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Influence of a Variable Ejection Probability on the Displacement of Atoms
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A model for the displacement of atoms is used in which each atom of a crystal has a threshold energy that
is a random variable. Three quantities are derived as a function of the probability density of this random
variable. First the total number of displaced lattice atoms resulting from an initial energetic atom is found
as a function of the kinetic energy of the moving atom. Second, the average number of displaced lattice
atoms per atom initially displaced by external radiation is derived. Third, the total number of displaced
atoms resulting from a given dose of radiation is determined. Both charged particle and neutron radiation
are considered. It is shown that the shapes of all these quantities, for moderately large energies of the bom-
barding particles, are independent of the nature of the probability density governing the displacement
energy; the probability density determines only an amplitude factor. It is shown further that the physical
eQ'ects of bombardment by either neutrons or charged particles can be pictured as arising from an "effective
sharp-threshold energy" determined by the probability density functions and that this effective threshold
is the same for both types of bombardment. Finally, it is shown that, if the present factor of about Ave
between the theory of radiation damage and the corresponding experiments is to be explained solely on the
basis of a variable probabi/ity of ejection, a considerable fraction of the atoms in a solid must have a sur-
prisingly large threshold energy.

1. INTRODUCTION

M NE of the main effects of bombarding a solid with
ener getic particles is the displacement of the atoms

in the solid. The problem of determining the number of
such displaced atoms has received considerable theo-
retical study during the last few years. The under-
standing of this problem is important in determining
the changes in physical properties of the solid, for the
variations of these properties is directly dependent
upon the number of displaced atoms.

In most of these investigations a model has been
chosen in which the atoms in a lattice have a sharp
threshold energy Eg for displacement. That is, if a
lattice atom receives an energy greater than E&, it is
displaced; whereas, if it receives an energy less than Ed,
it remains at its site and dissipates the acquired energy
in lattice vibrations. This model is, of course, not a
true picture of the situation; but it has been used
because it is simple and accurate enough for qualitative
discussions. However, theoretical calculations of the
number of displaced atoms based on this model have
been consistently in disagreement with experimental
results. The theory predicts a displacement yield of
five to seven times the observed amount.

There are several possible explanations for this dis-
crepancy. One possibility is that the interpretation of
the experimental measurements is in error. Thus, the
relation between, say, change in resistance and number
of interstitial-vacancy pairs may be inaccurate, or the
effect of annealing may be much larger than assumed.
However, the possibility exists that the theoretical
model of radiation damage is inadequate. In this paper
we shall be concerned with the possibility that error is
introduced in the theoretical calculation of the number
of displaced atoms by the assumption of a sharp
threshold.

It is natural to suppose that the displacement
threshold energy will not be sharp, but there will be,

10

for any energy E, some probability that a lattice atom
which gains that energy will be displaced. There are
several reasons why the threshold energy is not sharp.
One such reason is that the energy required to free an
atom will depend upon the crystallographic direction
of the initial velocity of the atom as it starts to leave
its site. ' Another is that the state of the thermal vibra-
tion in the neighborhood of the struck atom will
inhuence the amount of energy necessary to dislodge
the atom. Further, during the collision process energy
may be lost by acoustic radiation.

A few workers have studied models in which the
threshold energy for displacement is not sharp. Samp-
son, Hurwitz, and Clancy' (SHC) have used an ejection
probability dered as follows. An atom receiving an
energy E has a probability P(E) of escaping, where

0, E&EO
P(E) =& (E—Eo)((Eg—Eo), Eo&E(E, (1.1)

E(EI
On this model of the displacement threshold they have
calculated approximately, as a function of x, the total
number, g(x), of displaced atoms which are produced
by an initial displaced atom of kinetic energy x.

Snyder and Neufeld' have also considered a nonsharp
threshold. Further, they have also considered the
possibility that, in a collision between two atoms, the
originally stationary atom will be displaced, while the
incident atom replaces it in the lattice. They perform a
calculation in which (1.1) is taken as the probability of
ejection, and 1—P (E) as the probability of replacement.

In what follows we shall calculate the total number of
displaced atoms both for the case of an initial knock-on
lattice atom and for two types of incident primary

~ W. L. Brown and W. M. Augustyniak, Bull. Am. Phys. Soc.
Ser. II,'2,~156 {1957).

2 Sampson, Hurwitz, and Clancy, Phys. Rev. 99, 1657 {1955).' W. S. Snyder and J. Neufeld, Phys. Rev. 103, 862 {1956).
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f(Eg) =0 if Ed, &EO or Ed) E,, (2.1)

radiation. Our calculations will be similar to those of
SHC in that the possibility of replacement will not be
considered. It will, however, be more general in the
model chosen for the threshold and more accurate in
the method used for solving the equations. The object
of our more refined treatment was to discover whether
the above-mentioned discrepancy between theoretical
and experimental results could arise solely from the
broadness of the threshold.

In Sec. 2 we derive a general prescription for the
determination of the function g(x) mentioned above,
valid for any dependence of ejection probability on
energy. In Sec. 3 we consider certain special forms of
the ejection probability.

In Secs. 4 and 5 we calculate v(T ), the total
number of displaced atoms per primary displaced atom,
where the primary is displaced by some incident bom-
barding particle capable of transferring, in a single
collision, a maximum energy T . Knowing this function
we then derive the total number, D(E), of displaced
atoms resulting from a given Qux of incident radiation
of energy E. Section 4 deals with charged particles as
the incident radiation, Sec. 5 with neutrons.

We have obtained two principal results of a general
nature. The 6rst is that the shape of D(K), for moder-
ately large values of E, regardless of the type of radia-
tion, is unaffected by the extent or form of the ejection
probability; these properties of the probability deter-
mine only a scale factor in D(E). Further this scale
factor is shown to be the same for both neutron bom-
bardment and charged particle bombardment. Thus a
given material behaves exactly as if there existed some
"effective sharp-threshold energy, " regardless of the
type of radiation, as long as E is suf5ciently large.

The second result is that, if the inclusion of a vari-
able ejection probability is to explain the present dis-
crepancy between theory and experiment, one must
have a large range of energies over which P(E) is
neither zero nor one. That is, there need be a consider-
able fraction of the lattice atoms which require a
liberating energy many times the minimum threshold
energy Ep.

2. GENERAL FORMALISM

We wish to determine the total number of atoms in a
solid which are displaced as the result of giving to a
single lattice atom a certain amount of kinetic energy.
We assume that an atom receiving an energy E below
some energy Ep will never escape and that there exists
an energy E& sufficiently large to liberate any atom with
certainty. We assume further that a given stationary
lattice atom has a threshold energy Ez which is a random
variable with a range from Eo to E&. Quantitatively, the
probability that an atom has a threshold energy be-
tween Ez and Ez+dE& is given by f(E&)dE&. The proba-
bility density function (p.d.f.) f(Ed) has the properties

and

f(Eg)dEg = 1.
+p

(2.2)

We shall henceforth measure energies in units of Ep.
In particular

Ey= gEp)

pE p

E=xEp,

so that Eqs. (2.1) and (2.2) read, respectively,

f(y) =0 if y&1 or y) a,

(2.3)

(2.4)

(2.5)

(2 6)

~
f(y)dy= 1

1

(2.7)

Let g(x) be the total number of displaced lattice
atoms resulting from a moving atom of the solid with
kinetic energy x. (The original atom is included in this
total. ) In considering the interaction between the atoms
of the solid, we shall assume hard-sphere collisions.
That is, in a collision between a moving atom of kinetic
energy x and a stationary atom, it is equally likely that
any amount of energy between 0 and x is transferred.

We formulate the equations in the same manner as
that in which Seitz and Koehler4 treat the problem of a
sharp threshold. Consider the collision between an
atom of kinetic energy x (denoted by 2) and a sta-
tionary atom (denoted by 8). The total number of
displacements produced by the initial atom will equal
the sum of the individual totals produced by 2 and 8
after the collision. If an energy I is transferred, after
the collision A will have energy x—I and 8 will have
energy I—y (if the threshold energy of 8 is y). Under
the hard-sphere collision assumption the probability of
transferring an energy between I and u+dg is dl/x.
Thus

dl 00 dl
g(*)= ' —g(*—&)+ l~ dyf(y) —g( —y) (28)

p ~p x

In the above, the integration over y results from the
fact that the energy necessary to displace the atom is
not known but follows the p.d.f. f(y). Differentiating
(2.8)

dg/dx= (1/x) f(y)g(*—y)dy
dp

(2.9)

We then wish to solve the above under the condition

g(x) =0 if x&0, (2.10)

g(x) =1 if 0&x&1. (2.11)
4 F. Seitz and J. S. Koehler, Solid State I'hysics, edited by

F. Seitz and D. Turnbull (Academic Press, Inc. , New Vork, 1956),
Vol. 2, pp. 3gi G.
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FIG. 2. Amplitude factor, A, as a function of the width e of the
p.d.f. for. several forms of the p.d.f.

For small values of x, Eq. (2.9) must be solved piece-
wise in x. Consider the region 1&x&2. The solution to
(2.9) in this region can be found by using the known

value of g(x) in the region 0)x) 1. Thus, for 1)x)2,

0
if x)a

Fro. 1. Number of dispiacements, g(x), per primary displaced
atom of energy x for several values of the parameter u.

A formal solution to (2.9) can be found through the
use of the Laplace transform. This is done in the
Appendix, the solution, Eq. (A12), being

F(s) = e "f(x)dx—
0

(2.13)

p
0+'b~ gSX

g(x) = ds—exp ) dsP(s)/s
2' Z g—goo S S

for o )0, (2.12)

where F(s) is the Laplace transform of f(x),

pQ ds )8
=1+in(x/a)+ — dyf(y) if x(c.

s~g

(2.18)

Numerical calculations were made for selected values
of f(x). It was found that, for values of a at least up to
e,=5 and for any p.d.f., the function g(x) could be very
well represented by (2.14) for x) 2. We then have our

function g(x) for all x by (2.10), (2.11), (2.18), and

(2.14).
From (2.14) it can be seen that, irrespective of the

p.d.f., the asymptotic form of g(x) will always be linear,
the slope of the line depending upon the distribution
through (2.15). Secondly, from (2.17) we have always

It is shown further in the Appendix that, for large
values of x, the function of (2.12) reaches an as m-
totic curve

(2.19)

g(x) ~ A(x+B),
x))1

where

p
so that for large values of x, one can neglect the additive
term in (2.14) again irrespective of the p.d.f.

A=e & exp( —(lnx)s„),

(lnx)Av= t dxf(x) lnx,
1

pQ

B=(x)A,= dxxf(x),

(2.15)

(2.16)

(2.17)

3. ILLUSTRATION OF THE METHOD FOR
SPECIAL CASES

Let us take as an example

fs(x)=1/(a —1), 1)x)a
=0 otherwise.

(3.1)

and y is Euler's constant: y=0.577.
This is the example treated by SHC. We note in the
limit a —&1 we reach the case of a sharp threshold.
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Now for the case of (3.1)
c lnu

(inx)a& =—1j
8—1

(3.2)

Bg=-', (u+1). (3 4)

a Ina
A3 ——e' & exp — =1.511 exp —,(3.3)

8 1 8—1 4' jM2r = . E
(My+&2)'

(4 1)

tion. By use of the results of Sec. 2, this can be easily
done if the kinetic energy distribution of the lattice
atoms displaced by the incident radiation is known.

Let the bombarding particles have a mass M~ and
a kinetic energy E, and let the mass of the stationary
lattice atoms be 3f2. Further let

Figure 1 shows plots of g(x) ws x for various values of
u for the case of (3.1). We compare this case to the
three limiting cases

for which

fo(x) =5(x—1),

f&(x) =5(x-u),

f2(*)=~Lx—2(u+1)3,

Ap=e ~=0.561,

~p ~)

(3.6)

(3.7)

(3.8)

(3.9)

Ag=e &/u=0. 561/u,

+y=8,

A2=2e &/(u+1) =1.122/(u+1),

82=-', (u+1).

(3.10)

(3.11)

(3.12)

(3.13)

In Fig. 2 we plot Ap, A ~, A2, and A3 as functions of a.
As shall be shown below in Secs. 4 and 5, the quantity
A is directly proportional to the total number of dis-
placements resulting from a source of radiation of fixed
energy. The curves of A p, A &, and A 3 are essentially the
curves presented by SHC. They make the qualitative
observation that a system governed by the p.d.f. f&(x)
appears to behave more strongly like one having a
threshold at x= a than one having a threshold at @=1.
This conclusion can be seen more directly from (3.2)
which shows that, for the p.d.f. f3(x), (lnx)A„ is closer
to (1/u) than it is to zero. Even more accurate would
be the statement that such a system behaves more as
one having a threshold at x= (u+1)/2, i.e., a threshold
at the midpoint of the range of fa(x). This result is an
approximation of the more general statement of (4.21)
below.

where

r g(T,u) =pg(T„,u)/Pg(T, u), (4.2)

t& r&&& f% +&I& &fT
~~(T-,u) =„4f(r) —,g(T—r) (4 3)

"p

(4 4)

To evaluate the above integrals it is necessary to
know the relative values of T and u. It is also necessary
to know whether or not u is greater than two. Since we
are primarily interested in values of T at least several
times the maximum threshold energy, we restrict the
following discussion to the case

T )u+2. (4 5)

From (4.4) for all values of u satisfying (4.5)

be the maximum possible total energy transfer between
one of the bombarding particles and a stationary atom
in the solid during one collision. Denote the total
energy transfer in a given collision by T.

We shall now determine the total number of dis-
placed atoms in the solid per primary displaced atom.
We denote this quantity by F. By defining the problem
in this manner, one need not be concerned at present
with the subject of cross sections.

We shall 6rst treat the case in which the encounter is
governed by a Coulomb force so that one has Ruther-
ford scattering, i.e., the probability of an energy transfer
between T and T+dT is proportional to dT/Ts. This
type of reaction governs most cases in which a beam of
charged particles is incident on a solid. Denoting this
case by a subscript R, we have

4. BOMBARDMENT BY CHARGED PARTICLES

In the preceding we have been concerned with the
number of lattice atoms which are displaced, giver an
initial atom of kinetic energy x. In a physical situation,
however, it is only the external source of radiation which
is known. It is thus necessary to be able to calculate
the number of atoms of the solid which are displaced as
a function of the type and energy of tht: incident radia-

The evaluation of pz(T, u) is fairly long although
straightforward. The results can be written

p g(T„,u) =Cg(u)+A lnT„, (4.7)

dy
4~(T- u) = —(1/T )+ f(r)—

r
= (1/r)~ —(1/T-) (4 6)
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We shaH now derive the total number, Ds(K), of
displaced atoms resulting from a bombardment by a
beam of charged particles of time integrated Aux p
and initial energy K. (The relation between T and K
is given by (4.1).j If rtp is the density of atoms in the
solid, oz(k) the cross section for displacement by a
charged particle of kinetic energy k, 5 the area bom-
barded, and

4M g3f2

fm= k,
(Mr+Ms)'

(4.11)

O.I—

Fzo. 3. The values of Cn as a function of o for the p.d.f.f&(x).

where A is given in (2.15); for 1(a& 2

then the number of atoms which are displaced as the
energy of the charged particle drops from k to k —dk as
it moves a distance dr through the solid is given by

dDs Sn pro——.g(k) vR(t„)dr, (4.12)

so that, if E~ is the final energy of the bombarding
particle as it leaves the material (Kf=0 if the particle
does not emerge),

1+in (2/a)+ln(a+y) —ln(2+y)
X

2A+AB —1+in(a/2) —A ln(y+2)
+2

Ds(K)=Snpg dk~dk/dr( 'o~(k)vg(t ). (4.13)
ar

The expression (dk/dr) is the rate of energy loss of the
charged particle as it passes through the solid. Its
value is well-known empirically.

From the theory of Coulomb scattering we have for
the differential cross section for transfer of an energy t

do = (G/k)dt/ts (4.14)2—a f ds
f(N)dst

(y+a) (y+2)" r where, with e being the charge of an electron, Z~ and
Z2, respectively, the charge of the bombarding particle

dx 1' ds and the atomic number of the atoms in the solid, and
+i, f(N)dl '~ (4 ga) Ep the minimum threshold mentioned in Secs. 1 and 2,(x+y)'~, s &r

and for a&2

—A ln(y+2)

dx p dsp*
f(N)d~ . (4.gb)

(*+y)'"

j —AB—2A
Cp(a)= —A+ ' dyf(y)—

y y+2

mZz'Z2'~4~&

Ep'Mg

«(k)=(G/k) ~ f(y)dy
p4n

dt/P

(The quantity Ep appears above because it was chosen
as our unit of energy. ) Thus

Thus (4.2) can be written = (G/k) D1/y)" —(1/t-) l (4.16)
C~+A lnT

vga(T, a) =
(1/y)" —(1/T-)

(4.9) which for large t becomes

«(k) = (G/k) (1/y)A, . (4.17)
In general C~ is small so that one can neglect the addi-
tive constant in (4.7) for large T . [The values of Cg (a)
for the case of (3.1) are shown in Fig. 3.) Thus the
shape and range of the p.d.f. is manifest only in the
"amplitude factor" A. For this case of large T we
can then write (4.9) as E))Ep. (4.18)

Now there exists some value, Ep, such that for k) Ep,
one can use (4.17) to represent oq(k) and t is suffi-
ciently large to justify replacing v&(t ) by the form
given in (4.10). In general, experimental conditions are
such that

rrr(T, a) = lnT .
(1/y)A

(410) If also we have Kr)Kp, i.e., a thin target, then the
limiting forms for vs(t ) and oq(k) can be used in (4.13)
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for the entire range of integration, and (4.13) becomes

~K lnt
Dg(E) =np4)GAS dk ~Idk/dr I ' —. (4.19)

Jzr k

If on the other hand the target is thick (i.e., Ef«Ep)
one can with good accuracy simply replace the lower
limit of (4.19) by Ep since the eBects produced by the
charged particles along the small length of path where
its energy is so low can be neglected. Then for Ef«Ep
we can write

Gs

~X lnt
Dz(K)=npGAS I dk~dk/drI '

xp
(4.20) FIG. 4. The values of C& as a function of a for the p.d.f.fg(x).

and if g&2

a fl) Pz
+ (A/2) f(y)y'dy+ (2—a) (ds/s) f(I)dN

J, J,
fQ Z

(ds/s) ' f(N)dl. (5.6b)

From (4.19) and (4.20) we obtain directly the result
that the only influence of the p.d.f. on the value of C~= ( + 8+8)+
Dg(E) arises through the multiplication factor A.
Thus comparing the general form (2.15) to the cases of
sharp thresholds, (3.8) and (3.10), one sees that for
large values of the energy, E, of the bombarding par-
ticle the number of resultant displacements, Dg(E), is

Jidentical to that which would result if the solid ex-
hibited a sharp threshold at x= c. This "effective sharp-
threshold energy" c is given by The form f ~ can be written

c=exp ((1nx)A,) .

S. BOMBARDMENT BY NEUTRONS

(4.21) ,'AT '+C~-
v~(T,a) = (5.7)

where

and

v~ &~ (T~)a)/P~ ——(T~)a) )

p~m fQ +m

&~(T a) — dyf(y) I dTg(T —y),
p v

re ~m

&~(T- a) = dyf(y) I

Jo

(5.1)

(5.2)

(5.3)

Again take T )a+2. Then (5.3) becomes immediately

and (5.2) reads
QN(T, a) = T 8, —(5.4)

I et us now consider the case in which the bombarding
particles are neutrons, denoted by a subscript X. We
shall assume that the neutron-atom interaction is of
the hard-sphere type, an assumption which proves to
be a fair approximation. Thus in analogy to (4.2) v~(T,a) = p AT))). (5.8)

We note that for Rutherford scattering P~ went as
lnT; whereas in the case of neutron bombardment P~
is linear in T .

We now wish to find D~(E), the total number of
displacements resulting from a bombardment by a
beam of neutrons with an energy E. Since the neutron
cross section for elastic scattering o, (E) is so small, it
is very unlikely that a given neutron will undergo more
than one collision during its passage through a sample.
Thus the expression for D~(K) is derived much more
simply than the corresponding expression for charged
particles. With np and P as defined in the last section,
we have directly, V being the volume irradiated

D~(E) = Vngo, (E)v~(T„) . (5.9).

As in the case of Rutherford scattering, the additive
constant C~ is small. [Figure 4 shows a plot of C~(a)
for the case in which the p.d.f. is fp(x).j Thus for
large T

where, if a&2

vx(T, a) =sAT '+Ca, (5.5)
Then for values of E sufficiently large so that v&(T )
can be written as in (5.8) the above becomes

&a

C&—2 A (2+28+8&)+ (A/2) I f(y)yPdy
1

2 Z

(ds/s) 3 f(N)dn, (5.6a)

Dn(E) = Vnp)t)Ao, (K)T /2 . (5.10).
Therefore as in the charged-particle case, the p.d.f.
enters only in the amplitude factor A so that under
neutron bombardment also the solid behaves as if it
has a sharp threshold at x=c.
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6. CONCLUSIONS

At present the simple theory of sharp threshold
energy is used to treat the displacement of lattice atoms
by incident radiation. In almost all cases this theory
predicts a number of displacements from five to seven
times that which is actually observed experimentally.
If one attempts to explain this discrepancy solely by
the introductioa of a variable probability of ejection
with the p.d.f. f3(x), the above discussions, especially
Fig. 2 and Eq. (2.15), would require one to suppose
that there are atoms in the solid needing energies of
about ten times the minimum threshold energy in
order to be displaced. This figure seems considerably
higher than one would estimate intuitively. Since there
are as yet no experimental data sufficiently accurate to
give much insight into the form of the p.d.f. governing
the displacement of lattice atoms, we have used the
distribution f~(x) to arrive at this conclusion. Of course,
changing the p.d.f. would alter its necessary range
somewhat, but not significantly. Thus perhaps the
discrepancy (if the error is solely in the theoretical
calculation of v) is due to some other eRects. One such
possibility is the nature of the collision between lattice
atoms. If, instead of hard sphere collisions, one hy-
pothesized a mechanism which favored transference
of small energies, the value of v would be further reduced.

Also we have shown that, for moderately large values
of the energy of the bombarding particles, a solid be-
haves as if there existed some sharp-threshold energy
governing the displacements of the lattice atoms.
Further the solid exhibits the same effective sharp
threshold both for neutron and charged particle bom-
bardment. Thus to detect the presence of a broad
threshold it would be necessary to use incident particles
of fairly low energies. However, because of the relations
(4.9) and (5.7) one need not use values of T only

slightly greater than the minimum threshold to detect
the presence of broad threshold as usually stated. In
fact one can employ a considerable range of the energies
of the bombarding particles before the difference be-
tween (4.9) and (4.10) or (5.7) and (5.8) become in-

distinguishable. Experiments in this energy range would

yield some information about the p.d.f. although one
would not be able to determine it completely.
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ln the above, by dint of (2.10) we have replaced the
upper limit, ~, of (2.9) by x.

Taking the Laplace transform of (A1) gives

I sG(s) —
g (0+)7=F(s)G(s)

ds
(A2)

where G(s) is the Laplace transform of g(x) and P(s)
the Laplace transform of f(x) Th.e value of g(0+) is
given by (2.11) as

g(o+) =1.

Equation (A2) can be written

(A3)

so that

where

Therefore

and

t'F(s) &

1
(sG)

ds Es)
r "P(s)

ln(sG) =lnC+
J

— ds,
$

C= lim(sG).
$-+ao

s)
ds

C p" F(
G(s) =—exp

$ ~, s

(A4)

(A5)

(A6)

(A7)

g+ioo ~ms m p(s)
g(x) = I ds—exp I

— ds, (0)0). (Ag)
271 Z~ 0 joo S $ S

1 00

C=lims ~ e ' dx+ t e "g(x)dx
$~oo

0

00

=lims ——(e '—1)+ e ' g(x)dx =1. (A9)
$~0Q

1

Then finally

1 pc+'f00 gzs pQo p(s)
g(x) = ' ds—exp ds (a)0). (A10)

271 Z 0 soo $ $ S

The above equation can be put into a' more useful
form by noting some of the properties of P(s). Since
F(s) is the Laplace transform of f(x) we have

We must evaluate the constant C. By the definition of
Laplace transform, Eq. (A6), and Eq. (2.11)

APPENDIX

dg $$
f(y)g(* y)dy. -(A1)

We seek the solution to (2.9). That equation can be
written

Therefore

F(s)= " e '*f(x)dx—

w p(s) ~eo ao e
—zz

ds=
I

ds I dx f(x).

(A11)

(A12)



INFLUENCE OF VARIABLE EJECTION PROBABILITY

J(s,x) =

Integrating J(s,x) by parts, we obtain

J(s,x) = —e '* lns+x t dxe '~ lns.

I.et

Then
E(s,x) =J(s,x)+lns.

Integrating erst with respect to s, we have

t" F(s)
dx=

I
dxf(x) J(s,x),

S 0

where

(A13)

(A14)

(A15)

(A16)
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In the above the limit term goes to zero, and the integral
can be evaluated by the theory of gamma functions; p
is Euler's constant, y=0.577. From (A16) and (A14),

BE(y,x) 1 e "*

~3 r r

y&
—'

= —P (—1)&x& (A18)

Integrating both sides of (A18) from y=0 to y=s, we

get
XS ~

K(s,x) =E(0,x)—Q(—1)&'

jj'

K(O,x) =lim[1 —e '*] lns+x ~ dxe **lns
S~O

0

=—(y+inx). (A17)
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Fro. 5. Paths of integration for Eq. (A24).

We can put the expression of (A21) into (A10) to
obtain

Then, from (A17) and (A16), the above reduces to
g(*)=

e-&e—' t"+'"
exp Ls(x+ (x)A„))

(xs) &'

J(s,x) =—lns —y —lnx —P (—1)' . (A20)

We recall that f(x) is a probability density with the
properties given in (2.6) and (2.7). Thus, if (A20) is
inserted into (A13), we get

t "~(s)
dx = —lns —y —(lnx) A„

Av

+s(x)A, —Q(—1)', (A21)

where we have written out explicitly the erst term of
the summation, and (lnx)A„and (x')A„are the average
values of lnx and x&', respectively:

KZ g QQQ

s&(x&)A,

Xexp —P(—1)', 0.)0. (A24)
jjf

The contour for the above is the solid line shown in
Flg. 5.

If we wish to obtain the asymptotic value of g(x)
as x beconms very large, we can simply move the con-
tour slightly to the left of the imaginary axis so that
Re(s)(0, evading the pole at s=O as shown. Then,
with x large, we can ignore the contribution of the
integral over all the path except for the circuit about
s=O. At s=0, the integrand of (A24) has a pole of
second order. Thus

g(x) —+ e & exp( —(lnx)A, )
(lnx)A. = dxf(x) lnx,

J,

(')"= "d f()'

(A22)

(A23)

8 S' &' Av

)&—exp(s(x+(x)A„)] exp —P(—1)&'

8$ jj ~ —S=O

= Le & exp( —(lnx)A, ))(x+(x)A„). (A25)


