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Nuclear Magnetization in the Presence of Ultrasonic Excitation*
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(Received September 30, 1957; revised manuscript received November 12, 1957)

The field gradient at the site of a nucleus resulting from a relative displacement of surrounding charge is
expanded in a Taylor series. The resulting expression is used to calculate the transition probability induced
by this displacement for transitions of quadrupolar nuclei between Dm = &2 spin levels in a sodium chloride-
type lattice. The equilibrium nuclear magnetization in the presence of ultrasonic and thermal lattice vibra-
tions is derived on the assumption of fast mutual spin-Sip processes. The derivation is also based on a
strain-free lattice.

I. INTRODUCTION

KVKRAL experiments' ' have demonstrated that
nuclear-spin transitions in solids can be induced

by ultrasonic waves introduced at the frequency of
either the Am= &1 transition frequency or the"'hm= &2
transition frequency. The sound wave is coupled to the
nuclear spin through the interaction of the quadrupole
moment of the nucleus with the electric field gradient
generated by the ultrasonic waves. Van Kranendonk'
and Das, Roy, and Ghosh Roy' have treated thermal
relaxation in crystals and it is of some interest to
examine the relaxation induced by ultrasonic waves.
Chang' has calculated the thermal transition probabili-
ties for chlorine in sodium chlorate.

In this paper we derive the effect of ultrasonic waves
on the nuclear magnetization for the case where the
nuclei reside in an environment where the electric field
has cubic symmetry, i.e., the splitting of the spin levels
is determined solely by the interaction of the magnetic
moment with the applied external 6eld. We ignore the
effect of strains which cause the local electric fields to
depart from cubic symmetry and consequently bring
about quadrupole broadening of the spin levels. "The
derivation is directly applicable to such cases as sodium
nuclei in sodium chloride where the line width is quite
close to the value calculated from Van Vleck's formula. '
The results can be used with some modification for
nuclei with quadrupole moments larger than that of
sodium.

The derivation is divided into two parts. Part II
contains the derivation for the ultrasonic transition

probability and part III is devoted to derivation of the
nuclear magnetization in the presence of ultrasonic and
thermal lattice vibrations.

II. ULTRASONIC TRANSITION PROBABILITY

Consider a system of nuclei which occupy the lattice
sites of a crystal. Let each nucleus have a spin I and
nuclear quadrupole moment Q. The nuclear quadrupole
moment interacts with the electric field gradient pro-
duced by neighboring charges, and we treat the quadru-
polar interaction as a perturbation of the Zeeman
energy. A sound wave in the crystal modulates the
quadrupolar coupling, and the quadrupolar interaction
couples the spin system to the crystalline lattice. We
compute the probability per unit time that the sound
wave will produce a transition of a nuclear spin between
its Zeeman levels.

Electrostatic Potential

Let Ebe a nucleus and q an external charge. Suppose
the sound wave displaces the nucleus X by S's& and the
charge q by S' ~. (See Fig. 1.) Here p„(r) is the nuclear
charge density at a position r„ from the center of mass
of the nucleus. We assume that after a displacement of
the nucleus the nuclear charge distribution remains
unchanged with respect to the nuclear center of mass.
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FIG. 1. The location and relative displacements of nuclear and
electronic charge used in calculating the transition probabilities
resulting from these displacements.
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NUCLEAR MAGNETIZATION

After displacement, the electrostatic potential at r„due
to the charge q is

V =q /i&( &. (1)

We expand 1/i)( & as a function of r( &, r(n), and cos8;
and the quadrupolar term of the expansion is L(r("))'/
(r( ))']P2(cos8 ), where E2(cos8 ) is the Legendre
polynomial of order two. We write the Cartesian com-
ponents of the vectors in Fig. 1 as follows:

AD=2(3s' —r') =r'E2(cos8) =r'Y~' (7a)

A +i =3s(x+iy) =r'P2+'(cos8) e+'& = r'Y2+', (7b)

A ~~ ——3(x&iy)'= r'E2+'(cos8) e+"@=r' Y2+'. (7c)

functions r'Y2, where I'2 are the unnormalized
spherical harmonics of degree two. Then the five
independent components, which are sufIIcient to define
the tensor, become in Cartesian coordinates

Then

r(n) —(g.(n))

R(n) = (X,(n))

S(n) = (x,(n))

s(0) = (g,.(0)) i= (1, 2, 3).

or

r(n) = R(n)+ S(n) S(0)

r,.( ) = (X( )+g( ) g(0)),

Using Eq. (2) and Eq. (3) and writing

~{a).~{n)

cos8 =
(r( ))(r( ))

(2)

(3)

We drop the subscripts and write the Cartesian co-
ordinates explicitly. We also drop the superscripts and
keep in mind that the A's refer to nuclear coordinates,
We may treat the tensor B exactly as we have treated
A and reduce B to five linearly independent components
analogous to the A's of Eqs. (7).

Using the A; of Eqs. (7) and the analogous 8;, we

expand the potential V in terms of the reduced tensors.
The explicit expression for V is

Vn
~

A o~o+ 6A+lf)' —i+ 6A —i~+i
(It~ 1 1

(r(a)) 5 (

+ A+2&-~+ A-2&+2 I

24 24

g
2

V= +CAB„
(r(a)) 5;

ga
L3X (e)g.(n).piX (e)x (n)8&eh'

2(r( &)' where the C; are numerical constants.
(p())2n(r(.e)) ] 2(4a)

we find for the quadrupolar term of the electrostatic or
potential

In Eq. (4), X;&'&:—(X& '+x' ' —x&'&);, where (e) refers
to a charge outside the nucleus. Summation over indices

j and m gives

ga
V = L3X,(')X &'x;&"'x '"&

2(r&n))' &, &=i

(r(n))2(r(e))2] (4b)

We separate the coordinates x{")and X{'),and find

ga
V — P L3x (n)g&(n) (r(n))28(l]

6(t «))(' && i, -
)& L3X,"X('& —(r(n))'5 "]. (5)

Quadrupolar Interaction Energy

One finds the contribution from the charge q to the
nuclear quadrupolar interaction energy by multiplying
V with the nuclear charge density p„(r) and integrating
over the region occupied by the central nucleus:

H.= V.p„(r)d7„,

where H is the contribution to the Hamiltonian from
the charge q . Substitution of V from Eq. (8) yields

Each of the square brackets may be considered as the
component of a tensor. The potential V becomes Next we introduce the components of the nuclear

quadrupole moment, which we define as
ga

V.= AB,
6(y( ))&

(6) Q;—= p„(r)A;dr„, (i=0, +1, &2).
aJ

(10)

where A and B are second-rank tensors. Consider the
tensor A:

A;i ——3x;&")xi("&—(r("))'8".

The tensor is symmetric; and there are five independent
components, since it has zero trace. Each component is
a homogeneous quadratic function of x, y, s. We shall

choose for a new basis the five linearly independent

The A; are functions of the Cartesian coordinates of an
element of the nuclear charge. We transform the A;
from functions of Cartesian coordinate operators to
functions of the components of the nuclear-spin oper-
ator. (Ramsey" gives a detailed discussion of the

~0 Norman F. Ramsey, nuclear Jtr/rodents (John Wiley and Sons,
Inc. , New York, 1953), p. 16.
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trarisformation. ) We choose a representation in which (I224~ II') I 2&2+2)
both the operator I2 and the operator I, are diagonal. ga
Then in operator form = (I&&4IQ-2II 2&2+2) 2 -28+2" (15a)aR'

Qo= C(2L3I' —I(I+1)]) (11a) (I2)2
~

P
(
I 2&4

—2)

Q~i ——-'2C[I, (I,&iI„)+(I,&iI„)I,], (11b,c)
ga

=(I2&2~Qy ~I m —2) g C 8 ' '. (15b)R'
Qg2 3C——[I,&iI„]2, (11d,e) Now

XL(I—224+2) (I+m —1)(I—2&4+1)(I+2N)]&
and

where C=eQ/II(2I 1)].—The scalar "Q" is conven- (I2&4~Q+2~I2&2 2)=
tionally called "the nuclear quadrupole moment. "

Using Eqs. (11), we write the Hamiltonian, II, as

2 C4Q'8 "'
(r(n))5 4

(12) (I2N
I Q—2 I

Im+2) =
I(2I 1)—

The 8,& ) are functions of the relative displacement of
the charge q with respect to the displacement of the
central nucleus. To And the total contribution to the
quadrupolar energy from all external charges, we must
sum over all charges q . Hence, the total quadrupolar
interaction energy H' becomes

XL(I+2N+2) (I—2&2
—1)(I+m+1) (I—2&4)]&.

Next we need the expansion of 8+2 /R 4 and
8 2 /R ' in terms of the relative displacement of the
charge q . Since the direct process interests us, we need
examine only the linear terms of the expansion (see
Van Kranendonk4). The coefficient of $2( ) is

&It a 2

II'=+II,=Q Q C,Q,B;& &.

a n (r(~)) 4 4—2
(13)

We are interested in the physical situation which
exists when a sound wave displaces the nuclei and
modulates the quadrupolar interaction energy; con-
sequently, we expand the 8,( )/(r("))' in terms of the
relative displacement of the charge q with respect to
the central nucleus. For convenience, we shall make
several changes of notation Lsee Fig. 1 and Eq. (2)].
let

4) (8~2 ) 1
(X,(-)~ X,(- )

(&p), (~) ) R ') (=0 (R(~))'

((~)= S(~) —S(o) = ($,(~))

R =r( '=(X;& )+$,( '), (i=1, 2, 3).

It follows from Fig. 1 that R„=R' & when (=0. The
explicit expressions for the 8;& & are:

8o"= 2L3(X2"+6")—(R-)']
i(~) =3(X2(~)+(2(~))L(Xi(~)+Pi( ))~i(X2( )+(2( ))]

8„-=3L(X, -+q, - ~ (X, -+P, -)].
The general form for the expansion of 8,& '/R ' is

8,&-) 8,&-& 2 a, t 8,(.) q+Z
R ' R ' r=o &=) 8$&,( & E R,')

2 ()2 (8.(~) )
+2 Z (2( )(4( )+.. . (14)

)' (=2 (t$2( )()(4( & E R ' ) )=0

wherei=0, &1, ~2.
H the quantum number m labels the allowed values

of the nuclear spin operator I„we consider only
processes for which hm= &2. Consequently, the matrix
elements of the operator H' which are of interest are:

—15
X (Xi& '&iX2( ')X&,( )+6(5)&,+it')2&) . (16)

(R(a))2

n =1, (Xi"',X2(",X2"))=
&2= 2, (Xi(2),X2(2),X2(2)) =
o(=3, (Xi('),X2(2),X2(')) =

A= 1~

A= 2)

A= 3)

(Xi(—i) X2(—i) X2(—i)) =
(Xi( 2),X2( 2),X2( '&) =

(X i(—2) X2(-2) X2(-2)) =

(a,0,0);
(O,a,o);
(0,0,a);

(17)
(—a, 0, 0);
(0, —a, O);

(0,0,—a).

In Eq. (17), a is the equilibrium lattice constant. For
(2=1, substitution of Eq. (17) into Eq. (16) gives

(8+2(') y 1 15=———X~"'+6(S„+i&„). (1S)
()$4") (. R)4 ) ( 0 a4 a

Multiply Eq. (18) by $4,."), the k-component of the
relative displacement, and sum over the index k:

)(8+2(') q 9 6i
(i) ——

p
(i)+ p

(i)
2=2 (&p&,

") ( Ri' ) r 0 a4 a4

We treat lattices of the sodium-chloride type and
assume that the six nearest neighbors of a specific
nucleus are point charges. If the axes of the Cartesian
coordinate system coincide with the cubic axes of the
crystal, then the coordinates of the six charges (the
particular nucleus which we are considering is at the
origin) are:
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2(1) 9———Aka sinb cos~t,
a4

2(1) 9 6i
pp)+ b(i)

a4 . a4

R1'

2(
—1) 9———Aha sinb cos~t,Similarly, we find the linear terms for all the 8+,( )/R ';

and the results are:

Therefore, if we retain only linear terms, the expansion (19a, b, c) yields
for 8+2(')/Rio is

(26a)

(26b)

8+2(') 9 6i
gi()+—( ()

a4 a4
R2'

8+2(2) jr+2( 2) 8+2(3) 8+2( 3)

R 2' R3' R 3'
=0 (26c)

g, (—1) 9
q, (—i) [o(—i)

R 1' a4 a4

Next we expand Eq. (15a):

q
(Im~Q 2)(I m+2) P CoB+o( &=

aR5
BeQ

I(2I—1)
$2(2)+ Pi(»

R2' a4 a4

a+2(-» 9 ((—2) ((—2)

a' a4

g ,(3)' =—0,
R3' R 3'

(19b)

(19c)

XL(I+m+2) (I—m —1)(I+m+1) (I—m) j&Co

q1~+2 q2~+2 q3~+2 q—1~+2
x + + +

R3'

q o&+o(" q a~+2(")

Presence of a Sound Wave

Consider a unidirectional standing sound wave
propagated in the direction of the x axis. The displace-
ment of a lattice point is

S=A cos(kx —()) cos(d(,

where k=2m/&(, with &i the wavelength of the sound
wave, A is the amplitude of the sound wave, and 8 is
an arbitrary phase factor. For the nucleus we find

e'Qy

8I(2I—1)
(Im~H'~I m+2) =—

18
XL (I+m+2) (I m 1)(I+m—+1)—(I—m) $&—

a3

Let q =ye for all n, where y is a constant and e is the
electronic charge. Substitution of Eqs. (26a, b, c) in
the expanded form of Eq. (15a) determines the matrix
element (Im

~

H'
~
Im+2):

S1(')=A cosh cosset,

and for the charge q1

Si"&=A cos(k(),—()) cos(o(.

(20) XAk sin() coso)t. (27)

If we recall that 8 2( ) =(8+2( &)', then from Eq. (15b)
we find the matrix element (Im

~

H'~ I m —2):

Since the product ka is small for a direct process, we

make the approximation

e'Qy

8I(2I—1)

cos(ka b) =cos()+ka—sin().

Combining Eqs. (20), (21), and (22), we have

gi "&=Aku sin() cos(ot;
also

(22)

(23)

18
XL(I—m+2) (I+m 1)(I—m+1) (I+m) j—&-

a'

XAk sin() cos(ot. (28)

Transition Probability per Unit Time
(24)p

(i) —
p

(i) =0

p
i—i)=g (—i)=pg,(»=p, (»=p, (»=p

H the nucleus is initially in the state m, one finds
Computation of the relative displacements of the five from 6rst-order perturbation theory the probability
other charges shows that that in the time t the nucleus will make a transition to

one of the states k is

pi(» = go(» = po(o) =0

$i( '&= —Ake sin() cos(ot,

$i(—» —$2( »= $o(
—» ——p (25)

p(—» —p(—» —p(—» —0

)Ho(2
W),„—— g((o)—t.

A2 2
(29)

Substitution of the relative displacements in Eqs. Here H), is time-independent, and g((o) is the nor-
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malized shape function of the nuclear resonance line.
If we average Kq. (29) over the frequency spread. Sce

of the resonance line, we find the average transition
probability per unit time:

4A'8v
(30)

g4Q2~2

(I+m+2) (I—m —1)
64A252 I2(2I—1)'

A'k'
X (I+m+ 1)(I—m)

g6
s1112b (31)

and the probability per unit time for a Am=+2
transition is

g4Q2~2

(I—m+2) (I+m —1)
64A254 I2 (2I 1'—

If we substitute the value of the matrix element IIq "
from Eq. (27) or Eq. (28) into Eq. (30), we find the
probability per unit time for a An&= —2 transition is

6 is constant and then integrate over the volume of the
sample to get the expression for the total magnetization
of the sample. We assume that quadrupolar effects do
not sensibly increase the mutual spin-Qip time. '

Let e(m)dr and. n(m —1)dr be the number of nuclear
spins in volume dr with magnetic quantum number

(m) and (m —1), respectively. If ndr is the total number
of spins in dr and I is the nuclear spin, the difference
between the populations of two adjacent energy levels
is

Sdr Ah) %dr
[n (m) —e(m —1)7dr— ~„(33)

2I+1 kT, 2I+1

where co=pLIO is the Larmor frequency of precession.
To obtain Eq. (33) we assume that A&u((kT„and T,
is the temperature of the spin system.

If m & is the probability per unit time for a ther-
mally induced transition of a spin from the state (m)
to the state (m —1), the time rate-of-change of the
population density n(m) due to transitions between the
two levels is

X (I—m+1) (I+m)
g6

sin26 (32)
tl 8$ = —Q tÃ Bf~

dt

and for n(m —1)
+n(m —1)w i (1+&q), (34a)

III. NUCLEAR MAGNETIZATION

In the presence of acoustic vibrations at the frequency
of the spin transitions the nuclei approach an equili-
brium magnetization which is less than the magneti-
zation when only the thermal vibrations are present. '
It is the purpose of the following development to
exhibit the dependence of the magnetization of the
nuclei on the acoustic energy density. It is assumed
that the mutual spin-Qip mechanism brings the spin
system to a spin temperature in the time of the order
of T~, the transverse relaxation time. Since T2 is of the
order of several hundred microseconds, whereas thermal
and ultrasonic transition times are of the order of
seconds, the spin system has a well-defined spin
temperature during the acoustic radiation of the
crystal. However, the region in which the spin tempera-
ture is uniform is limited by the following considera-
tions. The ultrasonic transition probability varies as
sin'8, where 5 is the phase of the standing unidirectional
acoustic wave. In order that the energy possessed by
the spin system distribute itself uniformly throughout
the spin system it would be necessary for the spin
conduction to be large compared to 1/T2. However,
since spin conduction takes place by a random walk
process it would be necessary for T2(X/a)2((T&, where
X is the ultrasonic wavelength and u is the lattice
parameter. T2(lb/a)2, however, is at least several orders
of magnitude larger than Tj for the nuclei we have
concerned ourselves with. We shall therefore ignore
spin conduction and limit ourselves to a development of
the magnetization in a small region of the crystal where

In Eqs. (34a, b), 5& A~/kT&, wh—e—re Ti is the tempera-
ture of the lattice. From Eqs. (34a, b), we have

—[e(m) e(m —1)7= 2—n(m —1)w„2 (1+hi)
df —2n(m) w~,". (35a)

If we retain only terms which are linear in 6,

64n (m 1)=64—[e/(2I+ 1)7;

and we may write for Eq. (35):

—[n(m) e(m 1)7 =——2w —i™[n(m) —e(m —1)7

f n
+»il lw-2" (35b)

2I+ 1J

The s-component of the macroscopic magnetization
which arises from the nuclear spin system in dr is

LT

m,dr=yAdr P mn(m) (36)

For half-integral spin, Kq. (36) becomes

2e (A
m, =yA l l

[I'+(I 1)'+ + (22)'7, (3—"I)

2I+1 (kT, J

d—e(m —1)= —e(m —1)w„ i"(1+&4)
dt

+n(m) w„,". (34b)
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where we have used Eq. (33). Collecting terms in Eq.
(37), we find

( As& ) /I l

I I

—I(Iy1).
(eT,& (3)

For hm= &1 transitions we may write

(38)

dm. =yA—[e(m) —e(m —1)].
dt

Then it follows from Eq. (33) and Eq. (35a) that

d S—m, =2yA w i"(6(—6,).
dt 2I+1

Using Eq. (38), we may write Eq. (39) as

6
=mz w i (mz0 mz)
dt I(I+1)(2I+1)

where m~p=pyAI(I+1)eh~ is the value of m, when
the spin system is in thermal equilibrium with the lat-
tice. To 6nd the total change in m, due to thermal
processes with 6m=&1, we must sum Eq. (40) over
(m):

The quadrupolar coupling between the nuclear spin
system and the crystalline lattice also produces
Am= &2 transitions; hence, we compute the change of
m, produced by these transitions. The population
difference between the states (m) and (m —2) is

2m (~l 2e
[e(m) —e(m —2)]= I I

= 5,. (45)
2I+1 (kT, I 2I+1

The time rate-of-change of the population diGerence
1s

—[e(m) —n(m —2)]= 2w— p [m(m) —e(m —2)]
dt

+ w p 6(. (46)
2I+1

In Eq. (46) we have used the approximation

a,~(m —2)=
2I+1

Since dm, /dt= 2yA(d/dt) [e(m) —e(m —2)] for
Am=&2 transitions, we find, by the same method
as we used to find Eq. (41),

6 (m.p
—m.) —r+i

mz
dt p ~i I(I+1)(2I+1) m=&

(41) dm, 24(mzp mz) r+2—
2 wm —p

dt I(I+1)(2I+1) ~=r
(47)

If we assume that the quadrupolar interaction couples
the nuclear spin system to the crystalline lattice, The transition probabilities m 2 are

w--i""
I (I m —1IQ-ilIm) I' 9e2Q2

(I+m) (I—m+1) (I+m —1)
P (2I 1)'—

X (I—m+2) G(l), (48)

(42)
Since

38
(I m —1IQ, IZm) = (2m —1)

2I(2—

we obtain

I 1
where G(l) is a function of the lattice coordinates only.

X[(I+m)(I—m+1)]&, (42) Substitution of the w„&" from Eq. (48) into Eq. (47)
yields

(2m —1)'(I+m) (I—m+1).
4P (2I—1)'

The transition probability m & also depends upon the
lattice coordinates, and we may write

9e'Q'
(2m —1)'(I+m)

4P(2I—1)'
X (I—m+1)F(l). (43)

In Eq. (43), F(l) is a function of the lattice coordinates
only. With the value of w i™from Eq. (43), we find
for Eq. (41)

24(mzp —mz) 9e'Q'
(l)

dt I(I+1)(2I+1) P(2I 1)'—dm.

—I+2
X P (I+m) (I—m+1) (I+m 1)(I—m+2). —(49)

m=1

Finally, we consider the time rate-of-change of m,
which is caused by the sound wave in the crystal. We
shall choose the frequency of the sound wave in such
a way that it produces km= ~2 transitions. The change
with time of the population density difference, [e(m)—e(m —2)], is

—2e(m) W„p". (50)

6(mzp —mz) 9e'Q'
=mz F(l) —[e(m) —e(m —2)]= 2e(m —2) W„p
dt p~ gi I(I+1)(2I+1) 4P(2I—1)' dt

XP (2m —1)'(I+m) (I—m+1). (44)
m=I In Eq. (50), W p is the probability per unit time



O. KRAUS AND W. H. TANTTILA

that the ultrasonic energy produces a 6m=&2 tran- where
sition. It follows from Eq. (41) that 1/T, =1/T'+1/T",

dm, —I+2
m, +W s. (51)

df ultrasonic I(I+1)(2I+1)

We express the total time rate-of-change of m, as

dm, dm,

dt dt

dm. dm,
+ + . (53)

Q~=+], d~ Qm, =+2 d~ ultrasonic

The first two terms on the right side of Eq. (53) are
given by Eq. (41) and Eq. (47), respectively. Instead
of evaluating the sums over the transition probabilities,
we shall introduce two relaxation times T' and T"
which we define as follows:

The ultrasonic transition probabilities are given by
Eq. (31) of part II:
W 2 =n(I tN+—2) (I+m —1)(I—m+1) (I+m), (52)

where
81 e'Q'p'A'k'

Q= sin'8.
64 Is(2I 1)'Ir,'u—'bl

mzp mzp

where

mz=
1+(Tl/T„) 1+p sin'tl

-I+2
Q W

sin'll I(I+1)(2I+1) ~=r

(56)

and the W are given by Eq. (52).
In order to find the total magnetization, we must

integrate Eq. (56) over the volume of the crystal. In
the case where we have a standing wave in the x direc-
tion in a uniform cylinder, the phase 8 is given by 2vrx/X,
where X is the ultrasonic wavelength. The total mag-
netization M, is given by

and T1 is the observed spin-lattice relaxation time. One
can compute the ultrasonic relaxation time from Eqs.
(54c) and (52).

At constant ultrasonic excitation for a period of time
much longer than T1, the magnetization density is
constant in a region where the phase 5 is constant.
That is, dm, /df =0. From this we get:

1 6

T' I(I+1)(2I+1) m-&

Adx

1+P sins(2m@/X)

(57)
24 —I+2

T" I(I+1)(2I+1) ~-r

dm, mzp —mz
(54a)

and
dm, mzp —mz

(54b)

respectively. We also delve an ultrasonic relaxation
time by

—I+2
Q W

T„ I(I+1)(2I+1)

Introduction of the relaxation times enable us to write
Eq. (41) and Eq. (47) as

where A is the cross-sectional area of the uniform
cylinder and Mzp is the total magnetization of the
nuclei in the absence of ultrasonic radiation.

IV. DISCUSSION

The above calculations have been used in several
experiments, one of which is reported in this issue. "
We have also examined the dependence of the ultra-
sonic transition probability on direction for sodium
nuclei in sodium chloride. "We used nearest and next-
nearest neighbor interaction in conjunction with Eq.
(16) and found that y has no directional anisotropy to
within 25%%.
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Using Eqs. (54a, b, c), we may write Eq. (53) as

dm, mzp —mz m,
(55)
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