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The properties of nuclear matter have been determined by the
solution of the nuclear many-body problem, using the reaction
matrix theory of Brueckner. The nonlinear integral equations
characteristic of the theory have been solved with the aid of the
fast electronic computer IBM 704. The two-body interaction
assumed is the phenomenological potential of Gammel, Christian,
and Thaler.

It is found that the binding energy of nuclear matter, neglecting
Coulomb forces, is 14.6 Mev per particle at a density correspond-
ing to a radius parameter ro ——1.00&(10 " cm. The Coulomb
repulsion in a heavy nucleus is shown to drop the density by
approximately 15%. The tensor force is shown to give approxi-
mately 6-Mev binding energy.

The results are found to be very sensitive to the self-consistency

requirements of the theory, the binding energy shifting from 14.6
Mev to 34.4 Mev if the velocity dependence of the single-particle
potential is neglected. The actual solutions were made self-con-
sistent by an iteration procedure which converged in five or six
iterations, the final results being self-consistent to one part in
10' or 10'.

The effective mass for nucleon motion in the Fermi sea is found
to vary from 0.56M for slow particles to 0.66M for particles
near the Fermi surface. This velocity dependence of the potential
is closely related to the symmetry energy which also depends,
however, on the shifting in the spin populations as the neutron-
proton ratio is changed from unity. The symmetry energy com-
puted is 10 to 15/z larger than that deduced from experiment.

I. INTRODUCTION

' 'N previous papers, ' ' one of us (K. A. B.) and others
~ ~ have developed a method for determining the prop-
erties of extended nuclear matter. This theory was first
used to make an approximate study of the equilibrium
density and binding energy of nuclear matter' ' and to
develop a theory of high-energy nuclear reactions, ~

energy-level fine structure, and conlguration mixing, '
and neutron reactions with nuclei at low energy. "
Later studies, "" particularly that by Bethe, ' have
made further analyses of the theoretical foundation of
the method and also examined the problems which
arise in applying the method to finite systems. Thus
in this paper, it is not necessary to review the'founda-
tions of the method.

The purpose of this paper is to give the details" of
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accurate numerical solutions of the equations of the
theory and results obtained for the properties of ex-
tended nuclear matter. We shall give a description of
the techniques used in obtaining solutions which is
suKciently detailed to serve as a suitable reference for
future work. The difficulties peculiar to this formulation
of the many-body problem will be exhibited by the
development of the method of solution which we give.

The numerical solutions have been obtained using
the IBM 704 computing machines of the Los Alamos
Scientific Laboratory.

II. STATEMENT OF FORMALISM

According to the many-body theory to be used in
this paper, "neglecting what are called cluster terms in
the earlier papers, the energy of a nucleon of momentum
mp (we suppress spin and isotopic spin indices for the
present) propagating in an infinite nuclear medium in
its lowest energy state is

mo
&o(mo) =

23f

+PP(mpmp ) Eo
)
motto) —(motto f Eo j Ipmo)j. (1)

The last term arises from exchange of all coordinates
(space, and also spin and isotopic spin). In Eq. (1),
M is the nucleon mass, and the sum over no runs over
all occupied states (here and in the rest of this section
we refer to plane-wave states). X is a reactiort matrix

which determines the interaction energy of a pair of
particles; X is determined from the two body potential
V by the integral equation

~ We follow closely here the methods described in reference 2.
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D=Ep(mp)+Eo(tip) El(ml, s„mo,no)

—El (sl,ml' , mo, no),

where the sum over m~ and s~ is over all unoccupied
states. In Eq. (2), the energy El(sl, ml, mp, np) is the
energy of a particle which has momentum s& as a
consequence of the interaction of particles whose mo-
menta were mp and np resulting in a configuration of two
particles whose momenta are ml and sl. LE1(ml,sl, mo, no)
is the energy of the particle whose momentum is ml. j

The energy El(ml, sl, mp, s p) which appears in Eq. (2)
is given by an equation similar to Eq. (1):

m2
El(ml $1' mo n 0) =

2M

+p(mini IE'1(sl, mo, no)
I
mini) —exchange, (3)

nI

where

(m'n'I &1($1', mp, no) I mini) = (m'n'
I
V

I mini)

(m'n'I VIm»2)(m»2I &1(»; mo, no) ImlS1)

to2s2

Eo(mo)+Eo(no)+Eo(nl) El($1 ml; mp so)

E2(m2$1$2 tnlslnl monpni)

—E2($2$1m2 mlslnl mp'S0nl) ~

(4)

In Eq. (4), E2(spslm2, mlslnl, mononl) is the energy of
a particle whose momentum is s2 as a consequence of
(A) interaction of particles whose momenta were tnp

and ep resulting in a configuration of two particles
whose momenta are ml and sl (in the meanwhile the
particle whose momentum is nl does not interact),
followed by (8) interaction of particles whose momenta
are nz~ and m~ resulting in a configuration of two par-
ticles whose momenta are m2 and s2. I The particle whose
momentum is sl does not interact in state (B).$

The E2's are defined in terms of E2's which satisfy
integral equations similar to Eq. (4) except that E3's
appear in D; and so on without end. The complicated
structure of this infinite ladder of equations" which
occurs in the theory is discussed in detail in Appendix A
where it is shown that the ladder can be reduced to a
single equation without approximation by introducing
a parameter with an infinite range in the denominator
of the integral equations for the E matrices (all E
matrices then have a similar structure). Were we to
redo the problem using computing machines comparable

~'The problems peculiar to propagation in excited states or
"o6-the-energy-shell" are discussed in references 2, 13, and 20.

( m'n'IEOIm 'Ono) = (m's'I VImpno)

(m'n'I VImlsi)(m, slIEOImonp)
(2)

m] SI D

in speed to the IBM 704, we would not make the
approximation described in this section again, but we
would proceed in the manner outlined in Appendix A.

In the calculations to be described in the remainder
of this paper, we have not utilized the results of
Appendix A. Instead we have terminated the sequence
of equations for the Ematrices by approximating to the
correct energy denominator. To do this, we make use
of the fact that the dependence of El(ml, sl, mp, np) on
s& is weak since s& does not appear in the kinetic energy
term m12/2M in Eq. (3) or in the Born approximation
term (m'n'

I
V

I mini) in the integral equation (4) for the
Ematrix. El(ml, sl, mp, np) depends on sl only through the
appearance of s& in the energy denominator of the
integral equation I Eq. (4)j for the Ematrix'. The
approximation we have used is to replace

Eo(nl) El(ml $1' mo SO) ~ A (5)

in the energy denominator D in Eq. (4), where 0, is
some average excitation energy. This replacement
makes D independent of s&, consequently makes
El ($1 mp, no) independent of sl, and finally makes
El(ml, sl, mp, np) independent of sl.

The energy denominator which occurs in the integral
equation for E2($1$2', mlslnl', morton&) is:

D=Ep (tn p) +Ep (np) +Ep (n 1)+Ep (S2)

El (sl ml mp S0) E2(s2$1m2 mlslnl mononl)

E3(m3$1$2$3 m2$1$2S2 mlslnln2 mpnpnln2)

E3($3$1$2m3
' m2$1$2232 mlslnln2 ' mononlS2). (6)

In Eq. (6) we replace

Ep(nl)+Ep(SO) El(sl ml, mp, np)

E2($2$1m2 mlslnl mononl) ~ —&, (7)

and so on in all steps in the ladder of equations. This
leads to the replacement

E2(mls, s2, mlslnl mononl) ~ El(mp, sp., mo, no), (8)

the right-hand side being independent of s2 as already
mentioned.

Thus the energy denominator in Eq. (4) becomes

D= Ep(nip)+Ep(np) El(mp' mo, np)—
—El(s2, mo, no) —5, (9)

and the ladder is terminated.
In the calculations, the parameter 3 was varied

between 0 and a,„=E,(p )—Eo(O); (10)

which is the energy difFerence of particles lying at the
top of the Fermi sea and the bottom of the Fermi sea.
The weak dependence of the results on the value of 6
justifies the approximations made here.

We restate the reduced equations here for convenience.
We now write for the on-the-energy-shell propagation

mp
Eo(mo) = +P((mono I

K I mono) exchange—g, (11)2' ~0
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where

(m'e'IKImpnp) = (m'e'I Vlmplp)

and

(m'e'I Vlm"I")( m" I"IKlm mo)p

Z —Ei(m",Z) —Ei(e",Z)

Z =Eo(mo)+Eo(eo).

For oG-the-energy-shell propagation the energy is

(13)

Other total and relative momenta are de6ned similarly.
Since the E's will conserve total momentum if V does,
the total momenta appear as parameters in the in-
tegral equations. Equation (12) for example becomes

(k'IK(p) lk) = (k'I vlk)

(k'I v
I
k")(k"

I K(p) I k)f(p, k")
+Z (18)~-E (p.,~)-E.(p-,~)

The sum over k" runs over momenta,

Ei(mi, Z) =
2M

+PL(mimi I K(Z) I
mili) —exchange j, (14)

where

(m'e'IK(z) Im, l,)= (m'e'I vlm, l,)

(m'~'I v Im"~")(m"~"
I K(z) I

m,~,)
(15)

Z —A —Ei(m",Z) —Ei(n",Z)

P+=sP+k ~

p =-,'p —k", (19)

To proceed with the transformation to coordinate
space, we introduce a wave matrix 0 defined by

and f(p, k") is a step function included to take account
of the exclusion principle. f(p, k") is defined by

f(p,k")=1 ~ p+&p»d p &p-
20=0 otherwise.

(21)

(k'IK(p) lk) =~(k'I vlk")(k" la(p) lk) (22)

The sum in Eq. (22) runs over all momenta k". Sub-
stituting this definition of 0 into the integral equation
(18), we obtain an integral equation for 0:

III. DETAILS OF THE INTEGRAL EQUATIONS
FOR THE K MATRICES

In Eq. (15), Z is arbitrary but needed only for the
range from 2Ep(0) to 2Ep(p~) since this is the maximum

or in more detail byrange for Ep(mp)+Ep(np). The equations for K and
K(Z) are of similar structure and can be solved by the
same procedure. The similarity of Eqs. (11)—(15) to
Eqs. (A-8)—(A-8") of Appendix A should be noted.

In this section we discuss a transformation to co-
ordinate space, a treatment of the exclusion principle,
a removal of difhculties associated with the presence of
a repulsive hard core in the potential, and a treatment
of the tensor force. These are required to reduce the
integral equations for the E matrices to a form suitable
for numerical calculation.

A. Transformation to Coordinate Space 1lk) =
p ~(r), (24)

(k'l~(p) I»=(k'I1lk)

(O'I VI k")f(p, k")(k"
I Q(p) I k)

+Z (23)
&—Ei(p+,&)—Ei(p-,&)

We now go to coordinate space by introducing a
complete orthogonal set of basis wave functions (plane
waves) q p(r):

m'+n'=mp+np ——p, (16)

A transformation of the integral equations for the E
matrices to coordinate space is necessary to avoid
difhculties associated with the presence of a repulsive
hard core in the potential. The transformation to co-
ordinate space proceeds in a manner described in the
work of Manlier'4 and Lippmann and Schwinger. "

The matrix elements of the potential between plane
wave basis states appropriate to an infinite medium are
diagonal in the total momentum, so that in Eq. (12),
for example

and

oIk) = «'(rlolr') p'( '), r

(k'lolk) =&I «'&, (r')olk).

and the coordinate space wave function P„,p(r).

II(po) I k) =4,, p(r).

In addition, for any operator

(25)

(26)

(27)

where p is the total momentum. We also define the
relative momentum

Since V is diagonal in coordinate space, Eq. (26) takes
on a simple form for V; namely,

—', (mp —np) =k. (17) vlk) = v(r) p s(r).
'4 C. Mgller, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.

23, 1 (1945).
PP II, A. Lippinann and J. Schwinger, Phys. Rev. 79, 669 (19S9),

Since Eq. (23) is valid for all k', it can be abbreviated
as follows Lor since the ps(r) for a complete orthogonal
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set, Eq. (23) gives]:

V(k")f p, k")(k"iQ(p) iko)

"" Z —E~(p+») —E~(p-»)

or, according to Eqs. (24)—(27)

(34)

k~~2+LP2 p
2

otherwise.
II

f(P,k") ~—~dP f(P,k")=o, (k'"+ip')'& pr
4m~

=1, k"——',p) pr

where

q(r, ) = yq(r)+ dr'G„(r, r') V(r')P„.q(r'), (30)
J

-( ) ' ( ')f(p»")
G.(,")=E

&" Z —%(p+,Z) —E~(p- Z)

Equation (22) gives

(k'l~(p) lk)

(31)

= ~«'v~ (r')V(r)A(r'), (32)

which is a recognizable result.
In solving Eq. (15) instead of Eq. (12), everything

is the same except for the appearance of 6 in the energy
denominator which now appears in the Green's func-
tion of Eq. (31).

B. Partial Wave Expansion

In the absence of the exclusion principle [that is,
when f(p, k) =1 for all values of its arguments] and in
the absence of self-consistency requirements [that is,
when Eq(p») =p'/2M for all Z], Eqs. (30) and (31)
reduce to the usual two-body scattering equations. It is
natural, therefore, to attempt. a reduction of the problem
by making a partial wave expansion analogous to the
partial wave expansion made in the two-body problem.
However, this cannot be done in a simple and rigorous
way for the following reason. In the two-body problem,
Eq. (31) becomes

exp[ik". (r—r')]
G„(r,r') =P~" Z —(p'/4M) —(k'"/M)

(33)

The summand does not depend on the angle between
y and k" so that G depends on

~

r —r'
~

and not on the
angle between y and r—r'. The summand in Eq. (31)
depends on the angle between p and k" through both
f(p, k") and the energies E~(P~,Z) and E~(p»). In
order to make the usual partial wave expansion, it is
necessary to make approximations which remove this
coupling between the directions of y and k". We have
made the following approximations:

(A) In Eq. (31) we replace f(p,k") by its angular
average

(p k")'~ (1/4~) dP(u k")'f(P,k") (36)

[compare this Eq. (36) to Eq. (34)]. To fourth order
in the energy expansion, this replacement Eq. (36) is
equivalent to the replacements

p '~-'p'+k'"~(1/~3f'(p k")pk" (37)

where f(p, k") is the averaged f(p, k")
To justify Eq. (37) we make the following observa-

tions. The angular coupling is absent in the dominant
constant and quadratic terms in E&(p+»)+E&(p»).
We expect the quartic term to be important only for
k"))p, but in this case p+ and p will be large so that
E~(p+,Z)+E~(P-,Z) = (P+'+P ')/2~= (4P'+k'-")/7'
exactly, an equality which also follows from Eq. (37).
Thus Eq. (37) is correct for k"))p also.

We have attempted no further justification of ap-
proximations (A) or (8). We believe them to have an
effect which is negligible compared with uncertainties
resulting from our treatment of off-the-energy-shell
propagation and our neglect of the linked-cluster cor-
rections. The partial wave expansion now proceeds
exactly as it does in the usual two-body scattering
problem. We repeat the derivations here for complete-
ness, The plane wave functions pq of Eq. (24), which

Here P is a unit vector in the direction of p, and J'dp
means integration over angles. This approximation
derives its validity from the weak dependence of the
E matrix on the details of the treatment of the exclu-
sion effect. We believe the approximation Eq. (34) to
be good, since most of the eGect of the exclusion prin-
ciple in the Green's function [Eq. (31)] is included
correctly.

(8) Approximation A does not yet remove the de-
pendence 'of the summand in Eq. (31) on the angle
between y and k". This angle still occurs in E~(p+,Z)
and E&(p»). We eliminate the dependence of E~(P~,Z)
and E&(P,Z) on the angles in essentially the same way
as we eliminated the dependence of f(p, k") on this
angle. Consider the polynomial expansion of E~(p~»)
E.(P,Z):

E (P.,Z)+E (P-,Z)
=A+8(p+'+p ')+C(p+'+p ')+etc. (35)

Substituting Eq. (19) into Eq. (35), we see that the
angle between p and k" erst occurs in the quartic
term. This we eliminate from the quartic term by
replacing (y k")' by its angular average
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are the natural basis functions to use in this problem,
-have the partial wave expansion (we now include the
spin functions explicitly)

p„(r)=exp(ik r)x, ~

4s'
=p(2l+1)i'j&(kr)~

~
Yp(kf')X, '. (38)

l=O 42l+1)

We mean here and in the rest of this section by,f(k,r)
a function of the angles between k and r and the arbi-
trary reference plane chosen. In the presence of the
tensor force, '6 the orbital angular momentum l is not a
constant of the motion and it is necessary to re-express
this expansion in terms of the eigenfunctions of total
angular momentum IiJ.J J'. These are related to the
YI. LX, 'by the equation

1

F& &'= P Yr, & Nx "~C(Jm, ;L,m, m„s,m—,), (39)
ms=1

where the C's are Clebsch-Gordan coeKcients. We also
need the inverse transformation

L+1
Yr,"~X,"~= P F& t~"C(Jmz+m, ; LmL„sm, ) (40.)

The functions IiI.J ~' are eigenfunctions of J and L;
they are defined only for L=J for the singlet state
with s=O, and only for L=J or J&1 for the triplet
state with s=1. The tensor force couples the triplet
states with the same J and parity, that is, the states
with s= 1 and L=J&1.The state with s= 1 and L=J
does not couple with any other state since the triplet
states with L=J~1 have opposite parity.

Putting Eq. (40) with mr. ——0 in Eq. (38) gives

oo J+1 (4~q*
exp(ik r)X, *=P P (2l+1)i'jt(kr)

~

z=o ~z t &2iy1)

XF~l~*'(k,r')C(Jm, ; l0; sm, ). (41)

Ke also introduce a corresponding expansion for the
coordinate space wave function f. To do this we must
treat the coupled states with L=J&1 with particular
care. VVe note that due to the coupling introduced by
the tensor force, the unperturbed state with L=J—1
goes over into a mixture of states with L=J&1, and
similarly for the unperturbed state with L=J+1.
Thus it is necessary to distinguish the two solutions
generated from the two orthogonal unperturbed solu-
tions. The notation we adopt for the two solutions
generated by the two channels L=J&1 is that under
the action of the tensor force the unperturbed solution
jJ &FJ &

~' goes over into

Vz—r z r'Fl t ~'+ Vz—r s+t 'Fz—+.t ~'— (42)

1

(r) — P P s,m&m&'(r)X m~'

mg'

ao J+1 ( 4rr ) i &+t=2 2 (»+1)~'I I 2 V« "(r)
J=O l~J—1 i2l+1) i'-z—t

XF~ s""(k,r)C(Jm, ; lO; sm, ). (43)

The notation on the left-hand side has the following
meaning: nz, is not a constant of the motion, so that if
the unperturbed ps(r) in Eq. (30) is given by Eqs. (38)
or (41), the solution f&(r) of Eq. (30) will have parts
corresponding to m, '= —1, 0, 1;we have to think of an
entrance channel m, and an exit channel m, ' (spin Qips).

We also need the angular momentum expansion of
the Green's function, which is

G(r, r') =P (2l+ 1)G~(rr') Yt'(r, r') L4r/(21+ 1)]&,

jt (k"r)jt (k"r')f(p,k")
G&(r,r') = ~ P'"dk

&—& (P+,~)-& (P-,~)
(44)

Finally, we insert the expansions Eqs. (41), (43), and
(44) for q t.(r), gI, (r), and G into Eq. (30), and drop the
sums over J since J is a constant of the motion. The
result is

f 4~ q'
P(2l+1)i'~

~
V« (lr)F~ l "(k,r)C(Jm„'10;sm, )(2l+1)

( 4r
=P(2l+1)i'~

~
g~(kr)Ft~~"(k, r)C(Jm„'lO;sm, )

t 21+1~

4r y&
+P ~dr'(2l+1)

~ ~
G~(r, r') Y~ (r,r') V(r')

&2l+1)

X Q (2l'+1)i'$4r/(2l'+1)]&V~ ~ '(r')

XFr s '*(k,l')C(Jm l'0 sm ). (45)

In the last term, the integration over the angles of r'
gives

( 4rr
(2l+1)

~ ~

dr"'Yt'(r, r"') V(r')Ft" "(k,r"')
E2l+1) .i

=47rFtl~" (k,r) V«..l'(r'). (46)

and the unperturbed solution jJ+&FJ+&J J' into

VJ+1, Z—1 FJ—1 +VJ'+1, J+1 FJ+1

We call the solutions for the uncoupled triplet and
singlet states U» ', s=1 and s=O, respectively. Fol-
lowing this notation, the partial wave expansion which
we introduce for f is (suppressing the subscript p on P)

~' The most satisfactory developments of scattering theory
inciuding the effects of tensor forces are by J.Ash&in an& Ta-&ou When P r 1 Fq (46) follows from the definition ofWu, Phys. Rev. 73, 973 {1948),and J.Blatt and L.J.Biedenharn,
Phys. Rev. S6, 399 (1952). V«"s' Lsee Eq. (62)]. We have used the addition
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theorem for F~'

~Sr q»
Fi'(r", r"') =

~ ( Q Vi"(k,r ') X"Vi (k,r),
I 2t+1)

and Eqs. (39) and (40) in deriving Eq. (46). For a
tensor potential, Si2Vr(r'), where Si2 is the tensor
operator

(47)V« '*(r') =S«""Vr(r'),

where the S's are numbers given explicitly by Ashkin
and Wu, '6 Eq. (26), for s=1. For s=O, a tensor poten-
tial gives V~~" '=0, that is, a tensor potential gives no
effect in singlet states. For a central potential V, (r'),
Vii s'(r') =bii V, (r'), of course.

To complete the derivation, we put Eq. (46) into
Eq. (45) and take the scalar product of the result with
Fr, "(k,r), integrate over the angles of r, and find

(changing the dummy index l to l' on the left-hand side
of the equation)

) 4~
P(2P+1)i'I

I
Ui r, '(r)C(Jm„ l'0; sm. )

)I (21'+1)

47r
= (2L'+1)i~'~

~ j & (kr)C(Jm, ; I.'0; sm, )
5 2L'+1)

+4ir g ~~r"dr'Gr, (r,r') Vr, i"(21'+1)i'

4~
X~ ~

U& i ~'(r')C(Jm, ; f'0; sm, ). (48)
(2l'+1)

1Vlultiplying through by C(Jm„LO; sm, ), summing
over m„and using

1 2J+1
C(Jm„LO; sm, )C(Jm, ; f'0; sm, ) =Sr, i —(49)

gives (replacing L by l and I.' by l')

U)& ~'= j&(kr)8«

+4~ P "r"dr'Gi. (r, r') Vi~ ~'(r') Ui~"~'(r'). (50)i-J

For s=1, it is easy to put Eq. (50) into matrix form
similar to that used in Eq. (64) later. G and j as di-
agonal matrices, and j, V, U appear as they do in Eq.
(64). For s=O, only /=l'= J is possible and Eq. (50)
has a much simpler appearance.

It is necessary to express the E matrices Eq. (32) in
terms of the U's. This is done in Sec. III-D. Section IV
is devoted to expressing the energies given by Eq. (11)
or Eq. (14) in terms of this partial wave expansion.

Equation (50) Lmodified to take account of the hard
core; see next section Eq. (60)) was used directly in
the numerical calculations. Further details of the
Dumerical work appear in Sec. V.

C. Removal of Difficulties Associated with the
Presence of a Hard Core in the Potential

When a hard core is present in the potential, Eq.
(50) presents a difhculty since the integral on the
right-hand side runs over the core region also, and in
the core region V(r') =+~, so that the integral is
finite only because the wave function U(r') vanishes
in the core region. The value of the integral appears to
be indeterminate. In this section we show how this
difhculty can be overcome by altering the form of Eq.
(50). The procedure is similar to the procedure used in
avoiding the same difficulty in the usual two-body
scattering problem.

The procedure is the same for all angular momentum
states, so that for simplicity we consider an equation
similar to Eq. (50) except that all indices are suppressed;
namely,

U(r) = Uo(r)+4m ~ G(r,r') V(r') U(r')r"dr'. (51)
~0

We next separate the integral on the right-hand side of
this Eq. (51) into two parts

(52)
JO 0 &c

where r, is the radius of the hard core. The second
integral on the right-hand side of Eq. (52) causes no
difficulty since the potential is finite for r'&r, . In the
first integral on the right-hand side V(r') =+~ and
U(r') =0 for hard cores, but the product V(r') U(r') is
indeterminate. In the usual scattering problem it is
exact (as we discuss below) to make the replacement

V (r') U(r') =X8(r' r,), r'~& —r„(53)
where X is determined by the condition that U(r, ) =0.
Equation (53) says that the entire value of the first inte-
gral on the right-hand side of Eq. (52) comes from the
core edge. This is easily seen to be correct in the scatter-
ing case by considering the behavior of VU for a square
well repulsion. In this case the wave function for r&r,
is U=Csinhnr where C is a constant and e increases
as the square root of the depth of the repulsive square
well. For o. large, U will increase very rapidly as r
approaches r., and the product VU will also increase
very rapidly, since V is constant (square well). There-
fore, the product VU must behave very much as
indicated in Eq. (53). Putting Eq. (53) into Eq. (51),
we find

U(r) = Uo(r)+4 r.'G(r, r.)7i

+47r ~ G(r, r') V(r') U(r')r"dr'. (54)

The condition U(r„,.) =0 then fixes X, which is

X= —Uo(r,)+4n ' G(r„r') V(r') U(r')r"dr'

4 .;G(r„..). (55)
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Inserting this value of X into Eq. (54), we find

F00

U(r) =S(r)+47r F(r,r') V(r') U(r')r"dr', (56)

where
F~(r,r') =Gq(r, r')—

respectively.

G~(r,r,)G~(r„r')

G((r„r,)

Gg(r, r,)
s&(kr) =j&(kr) —j&(kro)

Gg(r. ,r,)
(60)

G (r,r,)G(r„r')
F(r,r') =G(r,r')—

G(r.,r.)

(57)

Vo(r) =j~(kr)

G(r, r') = —(Mk/kr)j &(kr&) m&(kr&),
(58)

where r& and r& are the lesser and greater of r and r',
respectively, it follows immediately that the right-
hand side of Eq. (56) vanishes for r&r. . In the usual
scattering problem

The right-hand side of Eq. (56) should vanish for
r &r,. In the usual scattering problem, for which

D. Determination of the K-Matrix Elements

We next need to determine from the solutions of the
integral equations the necessary E-matrix elements. We
find the diagonal elements of E by substituting Eqs.
(43) and (41) into Eq. (32), and making use of the
fact that V is diagonal in J:

(k,s,m, ~E~k,s,m,)=g dr P (2l+1)( i)'—
s l=Z—1

p 41r q~
X~ I j&(kr)F& "(k,r)C(Jm„l0;sm, )

(2l+1~

&+& f 4r
X V(r) P (2l'+1)i'I

i =z—i 42l'+1)

(q'+k') Uo(r) =0,
(V' +k') G(r, r') =5(r—r'),

(59)
X P U~'~" ~'Fi "~""(k,r)C(Jm,„l'0; sm, ). (61)

l"=J—1

Now

and it follows from these that solutions of Eqs. (56)
and (57) are solutions of the differential Schrodinger
equation, and so solutions of Eq. (51). These facts
prove the correctness of Eq. (53) in the usual two-body
scattering problem.

In our problem, the Green's function does not have
the simple property expressed in the second of Eqs.
(58), and we cannot show that the right-hand side of

Eq. (56) vanishes for r &r„similarly, we cannot show
that solutions of Eqs. (56) and (57) are solutions of

Eq. (51). However, Bethe and Goldstone'7 show that
replacing Eq. (51) by Eqs. (56) and (57) for r)r, and
setting U(r) =0 for r &r, leads to negligible error in the
present problem. This point is also discussed in
Appendix B.

The above procedure may be applied with trivial
alterations to the coupled triplet states. To summarize,
in Eq. (50), we replace j& and G& by

drF ts~" (k,r) V(r)F( ~ ""(k r') = V() ~' (62)

independently of ns„so that the matrix elements of E
depend on m, only through the Clebsch-Gordan coeffi-
cients. Summing over m„since it is this sum which
appears in the energy expressions (see next section,
Sec. IV), and using the theorem Eq. (49), we obtain

J+1
P(k,s, m~E

~
k,s,m, ) =4r Q P (2J+1)

J. /=J—l

"o

J+l
r'drj &(kr) P V« ~'U&& ~' (63).

It is interesting to note that the right-hand side of this
equation can be written as the trace of a matrix product
for s=i; that is,

F00

Q (k,1,m, ~ICI k, 1,m, ) =4~ P (2J+1) ' r'dr Trace 0 j q 0
Sos J "o

jJ+l.
'

VJ-l, J l

X 0

VJ+1,J—1

VJ, J

VJ lJ+l UJ lJ l 0

0 0

VJ+l, J+1 ~UJ+1, J—l 0

UJ—l, J+l

0 . (64)

U J+l, J+l.
'H. Bethe and J. Goldstone, Proc. Roy. Soc. (London) A238, 551 (1956).
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Superscripts J, s=1 on V and U have been suppressed.
For the singlet states, (s=o), Eq. (63) or Eq. (69)
simplifies considerably, of course, since only /=l'=J
is possible.

E. Effect of the Hard Core on the X Matrices

q( p
~+~ —jP(kr, )

P(k, s,m, IE lk, s,m, ) =4m P (2J+1)
t=s—i G&(r„r,)

The integral in Eq. (63) or Eq. (64) cannot be per-
formed over the core region without using Eqs. (53)
and (55). Proceeding just as we did in paragraph III-C
(the core potential is diagonal in / and l'), we find
E . 63) re laced b

0!(x=xy )

np =2—~(X/+ Xop),

Pn=2 '*(XP—Xp'),

PP=Xg '.

(68)

function, Eq. (44). Also the E&'s in Eq. (44) would de-
pend on the z component of the spin and isotopic spin
of the particle referred to. However, the complication
is not great in the present Sec. IV, and we retain it to
facilitate a discussion of the symmetry energy later on.

We must change from spin functions like nP, which
are not eigenfunctions of the total spin, to spin func-
tions X, ' used previously which are eigenfunctions of
the total spin. As is well known,

+ r'drs((kr) Q Vrt, ~'Ugv~' ~,

where s& is given by Eq. (60).

IV. DETERMINATION OF THE SINGLE-
PARTICLE ENERGIES

(65) There are no elements of E which connect states of
different total spin and no diagonal (forward or back-
ward scattering) elements of E which connect states of
diferent z component of the total spin.

There are equations just like Eqs. (68) for the isotopic
spin; for example,

The procedure of the last section (Sec. III) deter-
mines the diagonal elements of the E matrix. From
these, we can now evaluate the single-particle energies
as given by Eq. (11) or Eq. (14).

In Eq. (11), the particle whose momentum is mp is
either a proton (+) or neutron (—), and has its spin
either up (n) or down (P). The sum over ep runs over
particles in plane wave states whose spins are up and
down and over both neutrons and protons. Thus, the
energy of a (for example) proton whose spin is up is

Ep(mp, +,n)

SZO

+P(mp, +,n,' ep, +,nlElmo, +,n, ep, +,n)
2M np

+P (mo, +,n; ~o,+,P I
E

I mo, +,n; ~o,+,P)
np

++= Ti'. (69)

Eo(mp, +,n) =

+ 2 (mo,' +olE(s=1, m, =1, T=1, T,=1)lmp', eo)
np

+ p P [(mo, 'No
I
E(s= 1 m, =0, T= 1, T,= 1) I mo; +o)

np

(mp,' nolE(s=o, m, =o, T=1, T,=1) Imp', Np)g

+2 P[(moi +oIE(s=1, m, =1, T=1, T,=0) Imo; +o)

Because spin and parity are conserved in the two-
body interaction, the total isotopic spin is also con-
served. Therefore E has no elements which connect
states of diferent total isotopic spin or diferent z
components of the total isotopic spin.

In this way, we find for Eq. (66)

+P (m p,+,n; eo, —,n
I
E

I mo, +,n i +o,n)
np

np

(mo, rgoIE(s=1, m, =1, T=o, T,=o) lmo , eo)7'

+P(mo, +,n; ~o, —,PIElmo+ n', ~o,—,P)
np

—exchange.

It is conceivable that the upper limits of the four sums
in Eq. (66) differ. For example, the proton density
might not equal the neutron density. If they are not
equal, we have to think of four Fermi momenta,

pr (+,n), pr (+,p), pr (—,n), pr ( ,p). (67)—
The first of these, for example, is the Fermi momentum
for protons whose spin is up.

We have not kept this complication in the problem.
One can imagine the complications which would come
about because of the occurrence of four f(p, k") re-

ferring to cAA'erent Fermi momenta in the Green's

exchange. (70)

We recall that the E's depend on m, only through cer-
tain Clebsch-Gordan coefficients [see Eq. (61)j. This
assures that the E's depend only on the magnitude of
m„not its sign. The exchange terms will just give a
factor 2 everywhere because of Pauli's principle:

(spin exchange) (space exchange)

X (isotopic spin exchange) = —1. (71)

+o Z[(mo,' @pl E(s=1, m, =o, T=1, T.'=o) Imp', Np)
np

(mo; +olE(s=O, m, =o, T=1, T,=o) Imo', +o)

(mo., eplE(s=1, m, =o, T=o, T,=o) Imo; eo)

(m„. N, IE(s=O, m, =O, T=O, T,=O) lm„~o)g
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X P (mo, rot E(s,m. ,T) ~mo, +o) (72)

There is no need to repeat Eq. (65) for P~, . The iso-
topic spin T only comes in through the parity depend-
ence of the potentials.

Once we have the single-particle energy spectrum,
it is a simple matter to compute the average binding
energy per particle, Et,. If we define Vo(mo) by

Eo (@to)= (tgo~/2M)+ Vo(mo),

so that t/'0 is the potential energy, E& is given by

Eg=
mo'

mo'dmo +-,' Vo (mo)
2M

no02d»»»p. (74)

The factor ~ in front of t/'0 arises from the fact that Vo

arises from interactions of pairs of particles, and we
must now count the potential energy of a pair twice.

V. COMPUTATIONAL PROCEDURE

The problem is to find a self-consistent solution" of
Eqs. (11)—(15). The self-consistency problem arises
because the energies appearing in the Green's functions
(energy denominators) of the integral Eqs. (12) and

(15) have an important effect on the E matrices, and
the diagonal elements of the E matrices in turn deter-
mine the energies according to Eqs. (11)—(14). It was
found that a self-consistent solution could be reached

by iteration starting from any reasonable guess for
Eo(mo) and E,(nzi, Z), the simplest guess being

Eo(mo) =neo'/2M, Ei(mi, Z) =mi2/2M. (75)

ED(mo) and Ei(mi, Z) were kept in the form of tables.
Mo took on the values i»»o=0 1p&(0 2p.»)09p.» '»»»i «ok.
on the values mi=1.1P»(0.5P»)2.1P». For mi&2. 6P»,
jt was assumed that Ei(nzi, Z) =mP/2M for all Z, an
assumption which was checked by calculation. Z took
on the values

&=2Eo(0)+f [2Eo(p») —2EO(p»)]

f=0.05 (0.225)0.95.
76

Thus a table of Eo(mo) and Ei(mi, Z) (an energy
table) has the form shown in Table I.

2 For a detailed discussion of the self-consistency problem see
references 5 and 6.

We now ignore the complication of four Fermi mo-
menta and say they are all the same, and assume that
the potentials are charge-symmetric so that they are
independent of T, and consequently the ICs are inde-
pendent of T.. Changing the sign of some m, in Eq.
(70), we then find [dropping the +, n in Eo(mo, +,n)
because Eo no longer depends on them]

m02» (2T+1)(2s+1)
Ep(mo)= +P P P

np T=O s=o

TAaLz I. Typical energy table used in computation.

On energy she11

mo/PJ» Bo(mo)

0.1
0.3
0.5
0.7
0.9

m1/pJ

1.1
1.6
2.1
2.6

OE energy shell
f=0.05 f=0.225 f=0.500 f=0.725 f=0.900

Zi(mi, Z) =mP/2N'

An iteration consists of producing a new energy
table from an old energy table; we know the old
energy table either from a guess like Eq. (75) or as a
result of the previous iteration.

The new energies are given by Eqs. (11) and (14),
which are not used directly but replaced by equations
like Eq. (72). The sum over m, which appears in Eq.
(72) is given by Eq. (65); this sum over m, depends on

k=-', [mo —ep[,
and

p= [~0+»»o(,
(77)

or on the magnitude of eo and the polar angle 0 of eo
referred to mo as polar axis. The sum over mo which
appears in Eq. (72) is replaced by an integral over the
Fermi sea; the E matrices have to be calculated for
enough values of eo to make it possible to perform this
integral numerically. The mesh of »»0, Ho (or mi, Hi) used
was

ep ——0.1p» (0.2p») 0.9p»,

cosHO ———0.8 (0.4)0.8.
(78)

That this mesh suffices was checked by refining it; a
refined mesh leads to the same new energies. Actually,
it was found that a much cruder mesh suffices; this is
discussed below.

The sum over m, which appears in Eq. (72) also
depends on s and T, and a sum over J appears in Eq.
(65). That is, the new energies are also sums of di-
agonal elements of E matrices for several diferent
states of the two-nucleon system. The states we con-
sider are

Si+ Di, D2, Da, 'So, Di. (79)

That is, we consider all even parity states for 1&2.
The odd-parity states are ignored for reasons given in
the discussion (Sec. VI). /=4 was found not to affect
the self-consistent solutions.

The new energies are given in terms of wave func-
tions through Eqs. (65) and (72). The wave functions
U«. ~' which appear in Eq. (65) depend on mo (or mi),
Bp Ho (or mi, Hi) and the state of the two nucleon system.
The wave function depends on Z, which is given by Eq.
(13) if we are calculating a new Ep(nto) or is one of the
five values corresponding to the five f values in Eq.
(76) if we are calculating Ei(mi, Z).

The wave functions are solutions of integral equa-
tions like Eq. (50). These equations were solved by re-
placing them by sets of simultaneous linear equations
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in a well-known way. The mesh used was

r,r' =0.6 (0.1)1.3 (0.2)2.5 (0.5)6.0X10 "cm, (80)

for r„„=0.5X10 " cm and a similar mesh for r„„
=0.2X10 " cm. That this mesh sufFices was checked
by refining it. The really dificult part of solving the
integral equations was in constructing the Green's
functions according to Eq. (44). This was done by
numerical integration; the k" mesh used was

k"=0(0.5)(10 "cm) ', (81)

with analytical corrections applied for k ') (10 "
cm) ' (see below). That this mesh suffices was checked
by calculation with a finer mesh.

The old energy tables were used to obtain the E&'s

which appear in the denominator of the integrand in

Eq. (44). The old energy tables were interpolated
quadratically in np& [and npp also to get Z=Ep(rnp)
+Ep(no) for on-the-energy-shell propagation] and
linearly in Z to obtain E~(np~, Z). (It is at this point the
self-consistency problem occurs, of course. )

At this point some idea of the enormous magnitude
of the calculation emerges. For each entry in the energy
table (20 in all) we must construct a new entry which
is a sum of two-body interactions. The sum is replaced
by an integral over the Fermi sea; the mesh of eo con-
sists of 5 magnitudes of eo and 5 angles of eo relative to
mo. We must construct the Green's function for every
value of r and r' (441 in all) for l=0 and 2, and for
every entry in the table and every magnitude and angle
of ro. This is 441X20XSX5X2=441 000 Green's func-
tions in all, each of which is a numerical integral as
shown in Eq. (44).

And yet an iteration took only four hours. There is
no point in describing the calculation in more detail;
we have given all the meshes we used and the tech-
niques were all straightforward.

%e did effect a saving in calculating time by using a
cruder mesh of eo and cos80. This mesh was based on
the following considerations. The E matrices depend
mainly on the relative momentum

of eo, and so replaced the mesh

by
cos8p= —0.8(0.4)0.8,

- ~.= —v'l, +v'l, (86)

reducing the time requirement by a factor 0.4.
If Eq. (83) is as accurate as this result suggests, it

ought also be possible to carry out the integral over the
magnitude of eo in the same way. It is easily seen that

J
d@pE(k) =f(np'), (87)

that is, the integral is a function of no only. It is easily
checked that

tp
PJI

np'dnpf(np') =f[(0.5814968pr)']
40

+f[(0.92836494pr)'], (88)

by

n p
——0.1pr (0.2pr) 0.9pr,

no=0.5814968p r0.92836494pr,

(89)

(90)

reducing the time requirements by another factor 0.4.
The two reductions might have been expected to cut

the time from four hours to thirty-eight minutes;
actually forty-five minutes were required per iteration.

Five iterations starting from the guess Eq. (75)
suKced to make the new energy table agree with the
old to one part in 10'.

The analytical correction to the Green's function
integral referred to above is the following. For 0"&10
(10 " cm) ' E~(p Z)+E~(p Z) =k'"/M and Z is
negligible compared to E~(p+,Z)+E~(p,Z). The cor-
rection is

ii ~ ir ~M dk"j (k"r)j (k"r'),

if f(noo) is of the form a+bnp'+cnp4. We found the
integration rule Eq. (88) works very well also. Thus we
replaced the mesh

ko ——
p (mo —no),

and have a polynomial expansion like Eq. (35),

K(ko) =A+Bkoo+Ck p'+ etc.

(82)

(83)

for which it is easy to obtain an analytical expression
for the asymptotic form (valid as E —+ ~). For r =r',
for example, the correction is

Also, we do not expect these expansions to require
many terms. If only the terms through the coefficient
C are retained, E depends on coseo only quadratically.
It is obvious that

M p" sin'x M sin2Er
dS + +'''

r~ „x 2' 4zr

VI. RESULTS

(92)

d~f(~) =f(+V'p)+f( V'o), —
—1

(84)

if f(p) is of the form a+bp+cp'+dp' We found th.at
the integration rule Eq. (84) works very well when

applied to integrating the E matrices over the angles

Note added in proof.—In the computations of this section the
contribution of the 'D2 state was inadvertently computed using
the triplet central even-state potential. This error has been cor-
rected; the new results are given in Table II together with a
summary of the previous results. The considerable shift in the
properties shows the sensitivity of the results to the detailed
potential form.
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TABLE II. Predicted nuclear properties. Column A summarizes
the results of this paper; column B gives the results corrected for
the singlet D contribution; column C gives the new results ob-
tained from the Gammel-Thaler potentials.

r, =0.5&&10» c

State
—V,
Mev

p,, —V]
(10-» cm)-~ Mev

and inverse ranges are

Pc
(10» cm) '

6395
905.6
150—113

45 0.73421 (95)triplet even
singlet even
tripled odd
singlet odd

2.936
1.7
1.5
1.0

18.5
0.95

Binding energy (Mev)
Equilibrium spacing

(10 "cm)
Compressibility (Mev)
Effective mass at

Fermi surface
Symmetry energy (ratio

to ideal Fermi gas)

14.6
1.00

15.2
1.02

~ ~ ~

—57.5 1.12

172
0.73M

187
0.66M

167
0.72M Gammel, Christian, and Thaler found this potential

by fitting the low-energy nucleon-nucleon data (prop-
erties of the deuteron and triplet and singlet scattering
lengths and effective ranges) and some of the high-
energy (up to 310 Mev) nucleon-nucleon data. The p-p
polarization data at 100—310 Mev is not fitted by this
potential. This fact casts considerable doubt on the
triplet odd-parity potentials. In the calculations, we
have set the odd-parity potentials, both triplet and
singlet, equal to zero. This procedure has the following
justification.

Investigations" carried out after the completion of
this work show that the p-p polarization can be fitted
by including a very short-ranged spin-orbit term in the
triplet odd-parity potential. In these investigations, it
was found that the central term in the triplet odd-parity
potential is zero. The tensor and spin-orbit terms in
the triplet odd-parity potential give no binding in
first order (in which the X-matrix elements are replaced
by V-matrix elements; that is, in Born approximation)
and the slight binding eGect they produce in second
order is compensated by the singlet odd-parity repul-
sion, which though strong, occurs only in isotopic spin
T=O states and so has little statistical weight. In-
vestigation of this point using the latest Gammel-
Thaler potentials indeed shows that the odd-state
contribution is very nearly zero, at least in the phase-
shift approximation to the E matrices. LStill more
recent work has shown the presence of a short-ranged
spin-orbit term in the triplet even-parity potential. "
These short-ranged terms are not effective at low en-
ergies (they begin to be important at 100 Mev), and
the properties of nuclear matter depend on nucleon-
nucleon scattering in the region 0—100 Mev. ] Thus,
were we to redo these calculations, we would and could
use potentials which give very good fits to all the
nucleon-nucleon data in the energy range 0—310 Mev,
putting the calculation on a firmer basis.

We return now to a description of the results we ob-
tained with the even parity potentials given in Eq. (95).
The results for the binding energy per particle (E&) are
shown in Fig. 1 as a function of ro which is defined in
terms of the volume per particle (0/E) as follows:

1.692.472.69

The calculations of this section have also been repea'ted using
the Gammel-Thaler potentials '~ which include spin-orbit forces,
and which predict correctly all scattering results in the low and
intermediate energy region (0—150 Mev). The computed nuclear
properties are given in Table II. The actual potentials used have
been slightly modified from those of references 29 and 30 to give
correctly the low energy scattering parameters and deuteron
properties; the potential parameters are given in Table III.

TABLE III. Constants of the Gammel- Thaler potentials. The
potentials have the Yukawa form and repulsive cores with
r, =0.40X10» cm.

Strength
(Mev)

Inverse range
(10-» Cm) 1State

—877.4—159.4—434—5000—14.0
22.0

130.0—7315

Triplet central even
Triplet tensor even
Singlet even
I. S even
Triplet central odd
Triplet tensor odd
Singlet oddI Sodd

2.091
1.045
1.450
3.70
1.00
0.80
1.00
3.70

The substantial change of the symmetry energy from the pre-
diction of the Gammel-Christian-Thaler potentials is caused by
the eA'ect of the odd-state central forces where both the repulsive
singlet and attractive triplet contributions act to lower the sym-
metry energy Lsee Eq. (107)).

In our calculations we have used the Gammel-
Christian-Thaler two-body potential. " This potential
has hard repulsive cores

V(r) =+~, r(r, (93)

outside of which are central and tensor potentials of
Vukawa shape

The core size is independent of spin and parity. V., p,„
V, , and li& are spin- and parity-dependent (sV,+, for
example, is the depth of the central potential for triplet
even-parity states). The values of the core size, depths,

0/lV= s4s re'. (96)

Two curves are given corresponding to two diGerent
values of the average excitation parameter 6 defined in
Eq. (5). The lower curve is for 6=0, the'upper for
6—EQ (pj) EQ (0) ~ Near the energy minimum, the

~ J. Gammel and R. M. Thaler, Phys. Rev. 10'7, 291 (1957).~ J. Gammel and R. M. Thaler, Phys. Rev. 107, 1337 (1957).
"Gammel, Christian, and Thaler, Phys. .Rev. 105, 311 (1957).

exp( —li,r) exp( —li,r)
V(r) = V. +SisV, , r) r, (94).
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e5

the neutron to proton ratio is shifted from unity. We
did not estimate these effects from our present results,
although we expect them to be no larger than the
Coulomb effect.

We have also determined the nuclear compressibility
from these results. This was done by fitting a second
degree polynomial to the computed energy points at
fp=0.98, 1.07, and 1.12&(10 "cm. The compressibility
ls

K= rp'(d'Eb/dro'), (97)
10

W

.15

evaluated for rp at the energy minimum. We 6nd
K=187 Mev, which is a considerably larger value than
that determined from a study of the isotope shifts. "
It is not clear that this difference is meaningful, par-
ticularly since our value presumably refers for finite
nuclei to the central regions of high density.

We have also determined E~ in the approximation in
which the E-matrix elements are those calculated for
free scattering. The appropriate limit is" '4

(k I K&
I k) —+ —(4pr/Mk) 6g (k). (98)

-20
0.8

l

1.0
I

Ie2

;(lo". )

FIG. 1. Binding energy per particle as a function of rp Ldefined
by Eq. (103)j. The two lower curves are for E=O (the lowest
curve) and B=Ep(pt') —Ep(0). The uppermost curve is obtained
from the curve with d, =Ep(pr) —Ep(0) by adding the Coulomb
energy of Z=82 protons, taking the nuclear radius to be R= (2Z)&rp. (It is assumed that N=Z). The energy versus density curve in this approximation

is given in Fig. 2; there is no sign of saturation in the
vicinity of normal density and the binding energy at
normal density is 52.0 Mev. The large discrepancy be-
tween this result and that obtained with the exclusion
eGect and the self-consistency requirements is a measure
of their importance.

latter value of 6 corresponds to an excitation energy of
about 70 Mev. We believe that this value is reasonable
although probably somewhat too large, so that the
correct solution probably lies close to but below the
upper curve. The small effect of the value of 3 on E~
justifies the approximations made in Sec. II, and shows
that these approximations do not introduce an error of
more than a few tenths of a Mev into E~. This error is
the same order of magnitude as those introduced by the
cluster corrections.

The energy minimum in Fig. 1 occurs Lfor
A=Eo(Pr) —Eo(0)$ at ro=1.00X10 " cm and Eb
= —14.6 Mev/particle. These are to be compared with
the value rp=1.07X10 "cm deduced from high-energy
electron-nucleus scattering and the semiempirical value
Eb= —15.5 Mev/particle. We have also investigated
the e8ect on the equilibrium density of the Coulomb
repulsion, taking as an example X=Z=82. The energy
curve with the Coulomb energy added is shown in Fig.
1.The position of the energy minimum now occurs close
to the empirical value rp ——1.07)&10 " cm, correspond-
ing to a drop of 15—20'Po in density from the case where
Coulomb forces are neglected. Thus the Coulomb
repulsion causes an appreciable "blowing up" of the
nucleus. It must be emphasized that the position of the
energy minimum may be similarly affected by the re-
pulsion arising from the surface energy; also a shift in
the position of the energy minimum may occur when

-20

-40
4J

-60

-80
Q8

l

1~ 2 1.6

;(io"o )

l

2.0

FIG. 2. Binding energy per particle computed directly from
free-scattering phase shifts for even states alone. The phase
shifts are computed from the same potentials used in the main
computations.

PP K. W. Ford and D. L. Hill, Arplua/ Revpevo of Nlclear Scpeppce
(Annual Reviews, Inc., Stanford, 1955), p. '46.

~ N. Fukuda and R. Newton, Phys. Rev. 103, 1558 (1956).3'B. de Witt, Phys. Rev. 103, 1565 (1956). ,
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Another approximation which may be compared with
our more exact procedure is that which includes the
exclusion principle but neglects self-consistency re-
quirements. This approximation results from setting
Ep(p) =Ei(p,Z) =p /2' in calculating the Green's
functions for the integral equations. For ra=0.98
X10 " cm this approximation gives Es= —34.4 Mev/
particle, whereas our more exact procedure gives Sq
= —14.6 Mev/particle. This large difference would be
absent for potentials which could be treated by a rapidly
convergent perturbation expansions such as Yukawa
or exponential potentials without repulsive cores."The
large eRect for the actual potentials considered is a
measure of the inadequacy of a perturbation evaluation
of the energy.

The energy eersls density curve has also been deter-
mined for a smaller value of the repulsive core radius,
r, =0.20X10 " cm, These potentials. still .give a fit to
the low-energy data and are assumed to act in even-
parity states only. These potentials fail to predict cor-
rectly many of the features of high-energy scattering;
thus the determination of Eq es ro for these poteg. tials
is of interest only in showing the sensitivity of the
energy to the core size. The results are shown in Fig. 3
as a function of density. There is no saturation near
normal density. We conclude that the saturation phe-
nomenon is very sensitive to the radius of the repulsive
core, as of course is not unexpected.

A further point of interest is the contribution of the
tensor force to the binding energy. This contribution
vanishes in first order (Born approximation). The spin
average of the tensor operator is zero, so that the mag-

.IO

-20—

40
X

LLJ

-30—

-40
0.8 I.2 I4

Fxo. 3. Binding energy per particle computed from even-parity
potentials with repulsive cores of r, =0.2)(10 "cm. . The, poten-
tials agree with the low-energy data.

'~ P. Martin (private communication} has found that this large
self-consistency effect seems to be absent for certain special classes
of nonlocal potentials.
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LLj 0-
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0 0.4 0.8 l»2 l.6 2.0 2A

Fro. 4. Self-consistent Ea(p) and Ei(p,Z) for ra=0.98Xi0 "
crn. The self-consistent potential energy V(p) and the kinetic
energy ps/2M are also given. The solid curves for V(p) and E(p)
are for 2 corresponding to f=0 95 Lsee E.q. (76)j and the dashed
curves for f=0.05.

nitude of the tensor contribution is a measure of the
importance of the higher order terms in the E matrices.
The tensor contribution has been evaluated at ro
=0.98X10 " cm where it is found. to be 6 Mev/
particle, or 15% of the potential energy.

The self-consistent single-particle energy spectrum
is given in Fig. 4 for i'd=0. We give Es(p) and Ei(p,Z),
both labeled E(p) in Fig. 4. If we subtract the kinetic
energy p'/2M from the single-particle energies E(p),
we find the single-particle potential energies V(p).
These are also shown in Fig. 4. For p(pr, E(p) is Es(p),
the energies of unexcited particles. For p) py, E(p) is
Ei(p,Z), the energies of excited particles. When a
particle is excited, its energy depends on the states from
which it and the particle with which it interacted were
excited through the parameter Z defined by Eq. (13).
The dashed curve gives the energy of a particle excited
together with another particle both coming from near
the bottom of the Fermi sea. This particle is far oG the
energy shell even when its momentum is close to pi.
The lower curve corresponds to the energy of a particle
excited together with another particle both coming
from near the top of the Fermi sea. Such a particle is
almost on the energy shell, and hence the lower curve
is almost continuous with the energy spectrum below
the Fermi sea.

The alteration of the energy spectrum from the
energy spectrum for free particles (which is ps/2M in
Fig. 4) is very pronounced; the energy required to
excite a particle from p=0 to p=1.Spy is about 70%
greater than the kinetic energy change. This corre-
sponds to an eRective. mass for particle motion in
nuclear matter which is considerably less than the
normal mass. We may define an eRective mass as
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follows:
M*(p) = [(1/p) (dEldp)) ' (99)

This eBective mass will be a slowly varying function of
p. M*(p) averaged over the Fermi distribution is 0.62
with M*/M changing from 0.56 at p=0 to 0.66 at
p=pz. These values are close to values previously
obtained' o and also close to that deduced by Johnson
and Teller" from their theory of nuclear matter.

Another property of interest, closely related to the
shape of the single-particle energy spectrum, is the
nuclear symmetry energy, E,. Our estimate of E, is
based on the following considerations. In Eq. (70) we
ignore the dependence of the E matrices on T, which
would result from an inequality in the number of neu-
trons and protons. This approximation has the same
basis as many other approximations we have made;
namely, the leading terms in the E's (the first Born
approximation) are just matrix elements of the poten-
tial V, which we take to be charge-symmetric and hence
independent of T,. Nearly all of the higher order terms
in the E's would be treated correctly by an approxima-
tion in which the four (or two) Fermi momenta in Eq.
(67) would be replaced by an average Fermi momentum
and the four (or two) single-particle energy spectra
would be replaced by some average single-particle
energy spectrum in calculating the Green's functions
which appear in the integral equations for the E
matrices. Such an approximation would make the E's
independent of T,.

In this approximation the dependence of Eo(mo, +,n)
on the symbol + comes entirely from the fact that
the limit on the first two sums in Eq. (70)
[Pb (+,n) =Pb (+,P) =PF(+)) is not the same as the
limits on the last two sums, [Pb (—,n) =Pb (—,P)
=P~( ))-
[" If we wrote Eq. (66) and subsequently Eq. (70) for
Ep(mp, —,n), we would find exactly the same result
except the upper limit of the first two sums would now
be pb( —) and the upper limit of the last two sums
would be Pb(+). [T,= —1 instead of T,=+1 would

appear in the equation corresponding to Eq. (70), but
this does not matter if the E's are independent of T,.)
It is easy to see that

Ep(mp, +,n) —Ep(mp, —,n)
=Z+

ipse

——,'Z —oiZ —exchange, (100)

where the sums all run from pb (—) to pb (+) and are
exactly the same four sums which appear in Eq. (70).
Finally, much as we found Eq. (72), we find dropping
n in Ep(mp, + n) and Ep(mp, —,n) since neither of these
Ep's depend on n.

n0 T=O s~p

The first sum runs from pi (—) to pb(+). When
Pz( —) —Pb(+) is small, we may do the sum over np

approximately as follows:

Eo(mo, —)—Eo(mo, +)= [Pb'( —)—Pb'(+))

XP/(2P&')) E Z (T—p)
T=p s=p

X p (mp, np
~
E(s,m„T) ~mp, obp)& (.102)

ms 1

The subscript F on the E matrices means they are to
be evaluated for the magnitude of sp equal to Fermi
momentum pi [see Eq. (108) below) and averaged
over the angles of Ãp.

We need an estimate of Pb (—)—Pb (+).It is known
that nuclei contain more- neutrons than protons, and
that the neutron and proton density distributions have
the same radii. Therefore the neutrons are more dense
than the protons, and pb( —))pb(+). Treating the
neutrons and protons separately as degenerate Fermi
gases, we find

P~( )= (2&—/~) 'P~,

p~(+) = (2Z/~) 'p~
(103)

where
Xmp'dmp, (104)

Ep(mp, +)= (mo'/2M)+ Vo(mo, +). (105)

There are corresponding expressions for Eb( ) of
course. Expanding everything in powers of (ItI Z)/A, —
we 6nd

ZEb(+)+XEb( )——Eb(0)
A

where

(E Zq ' ~1 ps' 1 —dV(p&)+~, +S I, (106
(X+Z) &6 m 6 dpi

1 1

~=—E Z (T—o)

X P (mono~ E(s,m„T)
~
moioo)A. . (107)

m, g 1

The average indicated in the last term is de6ned as

The average binding energy per proton Eb(+) is
given by an equation just like Eq. (74):

3
t

yz(+) mpo

Eb(+) = — +-', V(mo, +)
pb'(+)" p 2M

X P (mp, ep
~
E(s,m, T) [ mp, ep) (101).

ms 1

' M. H. Johnson and E. Teller, Phys. Rev. 93, 357 (1954). .

I'de p

a, = (motto) IC[molo)
mp~np~ pp

(108)
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The coeKcient of L(N —Z)/(N+Z)j' is the sym-
metry energy E,. The first term in E„

E,(F)= ops'-/M, (109)

is the symmetry energy of the Fermi gas. The second
term arises from the velocity dependence of the poten-
tial and combines with the first, using Eq. (97) to
replace M by the effective mass M*. The last term
arises from the parity dependence of the two nucleon
potential.

Inserting the numerical values given by our results
and dropping as before the odd-state contributions, we
find

I I f

UtO

gin kr/Rr

COl-
R

~ 0.9-

CtI-
lDa p.5-

~Ol-
0.0 LO 2.0.{io"c )

30

TAN GE

I

40

FiG. 5. Wave functions for 'S state, and relative
momentum k0=0.128'(10 "cm) '.

5.0

g,/E, (F)= [(M/M*)+1.19), (110)

where E,(F) =pF'/6M is the symmetry energy of a
Fermi gas. Since at the Fermi surface M/M*= 1.50, the
effect from the spin dependence of the interaction is
nearly as large as that from the velocity dependence,
with the combined effect 2.69 times as large as that of
a Fermi gas. Teller and Johnson estimated for heavy
nuclei that the symmetry energy should be (0.51) '
=1.96 times that of a Fermi gas, a value which is some-
what lower than that we have obtained. " We have
estimated the effects of the odd-state interaction on the
symmetry energy, taking the scattering phases of
Gammel and Thaler. ""The effects of the attractive
triplet odd and repulsive singlet odd interactions both
lower the symmetry energy. We have estimated that
this effect reduces E,/E, (F) from 2.69 to 2.31 which
still is above the phenomenologically deduced Teller-
Johnson value. This discrepancy can be traced to the
considerably more rapid drop with energy of the singlet
even than the triplet even interactions, suggesting that
the repulsive core in the latter should perhaps be
slightly larger than in the former case. We have not at
the present investigated this discrepancy further.

We have also determined the effect of the two-body
potential on the wave function describing the inter-
action of two particles. This is of particular interest in
the theory of the shell model since it shows to what
extent the particle motion departs strongly from inde-
pendent particle motion. We have taken for simplicity
the case of the singlet even-parity interaction and a
relativemomentumK=-',

~ p;—p;~ =0.128)&(10 "cm) '
corresponding to two particles moving near the bottom
of the Fermi sea. In Fig. 5 we give the wave function
obtained by solution of the integral equation together
with the function Lsee Eq. (60)J

sinEr sinEr, G(r,r,)
S(r) =

Er Z», G(r„r,)

which is the correct solution if the influence of the
attractive part of the potential on the wave function

"A. E. S. Green LPhys. Rev. 99, 1410 (1955)j gives a value for
the symmetry energy of 25 Mev at a nuclear radius of approxi-
mately 1.162&X10 "cm. This corresponds to E,/E, (F)=2.10.

is neglected. For comparison, we also give the un-
perturbed wave function (sinEr)/Er and the form
taken by S(r) if we replace the Green's function by the
Green's function appropriate to free scattering:

sin Er tanEr,
Sfree (&) =

Er Er.
cosEr.

APPENDIX A

The infinite ladder of equations begins with Eqs. (1)
and (2) in the text, which we renumber (1o) and (2o),
the subscript 0 reminding us that these equations are
the first step in the ladder. Equations (3) and (4) in the
text become Eqs. (1i) and (2i), the second step in the
ladder.

We note that Ei(sa,mi, mo, &o) is given by a set of
equations exactly similar to Eqs. (1i) and (2i) except
that the 1ctters nz and s are everywhere interchanged

A variety of interesting features are exhibited by the
results given in Fig. 5. Most striking is the difference
between S(r) or V(r) and Si„,(r). These differ pri-
rnarily because the effect of the exclusion principle is to
change the 1/r asymptotic falloff of G(r,r,) to an ex-
ponential falloff with falloff distance of the order of the
Fermi wavelength Kp=h/pF. This strong damping effect
of the exclusion principle on S(r) and V(r) leads to a
rapid approach to the free solution (sinE'r)/Er at a
distance about equal to the mean particle spacing. It
is also interesting to note the small difference between
S(r) and U(r), which amounts in this case to 15 to 20%
at most. It must not be inferred from this result, how-
ever, that Born's approximation can be used in treating
the attraction. The reason is clear when it is realized
that the actual effect of the interaction appears as the
difference between the large repulsion arising from the
core and the somewhat larger effect arising from the
attractive part of the potential. Consequently, a rela-
tively small error in the wave function leads to large
errors in the binding energy; numerical investigation of
this question shows that all of the binding effect is lost
if V (r) is replaced by $(r)



K. A. BRUECKNER AND J. L. GAMMEL

(except mp remains m,).A typical step in the ladder is

E,(m, ,D;) = (m /23')+g (m, n, ~K;(m;,D,) ~m, n;)
ni

D;, which speci6es the state of excitation of the medium,
is labelled by the array

5$i Sys2$3

t'ai-].Sj.$2S3
~ ~ ~
~ ~ ~
~ ~ ~

D&= F3 S]$2$3

~2 Sy$2S2

Sly SyS yS2

SSP SPSyÃ2

~ ~ os+

Sj

Si

+i—i

(m'n') K,(m;,D,) ) m;n;) = (m'n'~ V~ m;n, )+
~j,+1Si+1

(m'n'[ V [ m~ls~l)(m~ls~l
~
K(m;,D,) [ mph)

X 7

E,(m;,D;) is the energy of a particle (P) whose mo-
mentum is m; as a consequence of collisions of P with
other particles: in the initial state P has momentum mp

and the other particles have momenta np e ~. The
subsequent steps in the sequence of collisions is shown
in detail in D;. For example, in the 6rst step P collides
with the particle (Q) whose momentum initially is np,
the momentum of P becomes no~ and the momentum
of Q becomes si and the momenta of the other particles
remain unchanged. One thinks of a Feynman diagram,
of course, and the letter D stands for diagram.

K;(m;,D,) is a solution of

We may rewrite Eqs. (A-1;) and (A-2;) as follows:

E,tm. ,H(m, ,D,)j
m'2

-+P (m,n;~K~[H(m;, D;)j~m, n, ), (A-4)
2M

where

(m'n'
f KLH(m;, D~)g [ m,n;) = (m'n'

f
V

f m;n;)+
~i+1&i+1

(m'n'
(
V

( m~is~i)(m~is~i ( KLH(m;, D;)j ( m,n;)
X

D
(A-5)

D =H (m, ,D;)+Ep(n;) . E;+i(s;+—i,H(s~i, D~i) )
—E~i(m~i, H(m~i, D~i)). (A-5')

By the definition Eq. (A-3) of H,

H(s~i, D~i)
=H(m;, D;)+Ep(n;) E~i(m~—i,D~i) (A-6)

=H(m;, D~)+Eo(n;) E; ~( m—~H(m; +D; +)),

and similarly

H(m~i, D;+i) =H(m;, D,)+Eo(n;)
Ei+1(sf+lyH(si+lyDi+1)). (A-7)

All of the steps in the ladder have this same structure.
If we allow the function H to be independent of its
arguments and take on a continuum of values as a
parameter in the equations, we may drop the subscript i
and replace the ladder of equations by a finite set of
equations. Instead of Eq. (4) we have

D=Eo(mo)+P E (ns) —P E;(s; D,)
i=p

—E~i(m~i, D;~i). (A-2~)

m2

E(m, H) = +P (mn,
~
K(H)

~
mn),

2M
(A-8)

The meaning of the notation should be clear; for ex-
ample, E;(s,,D;) is the energy of the particle whose
momentum is s; as a consequence of the sequence of
collisions described by D, ; E;(s;,D;) is the energy in the
final state of the last particle with which P interacts.
It is understood that D ~ is a "subgraph" of D;,
D 2 is a "subgraph" of D j, etc.

We note that Ep(mp) depends only on mp. However,
Ei(mi, si, mp, np) depends on mi, and, in addition
Ep(mp)+Ep(np) —Ei(si,mi' mo, no), because, in Eqs.
(3—4) in the text there are sums over the variables
ni, so, and mo so that Ei(mi, si, mo, np) cannot depend on
these, and even though nsp, ep, and s~ are not summed
over, they appear only in the combination Eo(mp)
+Ep(no) —Ei(si,mi', mo, no). Examination of Eqs. (A-1;)
and (A-2;) shows that E,(m;, D~) depends on m;, and,
in addition

H(m, ,D,) =Ep(mp)+P Eo(n;) —P E;(s;,D,). (A-3)

where, instead of Eqs. (A-5) and (A-5'), we have

(m'n'~K(H) ~mn)=( 'm'[nV(mn)

(m'n'
~

V
(
m"n") (m"n"

~
K(H) ) mn)

(A-8')
D

D=H+Eo(n) —E(m",H( "m, )n)

—E(n",H (n",m") ),

where, according to Eqs. (A-6) and (A-/),

H (m",n") =H+ E p(n) E(n",H (n",m") ), —
(A-8")

H (n",m") =H+Eo(n) E(m",H—(m",n"))
It is necessary to solve Eqs. (A-8") simultaneously

to determine B'(m",n") and H(n", m"). This is a purely
numerical or algebraic problem. The dependence of
E(m, H) or H might be such that either Eqs. (A-8")
have no solution or not unique solutions. However, we
believe that E(m, H) is a weakly varying, monotonically
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decreasing function of H such that Eqs. (A-8") always
have solutions.

The Eqs. (11)-(15)which we deal with in the main
text are very similar to Eqs. (A-8)—(A-8"). The quan-
tity Z in the text is analogous to the quantity H
except that Z takes on 6nite values only (from 2Ep to
2Er) while II takes all values from 0 to + pp (perhaps
not quite all). Also, in the text, we do not have the
problem of solving Eqs. (A-8") simultaneously. How-
ever, the problems of solving Eqs. (A-8)—(A-8") are not
suKciently greater than the problem of solving Eqs.
(11)—(15) in the main text to make us not wish that
we had solved Eqs. (A-8)—(A-8") without the addi-
tional approximations given in the main text.

sinkpr sinkpr, G(r, r,)
U(r) =-

kpr kpr, G(r„r,)

G(r,r,)G(r', r,)
+4n. G(r,r') — f(r') r"dr'. (B-6)

G(r'„r,)

To determine f(r), we operate on Eq. (B-5) with

( n'+ P—)/M in the region for which U(r) =0, namely,
for r &r.. The result is

where f(r')(r'(r, ) will give rise to a small correction
to the E matrix and must be determined so that U(r)
vanishes for r &a. We find, eliminating X as before,

(kp'+n' ) sinkpr
f(r) =]

cV ~ kpr

APPENDIX B (B-7)
We consider a simplified problem for which it is

easy to determine the correction to our treatment of
the core. We consider the S state since this is affected
most by the core; we also disregard the attraction. We
arrive at the simplified model by approximating to the
correct Green's function as follows: the action of the
exclusion principle in allowing only transitions from the
Fermi gas to states above the Fermi surface is approxi-
mated by adding a mean excitation energy,

The E matrix is also given directly in terms of X and
f(r); that is,

psinkpr k,r,
E=4n V(r)U(r)r'dr= —

~
sinkpr,

kpr G(r„r.))
sinkpr sink pr, G(r,r,)

f(r) (B-8)
kpr kpr. G(r„r.)

+4n. r'dr

pn 3pr 2pr

2M 2M 52M 52M
(B-1)

We are interested in kpr, and er, both less than one;
thus we make the approximation

to the energy denominator; that is, we take

G(r,r')
G(r„r,)

(B-9)

4pr~ t" sinkr sinkr' k'dk

(2pr) PJ p kr ky' kn+an
Then, also setting kp=0 and replacing in the leading
term G(r. ,r,) by its lowest approximation, we find

{exp(—n
~
r—r'~) —expL —n(r+r')g). (B-2)

8mnrr'

defines the simplified problem. The Green's function for
the simplified problem satisfies

(1/M) ( n'+V')G(r r') =—(1/4nr')5(r —r'). (B-4)

To solve the integral equation, we make the
replacement

V(r') U(r') =X5(r' r,)+f(r'), —(B-5)

This Green's function, together with the integral
equation

U(r) = (sinkpr/kpr)+4n r"dr'G(r, r') V(r') U(r') (B-3)

4n-r, 4vru' r
"' o,'

E= +, r'dr(r, ' r')——
M 3f ~p M

4xr, 4
1+ (prr, )' .

M ii25

In our problem, at the energy minimum, prr, =0.71, so
that the correction term is about 0.1%%uq which is quite
negligible.

VII. ACKNOWLEDGMENTS

The authors are indebted to Arnold Tubis, Harold
Weitzner, and Kenneth Johnson for aid in formulating
this problem in a manner suitable for computation, and
aid in programming the computation for the IBM 704.


