bn) —ng(no),

rt=n (N +ps+ pi+bp)+ad(no+bn),

V =n, (po+ pi+ bp) —ns (po).

TABLE I. List of symbols. '

nQp PQ

nl~ P1

8n, BP

TnQ

TyQ

product of electron-capture cross section and thermal
velocity of electrons
as above, but for holes
density of empty recombination centers (from the electron
point of view)
density of filled recombination centers
deviation from the thermal-equilibrium occupancy of a
set of recombination centers
thermal-equilibrium carrier concentration
carrier concentration with the Fermi level at the energy
level of the trap
deviations from the thermal-equilibrium carrier concen-
trations
rate of generation of carriers by external means

(n„X) '
(O. Ã) '

' The subscript i denotes properties of the ith group of recom-
bination centers.

Equations (4) and (5) jointly constitute a system of
1+i, independent coupled nonlinear differential equa-
tions, which determine the behavior of nonequilibrium
carrier concentrations, provided transfer of charge
between traps is neglected.
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These expressions have been given by Sandiford. ' The
first expression is the lifetime (mean life), the second
the time for the adjustment of the change on the
center to the condition where holes and electrons are
captured at the same rate. In the present approxi-
mation p- /r+=4/y&&1 Me. asurements of lifetime yield

since r+ is associated with a smaller amplitude and is
generally too short to be resolved. For small recombina-
tion-center density, (11a) is identical with the steady-
state solution. '

If y 1, it may be shown that either rr)&P, or p)&y
and o, y. Under these conditions,

p. =try 'P' +po+pt) ',
r+=n '(No+np+nt) '

1.0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

g

FIG. 1.Ratio of accurate to approximate so1ution as a function of
the parameter y;

We note that

In special limiting cases, solutions to this set of
equations can be obtained in closed form.

(a) Single Lifet&ee

We assume that direct recombination is negligible
and that injection is small:

8n(&no+nr, 8p&(pp+ pr.

The differential equations are now linear and have
solutions of the form

Since the values of y cannot be determined until a
fit of the equation to the data has been made, it is sig-
ni6cant to note that the error in the expansion for y((1
is no greater than a factor of two. The ratio of the
accurate solution to the approximate solution,

QC1 Ej
1+(1—y) k

is given in Fig. 1.
In electron-bombarded e-type silicon, ' the behavior

of the lifetime as a function of bombardment and tem-
perature is adequately represented by Eq. (11a).
Bombardment produces an energy level 0.27 ev above
the edge of the valence band. The imperfections asso-
ciated with this level act as recombination centers
which can be introduced in controlled density. We
specialize the equation for this case, and obtain

r =(u~) '+(rr„np) '(1+pt/E)

where

and

Bn=A +8 exp( t/r )+C—exp( —t/r~),

(10)

This equation indicates that a lower limit in lifetime
is reached as bombardment, and therefore E is in-

105

It follows from (8) that y&1. This suffices to insure
that the time constants are real and the solutions ex-
ponentials.

If y«1, the square root of Zq. (10) may be expanded
to obtain

V)
Ch

O 10

u) 5

2

111 10 7
LL

Expressions for the amplitudes in two simple cases
are given in Appendix I. In general, interest focuses on
the time constants of the decay. For a nondegenerate
system two simple expressions are obtained:

p =Lryp(E'+np+nl)+ r.p(+ +pp+pt)j-
X (no+pp+E 1P/Ã) '(11a)—

+=go' P'+no+nr)+rr (& +po+pr)&'. (11b)

015 1016 10 10
BOMBARDMENT IN ELECTRONS PER CM~

FIG. 2. Lifetime ('mean life) at 60'C in 7 ohm-cm, I-type silicon
as a function of bombardment, n, . Curves computed with
n„=9.5X10 ', n„=1.6X10 r, pi=srE, exp( —0.27/kT), co=6.2
X10'4, E=5X10 'e, .

P G. K. Wertheim, Phys. Rev. 105, 1730 (1957).
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creased. In practice a minimum is observed because eo
decreases as bombardment progresses. This is observed
(Fig. 2) at 10"electrons/cm'. It may be noted that it
is here possible to obtain the capture cross section
without explicit knowledge of the density of recom-
bination centers. The equation also correctly describes
the behavior of the lifetime as a function of tem-
perature for various values of bombardment (Fig. 3).

An example of a case where Eq. (11a) is not adequate
because y passes through unity is found in silicon con-

taining a large concentration of indium. This case is
discussed in Sec. (c).

bn&No+no+nr, bP&N +Po+Pr.

For y&(1 we obtain

(14)

(b) Moderately Large Deviation from Equilibrium

The preceding analysis may be extended to include
the case of moderately large injection, defined by

r +(rrobn+r obp)(no+po+N No/N) '

1+$+obn/(no+nr)+polyp/(po+pr)5(no+po+N No/N) r
(15a)

1/r~*= 1/rp+n bn+n~bp. (15b)

The expression for v * represents the "instantaneous
lifetime" for a given excess carrier concentration; that
is, although the decay will not be exponential it will at
any instant approximate an exponential with a time
constant given by Eq. (15a).

For a density of recombination centers small com-
pared to the majority-carrier concentration, and for
BN&bn+bp, i.e., for a recombination rather than a
trapping process, the equation may be specialized to
obtain

r *=(r +(r o+r o)bn/(no+po)5
g t 1+bn/(no+po)5 . (16)

This is identical with the steady-state, large-injection
lifetime given by Shockley and Read. ' It must be
remembered, however, that in the present case, the
range"of validity is restricted by Eq. (14). For larger
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injection the diGerential equations are nonlinear and
other solutions must be obtained.

r = (n„N')-'+n„'(N +po+pr)--(17)

If the sample contains N~ donors/cm', and N~ accep-
tors/cm' with larger ionization energy and in greater
concentration, so that the latter will have a dominant
effect on lifetime,

No=Ng Ng) Po, N =—Po+—ND.

The lifetime then becomes

r =n„'(N~ po Nn)
—'+n„—'(2p—o+pr+Na) ' (19)

il

2

10-8
Cl

(c) Donor or Ac-ceptor Limited L-ifetime

The lifetime in p-type material may be limited by
recombination through the chemical acceptor which
determines the carrier concentration. In n-type material
the donor may play the corresponding role. We shall
analyze the p-type case for which some experimental
evidence is available. The usual approximations must
be examined because the density of centers may be
much larger than the majority carrier concentration.

If we make the assumption No))no+nr, valid in
heavily doped p-type material, Fq. (11a) may be
transformed to obtain

)0"8
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0-3

RECIPROCAL TEMPERATURE IN DEGREES KELVIN

5
2 3 4 5 6 7 8 9 10 11 12 13

RECIPROCAL TEMPERATURE IN DEGREES KELVIN X IO

FIG. 3. Lifetime (mean life) in 7 ohm-cm, I-type silicon as a
function of temperature for three amounts of bombardment;
I n&=1.4X10'4 electrons/cm' Il n.=1 4X10" III n, =1.1X10".

FIG. 4. Lifetime (mean life) in indium-doped silicon. Curves
computed with 0.„=1.1X10 "T 'v„, ate=1.5X10 'T 'vp v vy
are average thermal velocities of electrons and holes; pI=~&&
Xexp {—0.16/kI'}.
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At low temperature, n (NA N—D)/ai, (2P0+ND)
approach unity provided X~ is sufIiciently small.
Under this condition, y 1 and the two time constants
become

r =a„'(2po+pi+ND) ', (20a)

r+=a '(NA —po —ND) '. (20b)

Behavior of this type has been observed in heavily
indium-doped silicon' with E~= 1.4)& 10' and ED (10',
Fig. 4. The dotted line represents ~ computed from
Eq. (19), assuming that y«1. The solid line consists of
Eq. (19) at high temperature and continues as Eq.
(20b) at low temperature. The rising curve at low
temperature is Eq. (20a). It is found that y=1 at
100'K. The temperature dependence of the capture
cross sections of indium were derived from a comparison
of the data with these equations.

In the case of an acceptor, the cross section for hole
capture, 0-„, is expected to be larger than the cross
section for electron capture, 0.„, because the former is
aided by Coulomb attraction, while the latter is not. At
room temperature the lifetime is consequently domi-

nated by the first term of Eq. (19). Using the relation

po + po(ND+ pi) —pl (NA —ND) = 0i

one obtains
r =Pici 'Po '(1+ND/Po) ',

which indicates that the lifetime will depend on the
inverse square of the carrier concentration when the
donor concentration is small.

The case where a second acceptor E~' with smaller
ionization energy is also present may be treated by
substituting ED—E&' for ED in these equations.

(d) Direct Recombination in Conjlnction with Recom
bieatiom through Ceeters

Direct and indirect recombination may compete in
certain semiconductors such as InSb. YVe consider only
the case of small injection defined by

bn«no+ ni, bp«po+ pi.

For y«1, Eqs. (10a) yield

n„pP+no+ ni)+n, (N +po+ pi)+ad(no+ po)
)

„„(noiU+p,N+N'N )+,(n—,+p,)p (no+n)+ (po+p)l+ ( noN'+ poN )

r~*= Lci.(N'+no+ni)+ci, (N +po+ pi)+na(no+ po)] '
(21)

If the density of recombination centers is small,

No&no+ni, N &po+pi.

Equations (21) may be simplified to obtain

1/r *=(1/r +1/re)(1+r~/re) ',

1/r~*= 1/r~+ 1/ra,

(22)

(23)

been treated by Rose. ') Here we consider the filling

of the two centers to be uncoupled, and ignore the pos-
sibility of direct exchange between them. Two simple
cases will be analyzed, (a) the temporary trap, and

(b) the two recombination-center case.

(a) Temporary Trap

where r and r+ are those given by Eqs. (11a) and
(11b) and

rd '=ay(no+po). (24)

Here again 7-+ represents the time for the adjustment
of the charge on the recombination centers to the con-
dition where holes and electrons are captured at the
same rate. It is always smaller than ~ . Consequently,
when ~ is smaller than 7.d, the addition of reciprocal
time constants customarily employed is valid. It must
be remembered, however, that this result is predicated
on a density of recombination centers sufficiently small
to satisfy Eqs. (22).

' 6. K. Wertheim, Bull. Am. Phys. Soc. Ser. D, 2, 314 (1957).

2. Recombination in Crystals Containing
Two Centers

Recombination in crystals containing two centers is
complicated by the fact that the quasi-Fermi levels of
the centers are independent. (The case where a single
quasi-Fermi level applied to a spectrum of centers has

A center will act as a temporary trap for minority
carriers if its majority-carrier cross section is so small
that the rate of capture of majority carriers is neg-
ligible compared to the net rate of emission of minority
carriers from the trap.

We consider the case of a hole trap in m-type material
in conjunction with an ordinary recombination center.
If the electron-capture cross section of the trap is zero,
we obtain

(d/dt) bn = —U„,

(d/dt)bp= —U„U„i, bn+bN—+8N, =bp, (25)

(d/dt) BN g
= —U, g,

where the subscript t stands for trap. This is a system
of three coupled nonlinear differential equations. The
case where the filling of the traps is small yields a set
of linear equations, which have solutions in terms of
three time constants. These can be obtained in useful
form when one of the three is much longer than either
of the other two. This condition is usually met in
trapping processes.
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The difkrential equations may be written as a set
of operator equations in the form

(D+ail)»+ a12&p+ also%

asl»+ (D+ a22) &p+ a23bNt

asibrs+ass&P+ (D+ass)~Ns= o

These have solutions only when the determinant of the
coeKcients is zero. This requirement produces a cubic

equation of the form

D'+ pD'+ qD+r =0,

whose smallest root (corresponding to the largest time
constant) is approximately

pi =r/q= r—'.
The result for n-type material with a small density of
recombination centers and small fractional 6lling of
the trap is

L1+ (N-+p)/ .N-3( p)-'+L1+p, (N;+p, )/p, N-jL „(I,+e,)]-'
1+PiN0Ns /PgN (Np+231)

(26)

10 ~

8
8

2 OHM-CM A- TYPE SILICON

The denominator will approximate unity, provided the
recombination centers lie below the Fermi level and the
trapping centers below the recombination centers.

At low temperature, where p«N&, the equation
may be written

r = (n,p,)-'(n,N +n,N, —)/n„N-
+(u„N) '(N +pi)/np+(n N) 'piNs /p, rsp. (27)

The first term is the reciprocal of the net rate at
which holes are captured by the recombination center.
This follows from the facts that n~p, is the rate of
regeneration from the traps and

a,N /(n„N +csN, )

is the fraction which are captured by the recombination
center. The rest are retrapped. The second term is the
electron-capture time of the recombination centers

r„=(n„N) '(N +Pi)Np ' . (28)

We now define the regeneration time r, = (12,p,) ', the
hole-trapping time r&= (n,N3 ) ', and the hole-capture
time of the recombination center r~= (n„N ) ' and
rewrite Eq. (27) in the form

r= r,r„r, '+r,+r—„+P1N1 (n.r30P,N—) (29)

(b) Two Recombinatiors Cersters

This is similar to the result obtained by Hornbeck and
Haynes, who did not consider the individual processes
of the recombination center.

Behavior of the type suggested by Eq. (27) is often
found in silicon at low temperatures. Figure 5 shows the
lifetime in a sample of 2 ohm-cm e-type silicon con-
taining two sets of such trapping centers. The dark
behavior of this crystal is well represented by Eq. (27).
Below 125'K the trap release-time has become suf-
ficiently long so that weak, steady illumination keeps
this trap filled. A second shallower trap is now observed.
The behavior here cannot be interpreted in terms of
Eq. (27) which applies only for small deviations from
thermal equilibrium.

a2 &0-4
8

N

2 4

I
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We now consider the general, small-signal case for
two recombination centers, under the assumption that
the density of recombination centers is smaller than the
majority-carrier concentration

Ni+Ns (ssp+ pp.

V
IU )0~

s

WITH STEADY
ILLU MIN AT ION

It may be shown that under these conditions

1/r=hri —'(1+ts,)+rs '(1+tss)j
XL1+tsi(1+3'1)+tss(1+&2)j ', (30)

where, in n-type material,

)0 ~
0 2 4 6 8 IO )2 I4 16 18 ~

RECIPROCAL TEMPERATURE IN DEGREES KELVIN

FIG. 5. Low-temperature trapping in 2 ohm cm n-type silicon.
The trapping levels are 0,11 ev and 0,059 ev above the valence
by@a,

tsl Nl /ppp+p11+ (rsp+ssll)& 1/cs 1j
Jls N2 /happ+ pl2+ (230+2312)~n2/ay2gy

(31)
&1 o' 1(230+Ill)/L& 2(lp+ 2312)+a 2(PO+P12)j
&g

—O'gg +0 +12 &el +0 +11 p1 0 11 ~
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It may be seen from Kqs. (30) and (31) that the
customary addition of reciprocal time constants is
justified only when p, ,&(1 and p;v;(1. Both conditions
are met when the recombination-center density is suf-

ficiently small. For recombination centers near the
middle of the gap, this requires that

n„~; /n, mp&1,

which suggests that deviations may be found when one
or both of the centers are negatively charged, so that
Ckp+ &f4.

APPENDIX I

Following injection of a short pulse of carriers in

equal number 8n(0) =8p(0) =6 we have

A„=O,
n p co~

8„=-

A@=0,

C„=A—8„,
where co=7 '.

If injection is suddenly

pp+~ ~A„=/ g,
En~ —p~J

(n —o~+)A „—PA „8„=
GO+ CO

C„=—(A„+8 ),

C~=D —8„,

begun at a rate g, then

( y+n 'i

fg,
&nq —pp&

(r) —re+)A, —yA „
8„=

CO+ GO

&.= —(An+&.)
The same time constants are obtained in both cases.
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Dielectric Properties of Single Domain Crystals of BaTiOs at
Microwave Frequencies

T. S. BENEDICT AND J. L. DURAND
'Bell Telephone Laboratories, Jff/Iurray Hill, %em Jersey

(Received October 3, 1957)

Small-signal dielectric constant measurements were made on single domain crystals of BaTi03 from
25'C to 170'C at 24 kMc/sec. A typical Curie behavior was observed with a dielectric constant c» of about
half the dc value below the upper Curie point. Measurements of &11 were also made with a dc field (Eg)
applied along the c axis in order to obtain information concerning the distortion of the potential well per-
pendicular to the c axis when the ion is displaced along the c axis. The change A&11 observed was about 50
for an applied field of 104 volts/cm.

INTRODUCTION

HE dielectric properties of ceramic and poly-
crystalline samples of BaTi03 have been studied

by other authors' at microwave frequencies. These
results show a relaxation efFect in the neighborhood of
10" cps which has been attributed to inertia of the
domain boundaries' and the piezoelectric resonance of
the crystallites. ' These experiments also show a variation
of the dielectric constant with an applied dc 6eld. The
sections which follow describe experiments done on
single domain crystals. The experiments were of two
different kinds: (a) measurement of the small-signal
dielectric constant at 24 kMc/sec as a function of tem-
perature, and (b) measurement of the effect of a dc
field on the dielectric constant at that frequency.

'A. von Hippel, Revs. Modern Phys. 22, 221 (1950); J. G.
Powles and W. Jackson, Proc. Inst. Elec. Engrs. (London) 96, 383
(1949).' C. Kittel, Phys. Rev. SB, 458 (1951).' A. F. Devonshire, Phil. Mag. 42, 1065 (1951).

DIELECTRIC CONSTANT VS TEMPERATURE

Single crystals of area ~1 cm' and thickness 0.040
cm were grown by the method described by Remeika. 4

The crystals were inspected under a polarizing micro-
scope and those in which the c axis was aligned pre-
dominantly perpendicular to the plane of the crystal
plate were chosen for investigation. These crystals
were then poled at 60 cps until microscopic observation
showed them to be polarized in the c direction (c
domain) over an area large enough to fill the cross section
of a standard E-band wave guide (0.420 in. X0.170 in.).
The crystals were shaped to fit the guide by sand-
blasting away the unwanted portion. It was found that
sandblasting was preferred to shaping with a diamond
saw because fewer strains were produced near the edges
of the crystals during the cutting operation. The
crystals were then mounted in brass slugs with silver

paste providing the contact between the crystal and
the brass. The plate was mounted perpendicular to the

4 J. P. Remeika, J. Am. Chem. Soc. 76, 940 (1954).


