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Properties of Liquid He' at Low Temperature
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The properties of liquid He' have been determined at low temperature by using a procedure previously
applied to the study of nuclear matter. The interactions considered are the de Boer and Yntema-Schneider
potentials. The values predicted for the equilibrium density, energy, compressibility, specific heat, mag-
netic susceptibility (and its density variation) are in semiquantitative agreement with experiment.

I. INTRODUCTION

' 'N the preceding paper (to be referred to in the fol-
& ~ lowing as I) a theory of the many-body system has
been applied@to the determination of the properties of
nuclear matter. In this paper we apply the theory to
the study of liquid He' at low temperatures. For
brevity we'take the necessary formulas from I and give
details only where the difference between the two
systems makes this necessary.

We consider a very large number N of He' atoms in
a volume 0 so that the density is p=lV/Q. The inter-
action between pairs of atoms has been determined
theoretically by Kirkwood and Slater' and also derived
from the second virial coefficient. The two potentials
which we have considered are

We give here for convenience some additional
parameters of the system. We define a mean volume
per particle with radius ro by the equation

0/1V= -', pr re'.

At normal density, which corresponds to 0.082 g/cm', '
po =2.43 A. At this density the experimentally deter-
mined mean energy per particle at absolute zero is 5.04
calories per mole or 2.53 degrees per particle. '

The energy and maximum momentum of an ideal
Fermi gas will also be needed; the Fermi momentum pr
is given by

20-'ssr pr'/ (2w ts)' =1V.

io'

V(r) = Vpt (~/r)" —(&/r) 'j
Vp

——40.88'K, E=2.55 A, (1)

1.24 1.89

IO

V(r) = Vp 1200e 4 ss"—
y8

Vs=7250'K, r in A. (2)
IO a-Schneider

(For convenience, we express potentials and energies in
units of degrees Kelvin= ergs/k, where k is Boltzmann's
constant. ) The former was fitted by de Boer' to the
low-temperature virial coefficients and the latter by
Yntema and Schneider' to the virial coefficients up to
1000'K. These potentials are given in Fig. 1; they are
very similar in the attractive region but the Yntema-
Schneider potential rises less rapidly in the repulsive
region. Because of this difference their potential gives
considerably more binding than the de Boer potential.
The results we give in the following are for the Yntema-
Schneider potential. The failure of the de Boer potential
to give the high-density properties correctly is not
surprising; the disagreement of the predictions of this
potential with the observed high-temperature virial
coefficients is primarily due to the excessively steep rise
of the region of repulsion in the potential.

' J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931).
2 J. de Boer and A. Michels, Physica 5, 945 (1938).' J. L. Yntema and W. G. Schneider, J. Chem. Phys. 18, 641

(1950).
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FIG. 1. He' potentials. Note change from linear to logarithmic
scale at 10 degrees.

' K. C. Kerr, Phys. Rev. 96, 551 (1954).
~ S. G. Sydoriak and T. R. Roberts, Phys. Rev. 106, 175 (1957).
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The factor of two comes from two spin states per
momentum state. This gives

pp= (9m/4. )&(A/ro) =1.918(A/ro). (5)

The average kinetic energy of the Fermi gas per particle
then is

(Tp) A„-', (p——p'/2M). (6)

It is convenient here to introduce the energy unit
fi'/LM(1 A)'g= 16.36 deg. The average kinetic energy
per particle of the Fermi gas then is

(Tp)o, in deg= 18.0/(ro in A)'. (7)

At normal density for example, with ro= 2.43 A, (Tp)&,
is equal to 3.04 degrees.

II. SUMMARY OF FORMALISM

The properties of He' are determined from the solu-
tion for the elements of the reaction matrix (for details,
see I)

K;, ii=V';, ii+2 V';, LEo(k)+Eo(&)

tions from the linked-cluster expansion; these have
been shown to be negligible in the nuclear problem and
are estimated to have a small eGect in this system.

We follow a procedure very similar to that outlined
in I in obtaining solutions to the coupled equations
given by Eqs. (8)—(11). We first make the angular
momentum reduction of the E-matrix equation, which
allows us to write the diagonal elements of E for the
angular momentum / and relative momentum k as

(k j
E'i

~
k) =47' drr' ji(kr) w(r)ui(r). (13)

ui(r) =j i(kr)+4' r"dr'Gi(r, r') V(r')ui(r'). (14)

In this equation we have not indicated explicitly the
dependence on the total momentum P or on Z /see Eq.
(12)$ although these must be taken into account in
computing the energies. For Eq. (13), j&(kr) is the
usual spherical Bessel function and the radial function
ui(r) is defined by the integral equation

—Ei(m, Z) —E,(u,Z)j—'SC „,„i, (8)
The Green's function is determined by the equation

where V;,, ~~ is a matrix element of the potential taken
with respect to the plane wave eigenstates of the unper-
turbed system. The indices specify the spin and mo-
mentum states. The sum over m and e is to be taken
over the states above the Fermi surface. The energies
appearing in the energy denominator of Eq. (8) are
determined by the diagonal elements of E. The energy
of an unexcited particle is

Eo(k) = (k'/2M)+Q, (E'o, , p, —Ei.. .i), (9)

It(Z)'~;-= V'i, -+2 V'i. -LZ —Ei(u,Z)
tC, 8

and
—E,(~,Z) —Zj-iZ(Z) „„,„„(11)

Z =Eo(k)+Eo(l) (12)

The parameter 6 appearing in the equation for E(Z)
is an approximation to the excitation energy of other
particles simultaneously excited. The results are very
insensitive to 6 which can be reasonably chosen to be
the mean excitation energy of the Fermi gas.

Ke shall not give the formal justification of these
equations here since they are discussed exhaustively in
I and elsewhere. Ke also shall not discuss the correc-

where the second term comes from exchange of spin and
momentum coordinates. The sum over s runs over the
states of the Fermi gas. The energies of excitation are
given by a similar equation; for a particle excited from
momentum k to m while at the same time the state l
has been emptied is

Ei(m, Z) = (m'/2M)+Q, $E(Z) .. .—K(Z) .. . j, (10)

where the excited state E matrix is

,i i(k'r)i i(k'r') fp(k')
Gt(r, r') =47r ' k"dk'

Z —E(k+) —E(k )
(15)

and

=1, k) kp+ ', P, -

k '=k'+-'P'&3 &kPfp(k)' (»)
The introduction of the function fp(k) and the averaged
momenta k+ and k —is discussed in detail in I.

In obtaining solutions to Eq. (14) for the radial
function ui(r), we have not made a separation of the
region of repulsion as was done in the nuclear case
where the respulsion was treated as an infinitely-repul-
sive core. This was not done since the exact structure of
the potential near the point at which it becomes re-
pulsive turns out to be important. In addition the
product of the Fermi momentum and core radius is in
this case about equal to two, invalidating the treatment
made in the nuclear problem where kpa is considerably
smaller.

To treat the very strong repulsion, we have solved
the integral equation directly starting for sufficiently
small values of r to insure the vanishing of V(r)u(r).
Detailed investigation showed that a satisfactory
starting point was 1.40 A where the repulsion is several
thousand degrees.

where the eGect of the exclusion principle enters through

f (k) =0, k&(k, *——,'P)I
k' kp ~+P'/4—

(k p* ,'P')-*' &k &k—p+—,'P (16)-
kP
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spectrum (for details, see I). A typical iteration
sequence at r0=2.45 A is shown in Fig. 2.
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FIG. 2. Iteration sequence at r0=2.45 A. The erst input marked
zero is the kinetic energy alone. E(p) is not given for p)pr.

After the solution to Eq. (14) has been obtained, the
necessary elements of the E; matrix can be determined
from Eq. (13). The energy of a particle moving on the
energy shell with momentum k; then is

l see Eq. (9)$.

k
E(k,) = +P(K,;, ,; K,;,i,:)—

2M i

III. RESULTS

A. Binding Energy I.nd Comyressibility

The procedure of the last section (described more
fully in I) has been carried out as a function of density.
The results for the binding energy are given in Fig. 3.
The self-consistent excitation spectrum is also shown
in Fig. 4 for several values of the density. The energy
minimum of —0.96 degree per particle occurs at
r0=2.60A. This value of the energy is only about
one-half the observed value. The discrepancy may be
due to the approximation method we use, although we
feel that our method in this case tends to overestimate
the energy slightly since the neglected cluster correc-
tions probably give some repulsion. It is to be em-
phasized that the value we have obtained is extremely
sensitive to the potential used, since the binding energy
is actually the di8erence between the large repulsive
and attractive eGects. The repulsion comes from the
large repulsive region in the potential and the high
zero-point Fermi energy and is only very slightly over-
compensated by the attractive part of the potential. A
few percent increase in the attraction or a very slight
decrease in the radius of repulsion in the potential would
be sufhcient to correct our value for the energy to the
observed value. This slight eGect may also rise from
quite weak 3-body van der Waals forces.

It is also possible to obtain an approximate value for

-0.70

+2x2x~j-.' Z (2i+1)(k;;lKilk„)
k~ Z even

+-.' 2 (2f+1)(k' IKzlk'J)3 (1g)
l odd

In the interaction term the first factor of 2 comes from
2 spin states per momentum state, the second factor of
2 from the exchange term. The factors of 4 and 4 are
the a priori weights of singlet and triplet spin states.
The sum over k; runs over the Fermi gas.

The computations were carried out for l values from
0 to 6 for states below the Fermi surface and for l from
0 to 3 for excited states. In the latter case the higher
values of / were included by replacing the E-matrix
elements by those appropriate for free scattering, i.e.,

(k;; lKg l k;;) (—4'/Mn) lt;,Bg (K;;)
(free scattering limit). (19)

These equations have been solved numerically by
iteration, starting with a first guess for E(k,) (usually
the kinetic energy alone) and then iterating until the
input spectrum for E(k) agreed with the output

-980-
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FIG. 3. Binding energy as a function of the mean radius per
particle, defined in Eq. (3).
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the compressibility from these results; Fig. 3 shows that
if ro is decreased from 2.60 to 2.40, the energy rises by
about 0.18 degree per particle. Assuming a quadratic
dependence of energy on density over this region, it is
then easy to show that the pressure-density relation is

P = 18.9 (p/ps —1) atmospheres or that the volume
change is 5.3 jo per atmosphere. This result is to be
compared with the experimental value obtained at 1.2
degrees by Walters and Fairbanks' who found that the
compressibility was about 3%%uq per atmosphere. These
values should perhaps not be compared directly since

they refer to different temperatures, the theoretical
value being for the ground state at O'K. The comparison
is close enough to show, however, that the theory does
make a semiquantitative prediction of the remarkably
high compressibility of liquid He'.

IN

IN

B. Speci6c Heat

Another result of considerable interest is the specific
heat of the He' liquid. We are able to determine this
from our results only in the vicinity of absolute zero.
The anomaly in the specific heat may be determined
most easily by writing the excitation energy near the
Fermi surface as

I

24
I

2.5 2.6
l

2.7

Fro. 5. Effective mass (at the Fermi surface) as
a function of density.

E(k) = (k'/2M)+ V(k)
= (k'/2M*)+ V(4),

where the effective mass M* is given by
20

M* M dV(kp)1+—
3f kp dkp

(21)
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Fzo. 4. Self-consistent spectra for several densities.

G. K. Walters and W. M. Fairbanks, Phys. Rev
(1956).

The values determined by our results are shown in
Fig. 5; at the energy minimum the value is M*/M
=1.84. This considerable increase in the eGective mass
or equivalently in the Qatness of the excitation spectrum
is due to the rapid increase in the potential energy as
the Fermi surface is approached. This increase is due to
the effect of the exclusion principle on the particle
interactions. A slow particle near the bottom of the
Fermi distribution interacts with other particles pri-
marily in s-states of orbital angular momentum. In
these states the repulsive core acts most strongly. The
eGect of the repulsion is further enhanced by the
exclusion principle which acts to increase the eGects of
the repulsive region and to decrease the eGects of the
attraction. For the more rapidly moving particles near
the Fermi surface, the interaction in states of higher
angular momentum, particularly the I' states, becomes
more eGective. For these states the repulsive core and
the exclusion eGect both act less strongly while the
attractive potential has almost full strength at the
impact parameters typical of I' states; thus the net
eGect of the interaction in these states is attractive and
considerably larger than in the 5 states. The potential
energy of interaction thus increases as the particle

]0$ 263 momentum incr eases, giving rise to the lar ge eGective
mass.
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2.0
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The kinetic energy then is simply shown to be, to lowest
order in e,

3 Pp' 20 e'

Tp(e) =— 1+——.
52M 9 g2

(24)

G/GF I.O-

To determine the change in the interaction energy,
we separate the sum over k which gives the total inter-
action energy into sums over spin up and spin down,
neglecting for the present any variation of the interac-
tions as the spins are polarized. The result is

( kp k+ k k

V(')=( ~ 2+& 2 l«(k'»~)
(ki=0 kg=0 k~=0 kg'=0)

0.5-
+ P P [as(k, ,k,)+a.(k;,k;)$, (25)

ks=o k)=0

where the even- and odd-state contributions are

l I I

0.2 OA 0.6 0.8
T {K4)

I

I.O
I

ls2

a.(k, ,k,)= P (2&+1)(k,, ]Z, fk, ,),
I even

a.(k, ,k;)= P (23+1)(k,,~Eg~k;;).
l odd

(26)

FIG. 6. Specilc heat as a function of temperature as taken from
Roberts and Sydoriak (reference 7). The point indicated by an
open square is from unpublished work by D. Osborne. The dashed
curve is an extrapolation to the computed value at T=0.

C= CpM*/M. (22)

The specihc heat this is 1.84 times that of a Fermi gas.
This result is shown in Fig. 6 together with the experi-
mental values obtained at low temperatures. ' It is clear
that the predicted specific heat agrees with a reasonable
extrapolation of the experimental data.

Our results also show that the specific heat should
rise if the liquid is compressed, the change being given
by the density variation of M*/M shown in Fig. 5.
There is at present no experimental evidence on this
point.

C. Magnetic Susceptibility

Another property of He' of great interest is the mag-
netic susceptibility. This is a measure of the energy
required to produce a net spin alignment in a given
direction. It is easily determined from the elements of
the E matrix, at least in the limit of small spin align-
ment. We let the number of atoms with spin up and
spin down be

N+=-,'N+e, N = ,'N e. -—(23)

' T. R. Roberts and S. G. Sydoriak, Phys. Rev. 98, 1672 (1955).

The alteration of the specific heat is easy to deter-
mine; a simple consideration shows that the eGect of the
Rat excitation spectrum is to alter the specific heat
compared to that of a Fermi gas by the factor M*/M,
1.e.)

+ P P [a.(k, ,k;) —a, (k, ,k,)$. (27)
k&——kp k) ——ky

The second term in this equation can be written in
simpler form. We recognize the sum over k; as the
single particle potential

V(k;) = P [3a.(k;,k;)+a, (k;,k;)].

Therefore, for small e, we have

( k+ k~
p 4s.Q dV(kk)

i V(k;) = (kp —kp)'4'
k;=k ) (2s.)' dkp

Upon using Eqs. (4), (20), and (23), this gives

(2eq'kF'( 1 1y
(N) 6 ~M* Ml

(29)

The last term in Eq. (27) can also be written more
simply as

k+ k+

P [a.(k;,k;) —a.(k;,k;)]
k&=kg Jt:&——ky'

=N
~

—
~

Q[ao(4,4)a —a (kp, kp)a j, (30)
3s' EN)

Equation (25) can readily be brought to the form
(again retaining only leading terms in e)

L~ ky ) kg

V( ) = V(0)+~ P —P ~ P [3as(k;,k;)+a, (k;,k,)$
Ek;=kJ k;=k p k;=o
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where we have made explicit use of Eq. (4) and defined

pdQ; p dQ;
a(kp, kp)A, = a(k, ,k;)

4~ ~ 4~ k~ =kg'=kg
(31)

X [Sao(k,,k;)+a, (k;,k;)] . (32)

The first term is the same as that determining the
specific heat anomaly. The second term results from
the spin dependence of the interactions which is brought
about by the operation of the exclusion principle. The
third term results from the variation of the amplitudes
with the Fermi momentum, this resulting from the
spin polarization.

The amplitudes ao and a, as determined from the
solutions to the integral equations give a value of
—0.390 for the second term in Eq. (32). The third term
as evaluated in the Appendix has a value of 0.289.
Inserting the value of M*/M=0. 543 at the equilibrium
density, we find

F.,/F. ,(F)=0.083= (12.0) '. (33)

Thus the energy required to polarize the spins is very
small compared to a Fermi gas, or correspondingly the
magnetic susceptibility is very large, 12.0 times that of
a Fermi gas. It is to be emphasized here that the specific
heat and magnetic susceptibility are not directly related
as for an ideal Fermi gas since the large value of the
susceptibility is due to the large spin dependence terms
in Eq. (32).' These nearly cancel the combined effects
of the kinetic energy and velocity dependence of the
potential which together determine the specific heat.

The actual value of 12.0 which we obtain is of course
very sensitive to the precise values of M* and the
even-odd amplitude difference, particularly since these
eGects very nearly cancel. Thus we can safely conclude

' This point has also been emphasized by M. Buckingham, Pro-
ceeCings of the Conference on Low Tempertagre Physics, Paris, 1955
(Centre National de la Recherche Scienti6que and UNESCO,
Paris, 1956).

One additional e6ect arises from the variation of the
E matrix as the spins are polarized. This contribution is
evaluated in the Appendix.

Collecting these results we find for the spin symmetry
energy, taking for convenience the ratio to that of an
ideal Fermi gas,

E, 3f 3EQ
+P, [as(kp, kp),„—a, (kp, kp),„]

E,(F) M* 87rs

2MPpQ t dk; 8
[gs(k, ,k,)]~,=tp

4m kg' Bkp

1 r dk;
t dk; ci+- kg

8" 4skps& 4skp' Bkp

In our calculations it is not clear if and how the pro-
cedure used will break down as the solid density is
approached. It is, however, interesting to note that the
iteration procedure which we used in solving the reac-
tion-matrix equations showed signs of instability at the
highest density point, ro= 2.35 A. The difFiculty was the
result of the very Bat excitation spectrum at that
density. This can be interpreted to be an indication that
the lowest energy state of the system is no longer a
degenerate Fermi gas but instead a state of higher
spatial order and consequently, lower momentum order.
Our methods are not suitable without basic modification
for further investigation of this difficulty.
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APPENDIX. DENSITY VARIATION OF THE X MATRIX
AND ITS EFFECT ON THE MAGNETIC

SUSCEPTIBILITY

As the fermion liquid is polarized, the shift in spin
population causes a change in the E matrices through
the alteration of the Fermi momentum. To determine
the magnitude of this eGect, we write the dependence
of the amplitudes on the Fermi momentum as

a(k;,k;; kp). (A1)

In the odd states, as the system is polarized the Fermi
momentum of the states with spin-up shifts to k+, and
with spin-down to k . In the even states a particle with
spin-up interacts with a particle with spin-down. In
the approximation we use in calculating the K matrix,
only the average value of the new Fermi momenta in
the states of spin-up and down enters into the calcula-
tion for the even states. The average is

[k+'+k ']'
(A2)

9This prediction is borne out by the experimental results of
W. Fairbanks (private communication).

from our results only that the susceptibility is very
large and that it is markedly di8erent from the value
suggested by the specific heat.

Another property clearly indicated by our results is
that since the effective mass increases with increasing
density, there is a tendency for the magnetic suscep-
tibility to increase with increasing density. ' Our results
in fact suggest that the system may become unstable
against spin alignment at high density, i.e., that the
energy is lowered if the spins become polarized. This
effect is very sensitive to the details of the calculations,
however, so that we cannot safely predict the value of
the density at which this transition might occur, if at
all.

D. Indications of Solidification
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4Mpp
I

I x'dx ( 2x 2x'i 8
IIo(x,kp), (A4)

&o kp' E kp kp') clkpV(e)= Q Q ao(k, ,k;;k~)+Q Q ao(k, ,kf, k )
ks=0 kg=0

Returning now to Eq. (25), we rewrite it, indicating only on ~k;—k;~. We then can bring the third term in

explicitly the dependence on the shifted Fermi mo- Eq. (32) to the form

menta, as

+ P P Lao(k„k;; k')+a, (k, ,kf, k') j. (A3)
ks~0 kg'M

Ke now carry out an expansion of the amplitudes
around k+, k, and k'=kg. Keeping terms to second
order in the small parameter e of Eq. (23) and dropping
the second derivative of the amplitudes with respect to
kp, we find the result given as the third term of Eq. (32).

To evaluate the integrals in this term, we first make
the approximation of setting Ila, /Ilkp ——Dao/Bkp, which

can have only a very small effect on the result since
oa, /Bkp appears with a small coefficient. We also assume

(as is true to a good approximation) that ao depends

where x is the relative momentum.
To carry out the indicated diGerentiation of a0 with

respect to kJ;, we assume a linear dependence of a0 on

kp and write

ao(x,kp) =a (ox,0)+k fp(x) (AS)

This linear dependence is verified to a good approxima-
tion by the results of the calculations. The function f(x)
is then determined by the difference between ao(x,0),
which is the amplitude for zero density or for free
particles, and ao(x, kp) at the equilibrium density.
These amplitudes have been taken from the computed
results; evaluation of the integral of Eq. (A4) then gives
the value of 0.289 for the third term of Eq. (32).
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Measurement of Lattice Vibrations in Vanadium by Neutron Scattering*

C. M. EisENHAUER, 't I. PELAH, l: D. J. HUGHEs, AND H. PALEvsxv
Brookhavem S'atioeal Laboratory, UPtoe, Sm F'ork

(Received October 31, 1957)

The energy spectrum of slow neutrons inelastically scattered by vanadium metal has been measured by
the time-of-flight technique. The neutrons gain energy by absorbing quanta of lattice vibration energy

(phonons). As the nuclear scattering amplitude of vanadium is incoherent, the energy distribution of
scattered neutrons is directly related to the frequency distribution of lattice vibrations. The measured

neutron energy spectrum, as well as the derived frequency distribution, shows a clearly resolved double peak.
This structure, which is distinctly different from the simple Debye distribution, but expected on the basis of
detailed calculations, has heretofore not been amenable to direct measurement. The measured frequency
distribution is compared with calculations for a body-centered cubic lattice by the Born-von Kirman
theory and qualitative agreement is obtained. A more exact comparison awaits measurement of the elastic
constants of vanadium.

I. INTRODUCTION
'
ANY theoretical and experimental studies of the

- ~ inQuence of crystal dynamics on the scattering
of slow neutrons have been made in recent years. The
general theory is discussed by Placzek and Van Hove, '
who give expressions for the angular and energy distri-
bution of neutrons inelastically scattered by crystals.
In this process, phonons (the quanta of lattice vibration
energy) may be gained or lost by the neutrons.

The case of single phonon gain by scattering in a
cubic crystal is of special interest if the nuclei scatter
incoherently (spin-dependent scattering), as the energy

*Work carried out under contract with U. S. Atomic Energy
Commission.

t Now at National Bureau of Standards, Washington, D. C.
f On leave from Weizmann Institute, Rehovoth, Israel, and the

Atomic Energy Commission of Israel.
' Q. Placzek and L. Van Hove, Phys. Rev. 93, 1207 (1954).

gain is simply connected with the frequency distribution
of the lattice vibrations of the crystal. Thus a measure-
ment of the emergent energy of slow incident neutrons
can be used to obtain the vibration spectrum with
little ambiguity. For incoherent inelastic scattering,
phonon and neutron properties are related only through
the energy conservation condition

h'~ k' —ko'[/2m=hei;(q),

with no need to satisfy interference (momentum) con-
ditions, as is true for the more frequent case of coherent
inelastic scattering. In Eq. (1), k and ko are the
scattered and incident neutron wave vectors respec-
tively, m is the neutron mass, and oi;(q) the angular
frequency of the absorbed or emitted phonon with
wave vector q and polarization index j.

The intensity formula, used to obtain the frequency


