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iodide crystal arising from the increased energy supplied
to the crystal did bring about thermal strains that
broadened the iodine resonance in the region that was
otherwise almost completely free of strains. The broad-
ening was not because of the increased ultrasonic
power as such since we permitted the temperature to
come to equilibrium, whereas, measurements made at
80 v before the crystal had time to increase its tem-
perature gave ultrasonic line widths for iodine that were
essentially the same as those we obtained at 50 v applied
to the quartz.

The ultrasonic line width is larger than the line width
measured by the Pound-Watkins marginal oscillator by
a factor of about three. Part of this broadening may be
attributed to the quadrupole broadening of the satellite

lines, ' but it is also possible that part of the broadening
at low levels of ultrasonic radiation is due to the band
width of the ultrasonic radiation which, though intro-
duced at the monochromatic frequency of 10 Mc/sec,
decays to other neighboring modes by phonon-phonon
collision. Measurements made on iodine nuclei in
potassium iodide at low ultrasonic intensities give an
ultrasonic line width of 3 kc/sec. This is somewhat less
than the ultrasonic line width of iodine nuclei in sodium
Iodide.
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Possible elementary excitations in solids are studied with the aid of the general theoretical approach
developed in the preceding papers of this series. Particular attention is paid to the basic theoretical justi-
fication for the individual-particle-like elementary excitations ("effective" electrons). It is concluded that
good qualitative arguments may now be given for the existence of effective electrons in solids, but that a
detailed quantitative deduction has yet to be made. The presence of an energy gap is shown to be a neces-
sary condition for the existence of strong spatial correlations between minority carriers in solids (excitons,
conduction electron plasmons in semiconductors, etc.) and the nature of such correlated minority electron
excitations is discussed. The plasmon spectrum of various solids is discussed and compared with experiment.

1. INTRODUCTION
' 'N the preceding papers of this series' we have eon-
' - sidered in some detail the inhuence on electronic
motion of the long-range correlations introduced by the
Coulomb interaction between the electrons. We have
seen that these correlations, in most solids, give rise to
a collective excitation of the electron system as a whole,
the plasmon. We have developed a technique for iso-

lating the plasmon excitations by introducing a set of
extra variables and carrying out a series of canonical
transformations on the system Hamiltonian. We have
postponed until now any inquiry into the nature of the
remaining elementary excitations in solids.

Most of the problems of solid-state physics are
treated within the framework of a one-electron approxi-
mation. Considering how crude such an approximation
is, its impressive success is very puzzling, as has been
emphasized anew recently by Mott. ' Detailed eGects,
such as the de Haas-van Alphen eGect in metals or
cyclotron resonance in semiconductors, appear under-

'P. Nozieres and D. Pines, Phys. Rev. 109, 741, 762 (1958);
hereafter referred to as NP I and NP II.

' N. F. Mott, Nature 17S, 1205 (1956).

standable only within the framework of the concept of
a Fermi surface and of independent electron excitations.
There is, consequently, little question that certain
elementary excitations in solids bear a close formal
resemblance to those postulated in a one-electron
model. In this paper, we consider the present theoretical
basis for the one-electron approximation. Our argu-
ments are somewhat qualitative in character; we
propose lines along which one may hope to make them
quantitative.

The justihcation of the one-electron model in the free
electron gas has been considered recently by Landau'
and by Gell-Mann. 4 Both assume that as one switches
on the charge of the electrons, the energy levels vary
continuously from their free-electron values. With this
assumption, one may establish a one-to-one corre-
spondence between the energy levels of the systems of
interacting and noninteracting electrons. It is then
possible to justify a one-particle approximation in the
limit of low-energy excitations.

3L. D. Landau, J. Exptl. Theoret. Phys. (U.S.S.R.) 30, 1058
(1956) Ltranslation: Soviet Phys. JETP 3, 920 (1957)].' M. Gell-Mann, Phys. Rev. 106, 369 (1957).
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The approach of Landau and Gell-Mann obviously
misses the existence of -bound states, such as excitons,
impurity levels in semiconductors, and the like. A more
serious shortcoming, in our view, is their neglect of
possible spatial correlations between the electrons
brought about by the long-range Coulomb interactions.
These correlations may play a role in the following
manner. We know that the Coulomb interaction intro-
duces spatial correlations which correspond to plasmons.
Further, the ground state of the electron system corre-
sponds to a state in which there is no plasmon excitation.
This, in turn, implies a definite spatial correlation
between the electrons ie the groged state, or in the low-

lying excited states. Whether such correlations are
consistent with the notion of independent-particle
excitations will form one of the topics of this paper.

Kohn' has considered the applicability of an inde-
pendent-electron model in a somewhat more restricted
problem, that of a single electron moving in an otherwise
empty band in a semiconductor or insulator. He has.
shown that the interaction between the conduction
electron and the valence electrons may be described, in
the limit of low frequencies and long wavelengths, by
an effective mass and a dielectric constant. We shall
discuss the extent to which his conclusions are applicable
to the case of actual semiconductors and insulators.

We begin this paper by assuming that we may
neglect completely the long-range part of the Coulomb
interaction between electrons. One may then apply with
conhdence the arguments of Landau and Gell-Mann,
and show that there exists a set of elementary excita-
tions whose structure at low energy is the same as that
of a gas of independent "effective particles. " Such an
approach is sketched in Sec. 2.

We next introduce the long-range part of the Coulomb
interaction. From NP I, we know that, after isolation
of the plasmons, this interaction is screened, and must
be used together with a set of subsidiary conditions on
the wave function of the system. In Sec. 3, we present
a set of qualitative arguments which tend to justify the
neglect of these new complications. We conclude that
the effective electrons of Sec. 2 should be meaningful
in the actual problem. In Sec. 4, we try to make the
conclusions of the preceding section more quantitative
by isolating a group of minority carriers near the Fermi
surface (as was done in NP II). We show that if we
neglect the short-range Coulomb interactions, we can
justify the concept of eGective electrons at low energy.
We are, however, unable to treat simultaneously the
long-range and short-range particle interaction, although
we strongly believe that a treatment which takes both
into account simultaneously will yield essentially similar
results.

In Sec. 5, we look for possible correlated motions of
a set of minority carriers. We show that such correlated
motions are possible only if the excitation spectrum of

' W. Kohn, Phys. Rev. 105, 509 (1957).

the remaining majority carriers possesses an energy gap.
We then discuss the possibility of bound states (ex-
citons, impurity states, etc.) and of collective states
(plasmons of conduction electrons in semiconductors,
etc.). In Sec. 6 we compare the results of NP I,
NP II, and the present paper with experiment for
various kinds of solids, and in Sec. 7 we present our
conclusions on the nature of the elementary excitation
spectrum in solids.

2. EFFECTIVE ELECTRONS

Let us first suppose that we may neglect entirely
the long-range interaction between electrons. We
therefore study the structure of the eigenstate spectrum
of (Ho+8„)where 'the screening radius, k, ', is suf-
ficiently short that no collective excitations exist in the
system. We then may follow the approach suggested by
Gell-Mann4 and Landau, ' Consider first the eigenstates
of Ho alone: they are Slater determinants C„built with
"one-electron" wave functions q„,„.In what follows,
we shall find it convenient to use an extended zone
scheme, and to label the q„,„bya single index ~ which
runs over the entire wave-vector space. In the ground
state Co, all levels inside a certain surface S of the
reciprocal space are 611ed, all those outside 5 are empty:
S is the Fermi surface. An excited state C„is described
by p electrons outside S (mornenta K&, K~) and p
holes inside 8 (momenta K&', . K„').The energy E„
is additive:

(2.1)

Let us now switch on the short-range Coulomb inter-
action B.

„

letting the electronic charge e increase
progressively from 0 to its actual value. Let C„(e)
represent the eigenstates of the system for a given value
of e. Under what conditions is it possible to establish a
one-to-one continuous correspondence between C (e)
and C „(0)P Given a state C (0), we can always derive a
formal perturbation expansion in powers of e'-which
satisfies term by term the differential equation for C „(e).
If this series converges uniformly, its sum yields an
eigenstate C„(e)which may be followed continuously
from C „(0).Under these circumstances, we may estab-
lish a continuous mapping of the perturbed states, C „(e)
on the unperturbed one C' (0). We may then label the
C„(e)by the same indices K, and K used for the
independent particles. At this stage the K; and K are
parameters with no direct physical meaning.

It must be emphasized that the convergence of the
perturbation series yielding C „(e) is a completely
unsolved mathematical problem. One must assume that
all goes weH for the actual value of e. ,The calculation
of the correlation energy by Brueckner and Gell-Mann6

6M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957).
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Erc,Ic,' Ep (EIc,ic,' —Ezc,'——)+ (Erc,'—Eo). (2.2)—
The second term of (2.2) describes the energy needed
to create the hole K . The first term describes the
energy needed to create the electron K; in presence of
the hole K,'. Now, does this first term really depend
on the presence of the hole? Such a dependence can
arise only from the Coulomb interaction of the hole
and the electron. Assume that both of them are spread
throughout the solid without any correlation; for a
given position of the electron, the hole is uniformly

distributed over all the solid. In such a case, the
Coulomb interaction of the hole and the electron is of
order 1/E smaller than the interaction of each of them
with the remaining electrons, and is certainly negligible.
Then, (2.2) may be written as

Ezc;~,' ED= E(K,)+E(K ), — (2.3)

which gives a finite result tends to support this view.
The above procedure then gives perturbed eigenstates,
but does not give all of them, since it misses all the
bound states (excitons, impurity states, positronium,
etc.). Such states do not appear when e=0, and have
to be dealt with separately. We shall consider them in

Sec. 5.
Knowing the spectrum of C„(e),we can find by

inspection the state C o(e) which gives rise to the lowest

energy. This state will correspond to an unperturbed
state Co(0) where all levels inside a certain surface S'
of E space are filled, while those outside S' are empty.
S' plays the role of the Fermi surface of the perturbed
system. Note that generally S' does not need to be the
same as the unperturbed Fermi surface S. The two
surfaces only have to enclose the same volume, corre-
sponding to S states. For an isotropic solid, however,
S and S' are identical spheres, for obvious symmetry
reasons. An excited state C„(e) is deduced from an
unperturbed state C„(0)with p holes inside and p
electrons outside S'. Although the physical interpreta-
tion is no longer simple, we still can describe the per-
turbed excited states in terms of "effective holes" and
"effective electrons. "

Thus far we have considered the K, and K,' as
parameters without physical meaning for the perturbed
states. This is not quite true. , for the total momentum
of the system, K«t ——P, K,, is still a constant of the
motion. In the ground state Co(e), K«& has to be zero,

by symmetry. Consider, for example, a new state made

by adding one electron K, to the ground state. The
only parameter is K,, which is consequently the total
momentum of the system. This is just the case studied

by Kohn, ' who uses precisely this interpretation of K,.
Let us now turn to the energy of the excited states.

Consider first a very simple case: what is the energy
EK K of the state C'„(e)with one excited electron K,
and one hole K,'? Let Elc be the energy of the system
with a hole at K;, but no excited electron. We may write

where E(E;) and E(E,') are the energies of the
"effective particles, " which are now independent.

Equation (2.3) is no longer true if the hole and the
electron undergo strong spatial correlations, forming,
for instance, some kind of bound state corresponding to
an exciton. This case will be discussed in more detail
in Sec. 5. It is difficult to give a precise mathematical
statement of what we mean by "correlation" of the
hole and the electron. We are dealing with many-body
wave functions, which do not yield the spatial distribu-
tion of any given particle. In Clc,lc (e), we cannot tell
which part of the charge density corresponds to the
hole, and which part corresponds to the electron. A
fortiori, we cannot define their correlation. The physical
picture is, however, clear, and, in our mind, justifies
a distinction between "correlated" and "uncorrelated"
states.

If we were considering the actual long-range Coulomb
interaction between the electrons, at this stage we
should consider the possibility of another kind of spatial
correlation between the excited particles. Such corre-
lations are indirect in the sense that they occur through
the interaction of excited particles with those remaining
in the ground state. Thus, if there are collective eRects,
the excitation of one particle may modify that part of
the excitation energy of another particle which arises
from the interaction of the latter with the particles in
the ground state. Just such an effect may occur through
the correlations imposed by the condition that there be
no plasmons in the ground state. These effects are
neglected in the approach of Landau and Gell-Mann,
and it is difficult to see how their relative importance
may be considered within that framework.

Obviously, (2.3), where it is valid, may be generalized
to an arbitrary number of electrons and holes, provided
their total number is small compared to the number of
particles in the ground state. In other words, the excited
holes and electrons must constitute a minority group,
spread at random throughout the solid. (Their average
distance is then much larger than k, ', which further
reduces their interaction energy. ) Under these condi-
ditions, the energy of the various excited states may be
written in the form (2.1). The elementary excitations
may then be described in terms of independent effective
holes and electrons, and the Fermi surface may be
defined unambiguously.

In most problems of solid-state physics, one is dealing
with excitation energies of order kT, much smaller than
the Fermi energy Eo. It is obvious from continuity
arguments that, at such energies, the number of excited
particles has to be very small. The above considerations
then apply and justify the use of a one-electron model,
provided one is justified in neglecting the effects of the
long-range interaction. The knowledge of the function
E(E) allows one to determine trivially the density of
states at low energy, and hence the specific heat, the
paramagnetic spin susceptibility, transport properties,
and the like.
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We may formulate these conclusions in somewhat
more mathematical form. The C „(0)constitute a
complete orthonormal set. We can always make the
set of C „(e)orthonormal, but it is complete only if there
is no bound state. Let us write

C „(e)=Q„T„M„(0). (2.4)

*=TC *T* F =TC T (2.5)

represent creation and destruction operators for the
effective holes and electrons. The Hamiltonian THT*
is now diagonal, and has the following form:

This change of basis amounts to a transformation of the
state vector 0' into F4'. T*T is always equal to 1, but
TT* is 1 only if there is no bound state. We can describe
the states C„(0)in terms of creation and destruction
operators CK* and CK for free electrons outside 5', free
holes inside S'. It is then straightforward to prove that

Our basic Hamiltonian may be taken from (5.16) of
NP I; it is

H =Ho+H„+Hpi+H,p. (3.i)
Hp is the usual one-electron Hamiltonian for electrons
moving independently in the periodic field of the ion
cores,

Ho ——P;[pP/2m+ V(r ~)g. (3.2)

H„is the screened short-range interaction between the
electrons,

H„=Q g —',Mi,2exp(ik (r,—r;)}.
i& j k)kg

(3.3)

H~i and H,~ are defined (in the general case) in the
representation in which (Ho+H„) is diagonal; they
represent the plasmon-field Hamiltonian and the re-
maining long-range interactions between the electrons.
We have

H =p E(Ei)rzi*rxi
Kgi p E(E„E,)rx,*rx,r,*r, "

Ky, K2

+ Q E(Ei E)rz.i*rzi
K] Kn

Xrx„*r„i. . (2.6)

H~i=2 2 (&i&s+~'QIQi, },
k(kc

where cd is defined by

4ire' fo„
m n ~ —~np2 2'

(3.4)

(3.5)

In this "cluster expansion, " E(Ei) represents the
energy of the Ei excitation, E(Ei,Ea) the interaction
of the Ei and E2 excitations, E(Ei,E2,EB) the change
in the pair interaction energy brought in by clusters of
three particles, and so on.

If the free electrons and holes are acted upon by an
external potential V, the effective particles feel the
potential TVT*, which may be appreciably different
from V if H„has a large inhuence on the particle
motion. This change of potential corresponds to a com-
plicated screening due to the short-range forces.

3. EFFECTIVE ELECTRONS IN SOLIDS

We now consider the extent to which the concept of
effective electrons is applicable in actual solids. The
actual interaction between electrons is a Coulomb
interaction. As we have mentioned before, one might
expect that the long range of the Coulomb interaction
could cause essential complications, since it might
introduce strong spatial correlations between a large
number of electrons in such a way that the requirements
of the preceding section for effective electrons cannot
be satisfied. Of course, just this effect occurs; the strong
spatial correlations give rise to a collective electron
excitation, the plasmon. However, plasmon excitation
will not occur at the low temperatures in which we are
presently interested, so that we might accordingly hope
that effective electrons may be given a sensible inter-
pretation at low temperatures. To see whether this is
true, let us now turn to the detailed theory we have
developed in the preceding papers.

(H") ., -= 2 4~~'(~~)-(~-~)..
k&kc

iX&~n&yq'
~2 ~ 2 ~2 ~ 2

'rn n ue

(3.6)

We should like to emphasize that the basic representa-
tion we use for the collective approach is just the
electron system discussed in the preceding section, so
that the energy levels and oscillator strengths defined
thereby may be regarded as belonging to our system of
effective electrons.

The remaining complications in our justification of
the notion of effective electrons reside in H,~, and in the
subsidiary conditions imposed on our system wave
function,

(pe+-', Bi)+=0, (Bg)„„=2~mn

,(u~)- (3 &)

These complications represent our inheritance from the
Coulomb interaction; they correspond to the effective
Hamiltonian after plasmons have been removed, and
the inhibition on the degrees of freedom of the system
imposed by our introduction of collective modes. As
we have remarked earlier, H,~ gives rise to just such
long-range correlations in electron motions as are
required to enable the electrons to satisfy the sub-
sidiary conditions.

There are perhaps three major difficulties introduced
by the attempt to work with wave functions which take
into account explicitly the presence of H,„and the
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subsidiary conditions, (3.8).r The 6rst is one of nor-
malization. For instance, consider the original form of
the subsidiary conditions, which was PI%'=0. Since 0
must be a delta function in the PI, representation, we
must normalize it with some care, using, for instance, a
finite representation for the delta function, and pro-
ceeding to the limit with due caution. ' Similar dif-
ficulties arise after the series of canonical transforma-
tions are carried out. A second difficulty is that H p,
when treated by ordinary second-order perturbation
theory, yields a result comparable to that calculated in
lowest order. * Both contributions to the energy are
quite small, so that one is not in difIiculty with the
over-all system energy. The small net shift in the energy
coming from B,p represents the energy required to
rearrange the ps's (and hence the electronic con-
figurations) in such a way that the subsidiary conditions
are satisfied. Such correlations undoubtedly involve

many electrons, so that the nonconvergence of a per-
turbation-theoretic treatment is scarcely surprising. *
Thus, it is not evident at present exactly how H,p

produces wave functions which satisfy the subsidiary
conditions. The third difhculty is that the subsidiary
conditions reduce the total number of electronic degrees
of freedom. However, this difhculty need not concern
us as long as we consider only low-energy excitations.
As pointed out in BHP, the reduction o-curs only for
electronic excitations with an energy comparable to,
or larger than, the plasmon energy.

Since the plasmon at long wavelengths is an excitation
in which many electrons take part, ' we might accord-
ingly expect that the subsidiary conditions should
influence only many-electron states. Thus, even at high
energies (&fur~) the long-wavelength individual elec-
tronic excitations are still unaffected, but many-
electron excitations must satisfy the subsidiary con-
ditions. For what the subsidiary conditions tell us is
that we cannot describe the plasmons twice. Once we

have isolated and, indeed, 'named the plasmon excita-
tions, we cannot allow the remaining "electrons" to
carry out a plasma oscillation. In other words, the sub-

sidiary conditions guarantee that there be no plasmons

among the excitation modes of our "dressed" electrons. "
7 For a more detailed discussion of these points, we refer the

reader to Bohm, Huang, and Pines, Phys. Rev. 107, 71 (1957),
hereafter referred to as BHP.

8 Otherwise one encounters all sorts of simple paradoxes; e.g. ,
(4'~ LPs,Qqj~+)=0 as well as iA-

*Note added ie proof. —The perturbation series expansion of
H,p has now been summed, within the random phase approxima-
tion, for the free electron gas. The result, which is exact in the
high density limit, is a contribution to the system energy from the
second, and all higher, order terms which is one-third the expecta-
tion of 8».

f) The number of electrons taking part in a plasmon is evaluated
by R. A. Ferrell, Phys. Rev. 107, 450 (1957).

'0 See, for instance, BP III, where it was shown that what
corresponds to a plasmon mode is an oscillation of

OP

Z exp( —ik x;)
co' —(k p; —kk'/2m)'

(for the free-electron gas). Hence, the subsidiary conditions in the

This conclusion tends to justify the argument that
only electron excitations of Scv„are infIuenced by the
subsidiary conditions, since a plasmon involves a
kinetic energy of order A~„(distributed, to be sure,
between many electrons).

The preceding statements begin to break down when
k &k, because the number of electrons taking part in a
plasma oscillation approaches unity. Under these
circumstances, the "plasmon" states knocked out by
the subsidiary conditions are closer and closer to indi-
vidual electronic excitations. Hence the high-energy
electronic excitations at such wavelengths may be
modified appreciably by the subsidiary conditions.

4. ISOLATION OF A MINORITY
ELECTRON GROUP

We have seen in the preceding section that the notion
of a low-energy elementary excitation which has the
properties of an "effective" electron is at least a
plausible one. We should now like to investigate the
extent to which we can make a more precise statement
along these lines by regarding the effective electrons as
minority carriers in the sense of NP II. For a semicon-
ductor or an insulator, the low-energy elementary
excitations will be those appropriate to the com-
paratively small number of electrons in the conduction
band. For a metal with strongly overlapping bands, we
need consider only those few electrons lying within a
region AE of the Fermi surface, where

kT &d,E«E,.
Thus, in both cases we are interested in the behavior
of a small group of electrons, g in number, where
5«Ã, and we may attempt to apply the techniques of
Sec. VI of NP II.

Let us begin by neglecting the short-range interaction
between the electrons, a model directly opposed to that
of the preceding section. For the moment, let us also
neglect the indistinguishability of the electrons, an
approximation equivalent to neglecting the exchange
effects in the interactions between the electrons. %e
may then introduce plasmons for the majority carriers
alone, as in Sec. VI of NP II, and so take as our basic
Hamiltonian (6.4) of NP II,

&. t = &o+2 's (I'sI' s+~~'QsQ s)+&-'.~+ &+IIs-

+ Q (~s(ps ps')I' s+~s'ps'p—s-
u&&c

y-', M,'p, p, ), (4.1)
where

(4.2)

and the tilde, as before, refers to the minority electrons.

transformed coordinate system guarantee thap-no plasmons 'exist
in the 6eld. Brueckner, Fukuda, and Sawada (private .com-
munication) have reached a similar conclusion from a somewhat
diferent point of view.
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2
copv

(K)..= ~k(pk)".
Mpv CO

(4.4)

The procedure followed to obtain (4.3) and (4.4) is
identical with that we used in Sec. IV of NP II to
obtain the collective contribution to the dielectric
constant. We note that the minority electrons do not
appear in the subsidiary conditions, but that there
remains in (4.3) a long-range interaction between the
minority electrons and the majority electrons. In cases
where this interaction may lead to an effective dielectric
constant in the minority-minority electron interaction,
we could then carry out a further canonical transforma-
tion to obtain this effective interaction. However, even
where this cannot be done, we may find it useful to
work with a set of minority electrons which are not
bound by the subsidiary conditions.

Where the concept of an effective dielectric constant
is meaningful, it is more convenient to obtain the final
result by a single transformation which simultaneously
eliminates the interaction of the minority electrons
with both the plasmons and the majority electrons.
The transformation is just that generated by (6.6) of
NP II. The resultant long-range interaction between
the electrons is

At this point, we couM first decouple the plasmons
from the electrons by using a suitable canonical trans-
formation to eliminate the term H;„ofrom (4.1). We
might then eliminate the plasmon-minority electron
interaction by the methods used in Sec. CV of NP II.
[See Eq. (4.12) of NP II.) We would obtain

H= Ho+H-+H. o+IIo+ Z ~kp k(&k-+o&k), (4 3)
&&Ice

where

field. Such lack of dispersion in the dielectric constant
reQects the fact that the majority electrons are able to
follow the minority electrons perfectly, giving rise to no
inertial effects. It is therefore obvious that the crys-
talline-field effective-mass approximation will break
down because of electron-electron interaction for suf-
ficiently short wavelengths or for high-frequency elec-
tronic motion.

What is the validity of (4.5). First, in obtaining it
we have neglected the influence of the screened long-
range density Quctuations of the majority electrons on
the minority electrons, an excellent approximation for
suS.ciently small k, and one which appears adequate for
4&k,. Second, we neglected the indistinguishability of
the electrons, an approximation which again is fine for
small k, and should prove adequate for k&k, . (The
effects of exchange appear only through the screened
long-range minority-majority interaction, which is weak
because of the screening. Physically, one does not
expect exchange effects to be important for distances
larger than the electron de Broglie wavelength, which
is of order k, '.)

The most important approximation is our neglect of
II„,which will give rise to both exchange and corre-
lation effects. The short-range majority-majority inter-
action,

o 2 ~k Pkp k)—
k)kc

may be treated along the lines of the preceding section.
There remains the short-range minority-minority inter-
action,

(2ore )
I pkp k, -

ko

Hooul p o~k p—kPk
Ic&&c

(4.5) and the minority-majority interaction,

The "egectiM" minority electrorts appearing in (4.5) are
rot subject to the subsidiary cordi tiorIs. They represent
"dressed" electrons, each surrounded by a cloud of
virtual plasmons and majority electron excitations, in
such a way that their effective interaction is charac-
terized by the dielectric constant of the solid. Thus the
combined effect of the subsidiary conditions and H,

„

on the minority electrons is expressed in the cloud of
virtual excitations about each minority electron, which
leads to the simple law of interaction between them
expressed by (4.5).

One further consequence of (4.5) is of interest.
According to (4.2), (pk')„„=(pk)„„/e(k,cv„„).For long
wavelengths and low frequencies, o(k,~„„)is just eo, the
static dielectric constant. To the extent, therefore,
that. we can neglect the dispersion in eo, there will be
no corrections to the effective mass of the electrons
arising from their long-range interaction with the
majority electrons. The electronic effective mass will
then be just that arising from the periodic crystalline

%re'
PkP k-

x&I, jp

The former interaction is exceedingly small for small g
(again neglecting the possibility of strong spatial corre-
lations between the minority electrons). The major
effect of the minority-majority interaction is the
modification of the energy spectrum of the individual
minority electrons. Thus, since k. '(&r„the short-range
interactions should not be expected to alter the effective
interaction between the minority carriers, apart from
their indirect infl. uence through the shift they produce
in the excitation frequencies, ~„„,and perhaps also in the
matrix elements, (pk)„..

The principal difhculty we face, therefore, is that of
accounting for the shift in the energy levels of the
electrons at the top of the Fermi distribution due toII„.For a metal in which the minority electrons lie in
the same band with the majority electrons, the problem
is particularly pressing. We do not see at present how
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to manage a formal treatment of the problem in which
the fairly large shifts in the position of the Fermi level
due to H„may be included after we have treated the
long-range part of the interaction. (It does not appear
feasible to take into account H„first and then treat
the long-range part of the interaction because the
procedure outlined in Sec. 2 has not been reduced to
Hamiltonian form. )

The difhculties introduced by H„appear more mal-
leable in the case of the conduction electrons in an
insulator or semiconductor, because the band gap
markedly reduces the exchange contribution to the
electronic energy levels, and may be expected to reduce
somewhat the correlation terms as well ~ In this case we
expect that a perturbation-theoretic or slighly better
treatment of the interaction between the minority and
majority electrons will go through with no essential
difhculties. We have a natural scheme for defining our
minority electrons, and there are no difhculties in
principle in calculating the properties of the eRective
electrons. A similar situation should arise from the
semimetal s.

It is interesting to compare our approach and results
with those of Kohn. ' Kohn considered the problem of a
single extra electron in an insulator and proved that
its interaction with a very weak external charge may be
characterized by an effective mass and the static
dielectric constant. Our approach is more general than
that of Kohn, since we may consider a large number of
conduction electrons. On the other hand, our results
are not so rigorous, since we have not established in

detail the validity of all the approximations described
above. We believe that our approach furnishes a good
framework within which Kohn's results may be gener-
alized; what we have done in this section is to outline
how that generalization is to be carried out.

For instance, Kohn has conjectured that the response
of a single extra electron in an insulating crystal to an
external electromagnetic field which varies slowly in

space compared to a lattice spacing, and in time com-

pared to k/hE (hE being the energy gap), may be
characterized by an effective mass, the static dielectric
constant, and the static magnetic susceptibility. We
believe this conjecture may be generalized to a number
of electrons in the conduction band (g«1V), and that
it may be proved along the following lines. Consider
6rst only long-range interactions. Then the derivation
leading to (4.5) may be utilized, where the external field

is regarded as one of the "minority carriers, " as in
Sec. VII and Sec. VIII of NP II. How will the short-
range interactions alter this situation? They, of course
shift the energy levels of the minority electrons, but
that shift should not be inQuenced by the external field
as long as its time and space variation are suKciently
slow, from which the generalization follows.

E ~appB p,
&&&c

(5.1)

where B& is defined by (4.4). We may compare the
relative inQuence of the majority and minority carriers
on a given minority carrier by comparing the mean-
square fluctuations of pi,

' and Bp/Mp. If the latter are
negligible, we will be justified in using (4.3) to treat
correlations between minority carriers.

For a nondegenerate minority electron gas, (pp'p p')pp
is approximately equal to S/p', while for a degenerate
gas it is roughly given by

(8'/ p') (k/k p)

(Since the minority processes always involve low ener-
gies, we have replaced p(k, pi„„)by the static dielectric
constant p.) The expectation value of BpB p/Mp' is
equal to

2 l(p.)o-l'
CO Gdo

(5 2)

In (5.2), each term of the sum corresponds to a fluctu-
ation at a frequency co„0.The interband part therefore
involves very rapid Quctuations. Unless its amplitude
is very much larger than (pp'p p')pp, it cannot alter

5. CORRELATED ELECTRON MOTION

In Sec. 2, we systematically neglected the inter-
action between excited eRective particles, on the
grounds that they were not spatially correlated. In
Sec. 4, we made an equivalent approximation, neglect-
ing the interaction between the electrons near the Fermi
surface. In this section, we consider cases in which this
interaction gives rise to new elementary excitations. We
begin our study with the isolated set of minority carriers
of the preceding section.

For wavelengths longer than the screening radius, the
eRective interaction between the minority carriers is
given by (4.5). As we have emphasized in NP II, this
interaction may be used for treating exchange and scat-
tering effects, but one must be very careful in applying
it to correlation effects (which appear in bound or
collective states of the minority carriers). We first wish
to consider the conditions under which (4.5) may be
used to describe correlated motion of the minority
carriers. (We remark that for wavelengths smaller than
the interelectron spacing, r, k, , the minority-minority
interaction is very slightly perturbed by the majority
electrons. If two electrons are separated by a distance
E smaller than r„wecan treat their relative motion
without including the response of the majority electrons.
Such cases occur infrequently in practice. )

A given minority carrier is subject to the screened
field of the other minority carriers Lgiven by (4.5)],and
to the screened Quctuating 6eld of all the majority
carriers. The latter may be obtained from the screened
interaction between majority and minority carriers
given in (4.3):
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much slow motion of the minority carriers, because of
the large frequency mismatch. (Neglecting these terms
amounts to an adiaba, tic approximation. ) The really
crucial part of (5.2) is therefore the intraband part (if
it exists), which involves very low frequencies cu„p.

Let us consider first a metal. We then have intraband
transitions, which give a contribution to (5.2) of order
E(k/kp) (k'/k, '). In such a case, the dielectric constant
is, for low k, entirely determined by the intraband
effects, and is of order k,s/k'. Furthermore, because the
minority carriers lie in the same band with the majority
electrons, they must be regarded as forming a degen-
erate electron gas. The minority-minority interaction
is then measured by S'(k/kp)(k'/k, '), which is far
smaller than the intraband part of the fluctuation of
the majority carriers. Therefore, there cannot be any
coherent long-range correlations between minority
carriers in a metal. We may also remark that the
interband part of (5.2) is proportional to k'. For low k,
its amplitude becomes very large compared to the
intraband terms, and its size may in fact overcome the
frequency mismatch.

Consider now the opposite case, in which the majority
carriers fill a band completely, as is the case with
valence electrons in a semiconductor. We then need
only consider the interband part of (5.2) which is of
order

(~o.')A,
Sk'

2m co4

Furthermore the dielectric constant e is of order

The minority-minority interaction is then measured

by X((a&„o')/po4) (with an extra factor k/kp if the
minority gas is degenerate). The amplitude of the
majority fluctuations becomes negligible when k'

& (E/Ã) (2m(co„o)/5). Furthermore, we may expect the
effect of the majority fluctuations to be reduced mark-

edly because of their high frequency. Therefore, we may
safely use (4.5) to treat the minority-minority corre-
lations down to wavelengths of the order of the
minority-carrier spacing. To conclude, in order for a
selected group of minority carriers to undergo correlated
motion with small wave vector and frequency, there
must be an energy gap in the excitation spectrum of the
majority carriers.

Let us now consider what kind of correlated ele-

mentary excitations may occur for the minority carriers.
First, we may obtain bound states between several
minority carriers. Remark that such states are precisely
those which we miss when we make a perturbation
treatment of the Coulomb interaction, since they have
no equivalent in the independent-particle model. The
simplest case which we can imagine is the one of a hole
and an electron bound together in an insulator, an
exciton. In NaCl, for instance, the radius of the exciton

4s e' fp„(k)

tASevsl(k&(dc) & Mc upv

(5.3)

where the index v refers to excited states of conduction
electrons alone. If now we replace e,&(kp&,) by the
expression obtained in NP II, (5.3) becomes

+Z
1Ã ~ or —orp ~ or —orp

(5 4)

"J.Friedel, Phil. Mag. 43, 153 (1952).
"See the review particle by R. Ferrell, Revs. Modern Phys.

28, 308 (j956).
'3 These conduction plasmons are precisely those considered by

Dresselhaus, , Kip, and Kittel in their study of magnetoplasma
effect (coupling between plasma and cyclotron resonances) LPbys.
Rev. 100, 618 (1955)j.

is fairly small, and we do not know too well how to take
into account the screening due to valence electrons. On
the other hand, in a semiconductor, the exciton wave
function is very spread out, and the screening just
appears through the dielectric constant.

The same kind of problem is encountered when a
conduction electron forms a bound state with a defect
in the solid, as for impurity states in semiconductors,
or for bound states around an atom ionized by x-ray
absorption. " The preceding remarks still hold. An
interesting case is the formation of positronium. "
There, the radius of the bound state is very small
(&r,), and we are in the simple case mentioned at the
beginning of this section; there is little screening, and
positronium may perhaps exist in metals as well as in
insulators. In the intermediate case (radius of the
bound state of the order of r.), we simply do not know
what happens. There may, or may not, exist bound
states, and the distinction between metals and insu-
lators is irrelevant.

In addition to bound states, the correlations between
minority carriers may give rise to collective effects, i.e.,
to minority plasmons, and to a screening of the minor-
ity-carrier interactions by one another. This is precisely
what happens for conduction electrons in semicon-
ductors. (Such a situation might also occur for s elec-
trons in transition metals, although in this case the
fluctuations of d electrons and the damping by indi-
vidual transitions tend strongly to destroy any organ-
ized motion of the s electrons alone. ) In Ge, for instance,
the conduction plasmons will be in the microwave
range, " and must not be confused with the valence
plasmons which lie in the far ultraviolet. We may cal-
culate the frequency, or„of the conduction-electron
plasmons, from the effective interaction, (4.5).

Since conduction-electron density fluctuations pk,
oscillate at a frequency or., we may simply replace
e(~„„)by e(~,). We then apply the general treatment
of NP I to conduction electrons alone, replacing M&' by
MA'/e, ~(k,po.). The dispersion relation for the conduc-
tion plasmon frequency co. is easily found to be
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k,s (s,'/(v'). (5.6)

For a very low density of minority carriers, k, is very
small, and the screening is only of importance for. long-

range electrostatic phenomena, such as the scattering
of free carriers by ionized impurities in a semicon-

ductor. " When the density of carriers increases, k,
increases also, and it. may happen that the screening
radius becomes smaller than the radius of some bound
state (exciton, impurity states, etc.). In such a case,
the collective effects destroy the bound state. "In some

sense, the bound states (as excitons), and the collective
excitations at comparable wavelengths, are comple-
mentary. Either may exist, but not both. "

A majority plasmon corresponds to minority and

majority charges oscillating in phase. On the contrary,
in a minority plasmon, the two kinds of charges oscillate
out of phase, the majority carriers screening the restor-

ing field of the minority ones. One may then imagine a

'4An outline of such a treatment is given in the appendix of
NP I.

"The use of a Debye screening wavelength in this problem
leads to the Brooks-Herring formula. See for instance, P. R.
Debye and E. M. Conwell, Phys. Rev. 93, 693 (1954)."This probably explains why excitons are so dificult to observe
in a semiconductor. One needs a minimum number of free carriers
to have a reasonable number of excitons, so that one then
encounters rapidly the limit set up by collective effects. This
problem has been studied by P. Morel, Diplome d'Ktudes

~Superieures, Universite de Paris, France, 1955 {unpublished).
» A similar conclusion has been reached by N. F. Mott l Proc.

Phys. Soc. (London) A62, 416 (1949lg.

where the index e refers to excited states of valence
electrons. Equation (5.4) is just the equation deter-
mining the frequency &o of the (valence+conduction)
plasmons. Therefore, there is only one dispersion rela-
tion which has two roots; a high-frequency root in the
ultraviolet range, and a low-frequency root in the
microwave range. The existence of a single dispersion
relation is a consequence of the fact that it follows

simply from a study of the equations of motion for the
most general longitudinal wave propagated by the
electrons. '4

In practice, we may simplify (5.4) considerably. In
most cases, hey, will be smaller than 1/10 ev, much
smaller than any excitation frequencies of valence
electrons (which are certainly larger than the energy

gap). We may therefore replace e,&(k,&o,) by the static
dielectric constant e,i. Furthermore, only intraband
transitions will contribute to the plasmons. Therefore,
(5.4) reduces to

o),s =4s.X,e'/ (mee, t), (5.5)

where S, is the number of conduction electrons, and m*

their effective mass.
As a counterpart of the minority plasmons, there

exists a mutual screening of the minority carriers. If
(8') denotes the average square velocity of the con-

duction electrons, the corresponding screening wave-

length k, is given by

more complicated case, in which there are two kinds
of minority carriers such as electrons and holes in a
semiconductor or a semimetal. In a minority plasmon,
these two carriers oscillate out of phase. One may in-

quire whether there is an additional longitudinal mode
in which they oscillate in phase. This problem is
entirely similar to the problem of optical and acoustic
phonons in an ionic crystal: by analogy, we may call
these new modes "acoustic plasmons. " We have con-
sidered the possible existence of acoustic plasmons in a
gas containing two types of free carriers. " Here we
summarize the physical content of our results.

Acoustic plasmons represent an excitation in which
one kind of carrier (the "heavy" one) is followed, and
hence screened, by the other (the "light" particle). A
condition for their existence is that the "light" particles
be suKciently numerous and mobile to follow closely
and in phase the motion of the "heavy" particles. This
condition is equivalent to the applicability of the
adiabatic approximation. Consider the case of equal
numbers, S', of light and heavy particles, both of which
form a degenerate electron gas. The above condition
implies that their masses, r8 and iV, are very different
(res&(M). Their original interaction is screened by the
dielectric constant e of the majority carriers. Further-
more, the screening of the heavy minority carriers by
the light ones may be described by the dielectric con-
stant of the latter, ~, which is easily shown to be

3' c 12xX8

$2g 2 $28p26m
(5.7)

where ~.denotes the frequency of the minority "optical"
plasmons, and 80 the Fermi velocity of the light par-
ticles. The effective interaction between heavy particles
is then

Mg'
p heavyp heavy

k
(5 8)

In the adiabatic approximation, we may use (5.8) to
treat the correlations of heavy particles among them-
selves. Equation (5.8) then gives rise to acoustic
plasmons whose frequency 0 is given by

N MI,' 1 m=-—e,'k'.
M ~~ 3M

(5.9)

' A brief preliminary account of our results may be found in
D. Pines, Can. J.Phys. 34, 1379 (1956).The detailed Hamiltonian
treatment of the problem will .be the subject of a forthcoming
paper.

The acoustic plasmons therefore propagate at a con-
stant velocity,

s = (tts/33II) '*vs.

The requirement for the validity of an adiabatic
treatment turns out to be that the velocity s be much
faster than the average heavy-particle velocity, and
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much slower than the light-particle velocity. This is
realized if m/M is small enough. " We remark that if
one expresses e and e in terms of the fp (k) and pp„s, one
obtains for the acoustic plasmons the same dispersion
equation which we encountered for the other two kinds
of plasma waves.

It must be recoga. ized that the above treatment is
somewhat idealized. In fact, one very rarely encounters
solids where there exist two groups of degenerate
carriers with very different masses. Such a situation
may occur in semimetals, or as a transient effect in
semiconductors. It is tempting to apply the concept of
"acoustic plasmons" to electrons and holes in a metal,
but we do not believe it is truly applicable. First, the
fluctuations of majority carriers destroy any long-range
order at such low frequency. Furthermore, it was
pointed out to us by Feynman" that in a metal there
occurs a very fast recombination of holes and electrons,
which would completely damp out the acoustic
plasmons. At the present stage of the game, ~these new
"elementary excitations" are, therefore, of a somewhat
odd and tentative character. They may nevertheless
prove to be useful in explaining odd effects.

6. PLASMONS IN SOLIDS

In this section we should like to consider anew the
effects of Coulomb interaction and particularly the
plasmon spectrum of solids, in the light of what we
have learned in this paper and the preceding papers of
this series. Our general point of view is that outlined
in NP I and NP II, that the relative importance of the
Coulomb interactions is determined by the competition
at a given wavelength between co„,the free-electron
plasma frequency, and ~ 0, the average one-electron
excitation frequency.

Let us 6rst consider the extreme case, co 0&)co„.Such
a case is rather exceptional. It might occur for molecular
crystals, in which the valence electron density is small
(ce„small), and the excitation frequency &e p is large,
e.g., the solid rare gases. The effect of the Coulomb
interaction is then small, and is well treated by a per-
turbation technique. There are no plasma oscillations,
and the electrons display entirely individual particle
behavior. The polarizability is small, leading to a
refractive index in the visible. range which is almost 1.

The opposite extreme corresponds to all co„oof the
valence electrons being much smaller than co„.That is
precisely what occurs at long wavelengths for free
electrons, as is discussed in BP III. For actual solids,
this implies that only interband transitions such that
co„o(co„havean appreciable oscillator strength. This is

~9 In a metal, one may consider the valence electrons as light
particles, and the ions as heavy ones. The above treatment then
applies. The acoustic plasmons are just the usual sound waves,
and (5.8) yields the sound velocity. This problem has been treated
by Staver LT. Staver, thesis, Princeton University, 1952 (un-
published); D. Bohm and T. Staver, Phys. Rev. 84, 836 (1952)g.

+ R. P. Feynman (private communication).

TABLE I.A comparison between Ace„and Acr, & in solids for which
the valence electrons are weakly bound (pp p((cp) t The quantity co~
is calculated under the assumption that all valence electrons are
free (2 per atom for Mg, 3 for B, 4 for C, ); e is obtained from
static measurements for Si and Ge, from the index of refraction
in the visible range for 8 and C; co,q is taken from the review
article of Pines. '

Element

Aa)„(ev)
Au&. ) (ev)

Be

19
19

Al

16
15

24
19
6.2

25
22
5.7

si

17
17
12

Ge

16
17
16

+ See reference 22.

"P. Nozieres and D. Pines (to be published), NP IV.
'2 For a detailed discussion of this method and its results, see

D. Pines, Revs. Modern Phys. 28, 184 (1956).

in fact quite possible: Ace„is generally between 10 and
20 ev. This is a fairly large energy range within which
we may have several bands which collect most of the
fp„.Such appears to be the situation in most of the
"well-behaved" metals, e.g. , alkali metals, the alkaline
earths, Al. It is also the case for the usual "valence"
semiconductors, like Si and Ge. These have an energy
gap of order 1 ev, much smaller than co„,which does not
matter at all as far as collective behavior is concerned.

For such solids, the collective treatment is essential.
We expect them to show plasma oscillations, at a
frequency very close to the free electron ~„.Their elec-
tronic polarizability is usually very high, an indication
of very strong screening. In some cases, it may happen
that the core shells have a non-negligible polarizability
(for instance for the heavy alkali metals, K, Rb, Cs).
From NP I, we know that the plasma frequency must
then be corrected for the dielectric constant of the core.

I.et us compare these conclusions with experiment.
In a subsequent paper" we shall see that there are two
ways of obtaining the plasma frequency experimentally.
One is the measurement of the energy loss of fast elec-
trons passing through thin solid foils."We shall denote
the corresponding observed value of co by co,l. This
determination is not always reliable, but it has been
carried out for a wide variety of solids. The other
method of obtaining co involves the optical properties.
As shown, for instance, in NP II, when the frequency
of an electromagnetic wave reaches the plasma fre-
quency, the solid passes from a reQecting region to a
transmitting region. This is a very accurate measure-
ment of co. Unhappily, the corresponding frequency lies
in the far ultraviolet, and the experiment has been
carried out only for the alkali metals. We shall denote
by co,~& the corresponding results for the plasma fre-
quency.

In "fable I, we give the calculated ~„and experi-
mental co,l for three metals, two semiconductors and
two insulators. For the insulators and semiconductors,
we furthermore give their dielectric constant ~. We
calculate pp„assuming all valence electrons free (4 per
atom for C, as an example). For the three metals, the
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TABLE II. A comparison between theoretical and experimental
results for alkali metals. co„=free-electron plasma frequency;
co=the same corrected for core polarizability; co,p&= value meas-
ured in optical experiment; co,&=value measured in energy-loss
experiment. (Data taken from reference 22.)

Element

Ace„(ev)
Aa)(ev)
Aa, pg(ev)
%or,q(ev)

Li

8.1
8.0
8.02
9.5

Na

6.0
5.7
5.91
54

4.4
3.9
3.94
3.8

Rb

4.0
3.4
3.65

Cs

3.6
2.9
3.27

TABLE III. Comparison between theory and experiment for
transition metals. co„is calculated for a gas of free s and d electrons.
(Data taken from reference 22.)

Element

Ace„(ev)
%co,q(ev)

17
22

Cr Mn Fe

24 28
24 22

31
21

Co

34
21

Ni

35
23

Cu Zn

36 32
20 23

"J.H. Van Vleck, The Theory of Electric and Magnetic SNscep-
tibilities (Oxford University Press, ¹w York, 1932), p. 225.

agreement is excellent, as is the case for Si and Ge,
which have a very high polarizability. For all these
elements, the co„oare therefore much smaller than ~„.
We expect narrow undamped plasmon lines, which are,
in fact, observed. On the other hand, 8 and C have
polarizabilities which, although large, are definitely
smaller than those of Si and Ge. For these elements,
many u 0 are of the order of co„.This explains the shift
of the line from the free electron value. It also explains
the observed fact that the plasma line in 8 and C is
much broader than that in Si and Ge. This conclusion
is consistent with the known fact that the band gap of
C is much larger than that in Si.

In Table II, we give an example of the corrections
due to the core polarizability. We obtain the polariza-
bilities from values given by Van Vleck."We denote
by co the corrected theoretical plasma frequency. We
see that co may differ appreciably from co„.The agree-
ment between theoretical values and the optical data
is good. The energy-loss data do not fit very well. The
discrepancy is perhaps not surprising in view of the
severe experimental difhculties arising from oxidation.

The case of all solids of Tables I and II is com-
paratively clean cut: the valence electrons are weakly
bound (a&„e(«u), giving narrow plasma lines, while the
core electrons are strongly bound (a& e&)co), and influence
the collective motion only slightly. Such is no longer
the situation when we consider the transition elements,
or the metals which follow them in the periodic table.
We shall here consider two series of such elements.

In Table III, we give the observed quantum of energy
loss, and the theoretical co„for the elements from Ti to
Zn. The quantity co„is calculated assuming all s and d

electrons to be free (4 per atom for Ti, 12 for Zn). Such
a value does not agree with experiment, since the d

electrons have excitation frequencies co 0 which are of

order of co„.As the atomic number of the element
increases, the inner d electrons become more and more
bound. We therefore expect the average ~ 0 to increase
from Ti to Zn. A simple inspection of the dispersion
relation shows that the theoretical frequency co is at
first larger than ~„,and finally much smaller. The acci-
dental crossover occurs when as many states lie above
and below co. This seems to be observed experimentally.
The accidental agreement occurs for Cr, and is also
found for other elements with 6 electrons per atom, such
as Mo, W, Se."One may argue qualitatively that the
width of the plasma line will be largest when the average
co„ois just equal to co, i.e., when the accidental agreement
between co and co„occurs. This seems to be observed
experimentally, the Cr line being broadest, although its
experimental verification is by no means completely
well-established. "

The constancy of the observed co,l throughout the
transition element series is quite striking. This strongly
suggests that only a limited number of d electrons may
take part in the plasma, that is that only the crust of
the d shell is free enough to sustain a collective oscil-
lation. Thus the low-lying extra d electrons are so

TABLE IV. Comparison between theory and experiment for
metals following the transition series. co~ is calculated for a plasma
of free s and p electrons. (Data taken from reference 22.)

Element

M~(ev)
As&.)(ev)

Ag

9
23

Cd

11
20

11
12

Sn

12
12

Sb

14
15

Te

15
18

tightly bound to the ion cores that they may be regarded
as frozen compared to the outer d carriers.

let us now turn to the case of Cu and Zn. The free-
electron plasma frequency calculated for s electrons
alone is 11 ev for Cu and 13 ev for Zn, while for the s
and d electrons it is respectively 36 and 32 ev. The
average excitation energy of a d electron is of order 4 ev
for Cu, 10 ev for Zn. We are therefore exactly in the
intermediate range. We may include s and d electrons
in the plasmons; there is then a large d electron-plasmon
coupling which depresses the plasma frequency co from
its free-electron value &o~(s,d), since the d electrons are
not truly free. Alternately, we may consider only a
plasma of s electrons. The large polarizability of the d
shell then markedly modifies the electrostatic behavior;
since the d electrons are not truly bound. Therefore,
neither approach is satisfactory. However, the average
value of co„ois somewhat smaller than co. Therefore, we
believe the collective approach with an s-d plasma is
somewhat more suitable than that with an s-plasma
alone. In particular, it leads much more naturally to a dis-
cussion of the line width (which is large). Let us remark
that the dilemma does not concern the existence of
collective modes: the plasmons exist. Our choice is
rather one involving the formulation of the interaction
of the plasmons with the d shell.
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Let us now consider another series, from Ag to Te.
In Table IV, we give experimental and theoretical
results, co„being calculated for s and p electrons alone.
For Ag and Cd, we can draw the same conclusions as
for Cu and Zn; the d shell is so polarizable that an
approach which includes the d electrons in the plasmons
is better. The discrepancy between cv„and m, & is there-
fore, not surprising. For In and Sn, the electric charge
of the ion increases, and the polarizability of the d shell
decreases (e„„is roughly 1.3 for In and 1.2 for Sn). It
is no longer necessary to include d electrons in the
plasmons. However, e„„is still appreciably different
from 1, and the agreement between co„andco,i is almost
too good. T'he core polarization is perhaps compensated
by an interband effect of the s and p electrons. Such
an effect is also suggested by the width of the line,
which is definitely larger than for Be and Al. For Sb,
the situation is at its best: the d shell is no longer polar-
izable, while the s and p electrons are still suKciently
free. For Te, on the contrary, the s electrons begin to be
tightly bound, and this pushes up the plasma frequency,
in accordance with our dispersion relation. (The situ-
ation is there quite analogous to that in Ti.) For this

TABLE V. Comparison of the experimental and theoretical
plasma frequencies for various compounds. e is the dielectric
constant of the solid in the visible range. (Data taken from
reference 22.)

Com-
pound ZnS PbS BeO MgO A1203 Si02 SnOq KBr KCl NaC1

Ace& (ev) 17 16 29 25 27 25 26 13 14 16
Acoe1(ev) 17 15 29 25 23 25 20 13 13 16

5.6 15 3.0 3.0 3.1 2,2 4 2.4 2.2 2.4

series, the line is definitely broader than that for Al,
which indicates a larger spread in cu„o.

Let us now consider the situation in compounds. In
Table V we compare experimental and theoretical
values of the characteristic energy loss for a group of
compounds. We also give the dielectric constant
derived from the index of refraction in the visible range.
The quantity co„is obtained by including all the valence
electrons outside the last closed shell (4 electrons/atom
for Pb, 6 to 0, 7 for Cl, etc.). Clearly such an approxi-
mation, although it be the most natural one in the
spirit of our general approach, cannot always be suc-
cessful. Thus in Cl, even though the plasma frequency
is 20 ev, the low-lying electrons should not be regarded
as free to take part in a plasma oscillation.

For the sulfides, the polarizability is rather large, the
electrons are rather weakly bound, and the excellent
agreement of co,i and ~~ is not surprising. This suggests
that the 6 valence electrons of S are not very tightly
bound, which is supported by the existence of hexa-
valerit sulfur compounds. For the oxides, on the contrary,
e is smaller; and the observed agreement is a bit
puzzling. The s and p electrons in 0 are rather tightly
bound (there are only divalent compounds of oxygen).

The agreement for MgO and Si02 might be due to a
compensation of the type observed for Cr. Finally, the
excellent agreement observed for the halides is definitely
surprising. The polarizability is small, and the plasmon
frequency should be considerably shifted with respect
to cu„.in this case, we believe the agreement to be for-
tuitous. The results are certainly striking, and we
believe they deserve further investigation.

'7. CONCLUSION

We here summarize our views on the present theo-
retical understanding of the nature of the elementary
excitations in solids. The situation with respect to
plasmons is relatively straightforward. For long wave-
lengths we expect them to constitute well-defined
elementary excitations in nearly all solids. When k is
of the order of k„the damping of the plasmons by the
individual electrons becomes sufficiently strong that it
is no longer appropriate to regard the plasmon as an
elementary excitation. Where, however, plasmons exist,
we may carry out a satisfactory theoretical treatment
of their behavior and this treatment formed the basis
for NP I.

The situation with regard to individual electron-like
elementary excitations is not quite so satisfactory. After
separating out the plasmons, we are left with a set of
interacting electrons plus a set of subsidiary conditions
(equal in number to the plasmon degrees of freedom)
on the electronic wave functions. If we neglect the
long-range part of the interactions and the subsidiary
conditions, the approach of Landau and Gell-Mann may
be used to show that the low-energy part of the excita-
tion spectrum has essentially an individual-particle
character, provided the number of excited e6ective
electrons is small. Similarly, if we neglect the short-
range part of the Coulomb interaction, we may show
that the long-range interactions and the subsidiary
conditions do not alter the individual-particle character
of the low-lying excitations. For a small group of
minority electrons, their joint effect is to "dress" each
electron with a cloud of majority electrons. The effective
interaction between the "dressed" electrons is given by
Eq. (4.5).

It seems, therefore, likely that since we get individual-
particle-like elementary excitations by taking into
account, in turn, both the long-range and the short-
range part of the electron interaction, the excitations
should not change their character when both are taken
into account. However, an explicit proof that this is the
case does not yet appear possible. We have seen in Sec.
3 that there is good reason to believe that the sub-
sidiary conditions, which guarantee that no plasmons
exist in the "dressed" electron excitation spectrum, do
not alter for long wavelengths the conclusions reached
by using the approach of Gell-Mann and Landau. For
wavelengths of the order of k, ', the excitation spectrum
is probably not at all simple, since one is just in the
transition region between independent-particle and
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collective effects. Again, the inclusion of H„should not
materially influence the conclusions reached in Sec. 4
concerning the effective interaction between the dressed
electrons, but a definite proof has not been carried
through.

We may next consider the possible existence of other
elementary excitations in solids. These correspond to
excitations in which a few minority carriers undergo
correlated motion. Such correlated motion is only pos-
sible if the direct correlations between minority carriers
are stronger than the Quctuating correlations with the
much more numerous majority carriers. This occurs
only when the majority carriers fill a band completely,
as in semiconductors or semimetals. The effective inter-
action between minority carriers is then given by (4.5).
One may imagine two kinds of such correlated motion.
First, two minority carriers may be found together,
forming an exciton. Second, for long enough wave-
lengths, the minority carriers may undergo a collective
motion, such as the conduction-electron plasmon in
semiconductors. As we have mentioned, excitons and
minority plasmons should be regarded as "comple-
mentary" excitations. When the density of minority
carriers increases, the cutoff k, increases. When k, '
reaches the size of an exciton, the latter is destroyed,
and replaced by plasmon degrees of freedom.

If there exist two kinds of minority carriers with very
different masses, there is the possibility of yet another
collective degree of freedom, which we have called
"acoustic plasmon. " Such a mode corresponds to an
electronic sound wave in which the heavy carriers are
screened by the light ones, as the ions are screened by
the electrons in the usual sound waves in metals. In fact,
the conditions for the existence of such an excitation are
probably encountered only infrequently in actual solids.

We should like to point out that our approach is, to
our knowledge, the only one which enables one to
describe the minority plasmons from first principles. In
the scheme of Landau and Gell-Mann, the interaction
between excited particles is neglected at the outset.
Kohn's treatment is very close to ours, but is limited
to the case of a single electron, and, therefore, cannot be
used to describe collective effects in the conduction
band.

To summarize, we expect plasmons in nearly all

solids, with the exception of molecular crystals. "Ef-
fective electron" excitations are also present in all
solids. Correlated minority excitations, such as excitons
or minority plasmons, can only appear in solids with
almost empty bands, i.e., in semimetals, semiconduc-

tors, or insulators.
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Quantum Efficiency of Photoconductive Lead Sulfide Films*

H. E. SPENCER
Eastman Lode Company, Sary OrdnarIce Division, Rochester, See P'ork
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By using photoconductivity measurements it is shown that the quantum e%ciency of lead sulfide films
is almost unity. Mobilities calculated from photoconductivity data agree with mobilities obtained from
noise and Hall measurements. It is concluded that noise at room temperature is not photon noise.

ECENTLY two independent methods have been
used to calculate the quantum efficiency of photo-

conductive lead sulfide films. From signal-to-noise ratio
measurements Wolfe' concluded that 0.25% of the
photons are effective. From Hall constant and photo-
conductivity measurements Petritz' concluded that
62% are effective. Since both values are for lead sulMe
films manufactured by the Eastman Kodak Company,
it is worth while estimating the quantum eKciency for
similar Q.lms by using a third independent method in-

* This research is supported by the Department of the Navy,
Bureau of Ordnance.' B. Wolfe, Rev. Sci. Instr. 27, 60 (1956).

~R. L. Petritz, paper presented at the American Physical
Society Meeting, Washington, D. C., April 26, 1956 )BulL Am.
Phys. Soc. Ser. II, I, 177 (1956)g. See F. L. Lummis and R. L.
Petritz, Phys. Rev. 105, 502 (1957).

volving only photoconductivity measurements. The
method previously used by Rose' is employed.

Figure 1 shows the usual circuit for measuring photo-
conductivity in lead sulfide films.

When the conductance of the lead sulfide G, equals
the conductance of the load resistor G„it can be shown
that the photovoltage 6V developed across G„is

AV =4EAG,/G„
where E is the bias voltage.

The number of electronic charges which Bow through
G, per electron-hole pair liberated photoelectrically is
AVG, /Pe, where e is the electronic charge and F is the
number of excitations per second. This equals the ratio
of the lifetime of the majority carriers r (assumed

'A. Rose, RCA Rev. 12, 362 (1951).


