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Waves in a Plasma in a Magnetic Field
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The small oscillations of a fully ionized plasma, in which collisions are negligible, in a constant external
magnetic field, is treated by the Laplace transform method. The full set of Maxwell equations is employed
and the ion dynamics are included. Various limiting cases are considered. It is shown that self-excitation
of waves around thermal equilibrium is impossible. It is also demonstrated that for longitudinal electron
oscillations propagating perpendicular to the constant magnetic field, there are gaps in the spectrum of
allowed frequencies at multiples of the electron gyration frequency, but zero Landau damping. These
particular waves are also associated with a nonuniformity of convergence in the limit of vanishing magnetic
field which phenomenon, however, is of no physical consequence. When the ion dynamics are included,
two classes of low frequency oscillations are found, the existence of both of which has been predicted by
the simple hydrodynamic theory, namely longitudinal ion waves, and transverse hydromagnetic waves.
The well known results for the propagation of electromagnetic waves in an ionized atmosphere are also
recovered, as well as the eHects on such waves in various limiting cases of the magnetic field and particle
motion. These calculations indicate that in many cases the transport equations are capable of yielding
correct results, apart from such things as Landau damping, for a wide class of waves in a collision-free
plasma.

l. INTRODUCTION

'HIS work treats the small amplitude oscillations
of a fully ionized, quasi-neutral plasma in a

uniform, externally produced magnetic field. The ion
and electron distribution functions are assumed to
depart only slightly from the appropriate zeroth order
distribution, which here is taken to be the Maxwell
distribution, though the general method is not con-

tingent on this latter assumption. It is further assumed
that collisions are negligible. The technique employed
is the Laplace transformation first introduced in this
context by Landau. ' This avoids the mathematical dif-

ficulties inherent in a simple substitution analysis which

assumes exponential time dependence.
The problem of the longitudinal electron oscillations

has been treated by Gordeyev. ' He purported to find

self-excitation of waves around thermal equilibrium for
a certain regime of plasma parameters. It is shown in

Sec. Sa, directly from his dispersion relation, that this
is not possible. In Appendix I, it is demonstrated in a
proof due to William Newcomb, that within the confines

of a collision-free theory, the absence of a mechanism
for the degradation of energy implies that the entropy
of the system is a constant of the motion, which in turn
implies that, in general, there can be no solutions of the
linearized equations of motion around thermal equilib-
rium which increase exponentially in time. Gordeyev's
errors are pointed out.

The problem of electron oscillations propagating per-
pendicular to the uniform external magnetic field has
been treated by Gross, ' and by Sen.4 The former of

these authors purported to find Landau damping of

waves whose wavelength is less than the Debye length.

' L. D. Landau, J. Phys. U.S.S.R. 10, 25 (1946).
'G. V. Gordeyev, J. Exptl. Theoret. Phys. U.S.S.R. 6, 660

(1952).
3 K. P. Gross, Phys. Rev. 82, 232 (1951).' H. K. Sen, Phys. Rev. 88, 816 (1952).
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It is shown that this conclusion is in error; such waves
are undamped. The error, furthermore, vitiates the
various limiting results Gross reports. This case is
properly treated, and Gross' error indicated, in Sec.
Sb.

These perpendicular waves exhibit a curious non-
uniform behavior in the limit of vanishing magnetic
field. That. is, if one first lets the magnetic field go to
zero, and then passes to the case of perpendicular
propagation, one recovers the results of Landau, which
indicate damping. If, however, one first considers per-
pendicular propagation, and then passes to the limit
of vanishing magnetic field, the spectrum of frequencies
is undamped, and composed of all the harmonics of
the electron gyration frequency. This apparent difhculty
is immediately resolved when one observes that the
anomalous waves, as one lets the field pass to zero, are
confined to an angular region around the direction of
perpendicular propagation which itself goes to zero with
the magnetic field. That is, mathematically, they form
in the limit a set of measure zero. Physically they are
eGectively nonexistent in the limit.

The development of this work is as follows: Section 2

presents the general formulation of the linearized
problem, including arbitrary electromagnetic fields and
the ion dynamics. Section 3 discusses the inversion of
the Laplace transform. In Sec. 4 the limits of vanishing
external magnetic field, and infinite light velocity are
treated. Section 5 considers the problem of longitudinal
electron oscillations. Section 6 treats the problem of
longitudinal oscillations including the ion dynamics,
and derives the ion waves. Section 7 considers the
general problem, and derives results in the limit of
weak magnetic field, and low temperatures. Hydro-
magnetic waves are also obtained in the appropriate
limit. Appendix I presents the general argument of
Newcomb which disproves the existence around thermal
equilibrium of time increasing solutions. Appendix II
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evaluates an integral which is characteristic of the with similar expressions for the perturbation electric
theory. and magnetic 6elds. In terms of the Fourier-Laplace

2. LINEARIZED PROBLEM transforms, Eq. (3) reads

Let f(r, v, t) be the distribution function for a given
kind of particle, ion or electron. The number of particles
whose positions lie between r and r+dr, and whose
velocities are in the range between v and v+dv is then
fd'r d'v. The distribution function satisfies the Bo
mann equation'

8f Bf Ze t' 1 $ 8f (Bfp+"' +
I

5+-vXS
I

—=I —
I

at ar m ( c ) av «at),.„
In Eq. (1) e =

I
e

I
represents the electronic charge, Z the

charge number, m the particle mass, @ the electric field
intensity, and 8 the magnetic fieM intensity. The
upper sign is to be taken for positively charged particles,
the lower for electrons. The term (8f/8t) „ii represents
the rate of change of the distribution function arising
from collisions, that is, interparticle interactions
whose range is short compared with the distance over
which f changes. In what follows it will be assumed
negligible, though its effect via a simple relaxation term
could be included readily.

Consider systems which depart only slightly from
thermal equilibrium in a uniform external magnetic field
Sp. Then one can write

f(r, v, t) =fp('v)+ fi(i', v, t),

8 (r,t) =Sp+Si(r, t),

g(r, t) =0+5,(r,t),

Ze 8F Ze 8fp
(s+ik v)F~—Sp vX—=~—E +F*(k,v, O) (6.)

mc 8v m 8v

Choose in velocity space a rectangular coordinate
system such that the 3-direction is parallel to Sp and
the wave vector k lies in the 1—3 plane, making an angle
0 with the 1-axis. Introducing cylindrical coordinates
w, Q, u, one can write

v=eiw cosP+epw sing+cpu,
k= eik sin8+epk cos8.

Berne the gyration frequency 0 by

0=ZeSp/mc) 0.

Then Eq. (6) can be written

8F s+ik(w sin8 cos$+u cos8)
p

8$ 0
1 . Ze 8fp

F*(k,v, O)a—E . (9)
0 sz Bv

Equation (9) must be solved subject to the require-
ment that F be single valued, that is, periodic in p,
with period 2x. In order to eGect this it is convenient
to introduce a vector

where fp is the Maxwell distribution

m q&
" mv'

fp(v)=XI I exp ——
E 2mÃTP 2ET

(2)

E the particle density, E Holtzmann's constant, and the
subscript 1 refers to a small perturbation of the asso-
ciated quantity. Then to first order Eq. (1) reads

8fi Bfi Ze 8fp Ze Bfi
+v +—5i w—Sp vX =0. (3)

Bt Bx m Bv mc Bv

v' = eiw cosQ'+epw sing'+ cpu,

and a function, essentially an integrating factor,

s+tk v
G=exp + dP

~t gr 0

s+iku cos8
=exp + (s-e')

ikm sin0
(sing —sing')

(10)

It is convenient to make a Fourier analysis in space, '
and take Laplace transforms in time, ' that is, write Then, noting that as defined in Eq. (5) Re s)0, one

can write the solution of Eq. (9) as

fi(r, v, t) = ' d'v e'"'F*(k,v, t), (4)
F(k,v,s)=. w= ' dy'

n~,„
F(k,v,s) = dt e"F*(k,v, t), -

0

' S. Chapman and T. G. Cowling, The Mathematical Theory of
Nonuniform Gases (Cambridge University Press, Cambridge,
1939).

6 S. Bochner, . Fourierishe Integrale (Chelsea Publishing Com-
pany, ¹wYork, 1948).

7 G. Doetsch, Lap/ace Transformati on (Dover Publications,
New York, 1943).

Ze 8fp(v')
XG F*(k,v', 0)W—E(k,s).

m Bv'
(12)

which can be verified by direct substitution. The
periodicity is apparent if one introduces in the integrand
of Eq. (12) the new variable P"=p—qV. The limits of
integration are then independent of p, which occurs in
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the integrand only in the arguments of periodic
functions.

In order to proceed it is necessary to write relations
between the electric and magnetic fields and the charge
and current densities, which latter are given in terms
of the particle distribution functions. These are the
Maxwell equations

It can readily be shown by taking the scalar product of
Eq. (20) with k, that Eq. (20) implies Eq. (18). Thus
the problem has been reduced to solving Eq. (20). In
order to do so, we introduce a matrix R such that in
terms of the elements of Q

R;,= (s'+c'tt') b;;—c'tt;tt;+Q, ;.
V.5=4n'p, cVXS= 88—/r7t,

V 8=0, cV X8=4sj+clS/Bt,

The solution of Eq. (20), which can be writtens

RE=a, (24)

where the charge density p and current density j are
given by

is
E=R~a/( R ~. (25)

p=g(&Ze), d'v f, j=g(&Ze) d'v vf. (14)

ik B(k,s)=0,

ickXE(ks) =, —sB(k,s)+B*(k,0)

(15)

(16)

ickXB(k,s) =P(&4vZe)~ d'vvF(k, v,s)

+sE(k,s) —E*(k,0), (17)

ik E(k,s) =P(&47rZe) d'vF(k, v,s)

Equation (15) states that 8 is transverse to k. Thus
if one forms the cross product of equation (17) with
ick, there results

c'O'B=ickX P(+4rrZe) d'vvF(k, v,s)
f

+sE(k,s)—E*(k,0) . (19)

Equation (19) serves to determine 8 once E and F
are known. If one forms the cross product of Eq. (16)
with ick and employs Eq. (12) for F, there results

(s'+c'k')E —c'kk E+E.Q=a, (20)

The summations are extended over all the species of
charged particles present.

The Fourier-Laplace transforms of the Maxwell
equations read

The elements of the matrix R" are the cofactors of
their counterparts in the matrix R, and

~

R
~

represents
the determinant of R.

3. INVERSION OF TRANSFORMS

In order to go from Eq. (25) to the frequencies of the
electric field in the plasma, one employs the inversion
theorem for Laplace transforms, ' which reads

@0+goo

E*(k,t) =
~

ds E(k,s)e".
27PZ a0—i'

(26)

iR(s) j =0. (27)

The contour of integration above is a straight line
parallel to the imaginary s-axis, and to the right of all
singularities of E(k,s). The integral is most conveniently
evaluated in terms of the poles of the integrand, assum-
ing there are no complications such as branch points. It
will be shown that the elements of R and hence of R"
are analytic over the whole finite s-plane. Thus any
poles which arise from the numerator of Eq. (25) must
come from the vector a which represents the initial
conditions, and thus require for their determination a
knowledge of the initial distribution function fr(r, v,0).
For a large class of initial distributions, however, for
instance all those Maxwellian in the velocity, a is an
analytic function over the whole finite s-plane. Let us
consider only such initial distributions. ' The method can
be readily extended to more complicated situations.

The denominator ~R(s)
~

of Eq. (25) contributes a
pole whenever it vanishes. Denote by s„a root of the
equation

where the dyadic Q is given by Deform the contour of Eq. (26) to the left in the
complex s-plane. The integral can then be written as a
sum of terms E„*(k,t) each of which is an integral
extended along a .circle enclosing the associated pole.
These loop integrals can be evaluated by the residue
theorem. For example, if the pole is simple, one can

4v.Z'e' t ~e G 8fe(v')
Q=sg & I d'v ~'— v, (21)m», „ iI av'

and the vector a by

a =sE*(k,0)lick X8*(k,0)+g 4v Zes

X d'v v, " ~'(G/Q)F*(k, v'0) (22).
C. C. MacduGee, Vectors and Matrices (The Mathematical

Association of America, Ithaca, 1943), p. 58.
II The inclusion in the theory of singular initial distributions is

discussed in a paper by Bernstein, Greene, and Kruskal LPhys.
Rev. (to be published)g.
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write

j.
E„*(k,t) = dse"

27ri

R"(s„)a(s„)+

(s—s ) IR(s) I'+'

R"(s„)a(s„)
e'"', (28)

IR(s-) I' (s'+c'k')kXE+E. QXk=kXa,
s'k E+E Q.k=k. a.

(30)

4. LIMITS OF VANISHING MAGNETIC
FIELD AND c~~

In order to show that in the limit of vanishing mag-
netic 6eld one obtains the results of Landau, it is con-
venient to break up Eq. (20) into longitudinal and
transverse parts, namely

where a.prime indicates the derivative with respect to s.
The extension to higher order poles is immediate. In
any case the time dependence will be essentially ex-

ponential in nature.
The contribution of a term such as that of Eq. (28)

to the electric field is obtained by inverting the Fourier
transform, - namely

@„(r,t) = (2n.) ' d'kE *(k,t)e—'"'
(29)R"(s„)a(s„)= (2n.) n t d% es~i an—

IR(.-) I'

Clearly is„ is to be interpreted as an oscillation fre-

quency. Thus Eq. (27) whose roots relate is„ to k is
termed the dispersion relation. If any of the s„has a
positive real part, the electric 6eld will grow in time,
and hence, from Eq. (12), so will the 6rst order dis-

tribution function. It is shown in Appendix I that this
is not possible around thermal equilibrium,

If then one applies the asymptotic relation, which
follows from Eq. (11),

, g(4')

s+'bk' v B$

g(4') ' t', B g(4')
G a ' dp'C

s+ik v' ~ J~„B&'s+ik v'

g(e) && B
I g(~)

s+ik vs.+ik v B@ s+ik. v. s+ik v

B 1 B g(y)
X——

By s+ik v By s+ik v
+ '. (31)

and passes to the limit 0—4, Eqs. (30) reduce, after
some integration with respect to v and employment of
Poisson's equation, to

kXE=

sk XE*(k,0)—ick'B*(k,O)+P &4n
Zes~

"d'vk XvF*(k,v,O)/(s+ik v)

s'+c'k'+s Q(4nEZ e'/m) d'vf0(v)/(s+ik v). (32)

Q + (4irZ%k)) d'vF*(k, v,0)/(s+ik v)

1++(4nZ'e'/iit'm) d'vga Bf0(v)/Bv)/(s+ik v)

(33)

In the limit of zero temperature Eq. (32) yields the
well known result for the propagation of electromag-
netic waves in an ionized atmosphere"; namely on
setting the denominator of Eq. (32) equal to zero,
—s'=c'k'+P(4n. XZ'e'/m). Equation (33), apart from
notation, is just the result of Landau, if the ion motion
is neglected.

Proceeding to the next limit note that at moderate
densities and magnetic 6elds the frequencies of the
plasma divide into two classes, one set of order of mag-
nitude ck, and the other set of order Iso'+0'$&((ck,

'0 J. A. Stratton, Electromagnetic Theory t'Mcoraw-HilI Book
Company, Inc., New York, 1940), pp. 327 et, seq.

where the electron plasma frequency co=I 4n.Xe'/m)&.
The coupling between longitudinal and transverse oscil-
lations is once more small and Eqs. (30) reduce to

(s'+c'k')kXE=kXa,
s'k E+k Ek Q k/k'=k. a.

This can be viewed mathematically as the result of
passing to the limit c~~.

5. LONGITUDINAL ELECTRON OSCILLATIONS

One expects that even in the limit c—+ the possible
longitudinal oscillations separate into two classes, one
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of relatively high frequericy electron oscill ations, and
another of relatively low frequency ion oscillations. In
order to investigate the . former class we consider the
positive ions to be electively at rest, serving only to
provide a uniform background of positive charge. The
dispersion relation then reads, from the second of Eqs.
(34),

or
k's'+k. Q k=o,

s(o' p p& Bfo G
k's' — ' d'v ' dy'k vk —=0.

N ~ Bv 0

(35)

(36)

When fo is the Maxwell distribution, Eq. (36) can be
shown, by performing in succession three of the indi-
cated integrations, as outlined in Appendix 2, to reduce
to

s ~" sy1+k'a'= — dy exp ———X(1—rosy) ——,'py', (37)
"o 0

Re s&0, and hence no waves which grow in time. To
demonstrate this we note that

gxeosy —P I (g)piny (39)

)&exp)——',Q'pt2 —(s+ieQ)tg. (40)

In order to transform Eq. (40) into a more useful
form, one defines

where I„(y)=I „(y) is the Bessel function of the erst
kind of imaginary argument. The terms in e and —e
are to be considered as taken together in aoy sum.
Insertion of Eq. (39) in Eq. (37) yields, one writing
y= Qt,

00

1+k'a'=se-" P I„(X) dt
n—~ "O

$(N) = (tn'/2vrET) ' exp( —mm'/2ET cos'0). (41)

d~(N)/(s+iku)

where as before Q=eSO/mc, the electron gyration fre-
quency. The Debye length a is given by a'=ET/krNe',
the electron gyration radius p by p'=ET/esQ', 8 is the
angle between k and Io, X= k'p' sin'8, and ti =k'p'. cos'8.

Equation (37), apart from notation, is the result of
Gordeyev. ' The integral in Eq. (37) defines an analytic
function of s over the whole s-plane as long as p, &0.
For the case p=0 (k.So=0), that treated by Gross, the and that as g~/i2' ~(t~)~g(N) If Re s) 0
integral in Eq. (37) converges only for Re s)0. In order
to eGect its analytic continuation, one writes Eq. (37)
in the form

~2m (n+I) (syy1+k'a'= —P ~' dy exp —
l
—

l

—X(1—cosy)
Q =o~2 &Q)

s " (—2m'ss)=-2 expl
Qno ( Q ) ~o

sy'q
Xexp —

l l
—X(1—cosy' )EQ)

&Q&
dy exp —

l

—
l
—X(1—cosy)

(—2vrs)
1—expl

n

d~(e) J
dt expL —(s+ikN)t j

—00 0

dt exp) —st —-', (ET/ns)k't' cos'0$. (42)

Thus, defining s=iP+p, p) 0 and employing Eq. (42)
to transform Eq. (40), one can. write on splitting into

a(q, X)

0$

0.4

The numerator of Eq. (38) is defined for all values of s.
The denominator vanishes when s/Q=O, +1, +2,
where the function has simple poles. Thus Eq. (38)
represents the desired continuation. Apart from nota-
tion, it is the result of Gross. '

(a) Absence of Solutions Which
Increase in Time

It is possible to show directly from Eq. (37) that
there are no roots of the dispersion relation for which

04

"0.2

-0.4

-0.6

FIG. j.. The function &(q,X) vs q for ) =0,1.
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&= l.o (b) Case A. Se ——0

For the case of waves propagating perpendicular to
the zeroth order magnetic field the dispersion relation
can be solved completely. Since in this case 8=m/2, Eq.
(40) yields for Re s)0

1+k'a'=se " P I„(X)/(s+irsQ)

(s/Q)'e —"I„(X)=e-"Ie(X)+2 P
(s/Q)'+rs'

Fro 2. T.he function n(4f, X) vs q for X=1.0.

real and imaginary parts

1+k'a'= P e "I„(X) I d~(u)

(svQ+ ku) (P+ssQ+ ku)1— -, (43)
~'+ (P+uQ+ku)'

00 f NQ+ku
O=y Q e "I (X) ' d~(u)

y'+ (P+nQ+ ku)'
(44)

The series in Eq. (46), however, apart from simple poles
at s/Q=O, +1, converges for all values of s. The
right-hand side of Eq. (46) is an even function of s. Thus
the general impossibility of a root with Re s)0 implies
in this case that there can be no root with Re s&0.
Hence the roots are pure imaginary. This is in contra-
diction with the conclusion of Gross, who purported to
find damping of waves for which k'a'))1. Gross's error
lies in his saddle-point integral, in particular, in his
statement in Appendix II of his paper that the integral
along Is and I4 gives e' ' i '(Ii+—Is), when in fact it
gives e' '"~"'(Ii*+I2*). This error also vitiates the
low-temperature results he reports. Upon making the
correction, the same results are obtained as in this work.

In order to solve Eq. (46), let s/Q=iq, and define

Multiply Eq. (44) by P/y and add it to Eq. (43). There
results

n(q, &)=e "Iog)+q P I.(&)
1

+ —1. (47)
.q —I q+ss

00 00

1+k'a'= P e "I„(X)J' du4 (u)
Then the dispersion relation can be written

(48)

=1- P e
—"I„(X) d~(u)

(ssQ+ku)'
X

y'+ (rsQ+ ku+P)'

(ssQ+ku ')
X

y'+ (ssQ jku+P)'
The function n(q, X) is plotted versus q for various values
of X in Figs. 1, 2, and 3. The roots of the dispersion rela-
tion are the intersections of an n vs q curves with the
horizontal line n=k'a2. As ~q~~4o the curve n vs q
approaches a function which is zero in the interval
rs&q&u+1 and lies very close to the vertical line
q=e when q e. Note that the roots depend in con-

(45)

where we have employed Eq. (39) with y=O. Clearly
Eq. (45) has no solution since the left-hand side is
always greater than the right. Thus there can be no
roots with Re s&0, and hence no time increasing solu-
tions. This is in contradiction with the result of
Gordeyev, ' who purported to show that self-excitation
of oscillations is possible. Gordeyev's error lies in
making approximations on the equivalent of Eq. (42)
the results of which are incompatible with the assump-
tions motivating them. A separate demonstration of the
absence of time increasing solutions, essentially on the
basis of an entropy argument, due to William New-
comb, is given in Appendix I. FIG. 3. The function 0.(q,X) vs q' for P =5.
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tinuous fashion on the parameters k'p', k'a', etc. If one
fixes Q, and X=k'p' sin'8= k'p', but permits k'a' to vary,
then there are gaps in the spectrum of possible fre-
quencies, " namely those values of s= —iQq which
make n(0. The width of these gaps, which correspond
to frequencies which cannot propagate, can readily be
computed in the limit X=k'p'&&1, the case of gyration
radius small compared with wavelength. Namely one
can employ in Eq. (47) the leading significant terms in
the series expansion for the Bessel functions, "

(c) Arbitrary Direction of Propagation

Let us return to the case of arbitrary direction of
propagation. Consider the situation of low temperature
and weak magnetic field. If one defines v'=KTk'/m
and y=Qt, the dispersion relation (37) reads

v

1+—=s dt exp —st —-,'v't' cos'8

—sin'8 ', i 'P -i—4t4—+ .

This yields
m!(I+m)!

(49)
r1

d[s si 1
i p2—]2+ p2Q2 sin28

Q' 1—X !i e'(Xq" ' 1
+ +2 —I-I

q' —1 q' —4 ~ 3N!=E 2) q' —e' (50) +-'i4 $4+ ~

where as before the electron plasma frequency ~ is given
by oP=4nlVe'/m. For the root in the interval 1&q&2
it is sufficient to keep the first two terms on the right.
The result is

s' 1! cu' ( co') '—=-. 5+—
I

3—I+3!—
n~ 2 i Q2 ( Q~) Q'

v' v'Q' sin'8+3i '
=1——+

$2 S4

~ ~ ~ (54)

—s' =oP+ Q' sin'8+ 3v' (55)

Equation (54) is an asymptotic expansion valid for
(Im s)'))Q', v',

I
Re sI'. lt yields, to first order in the

small quantities, "

For Q'))~' Eq. (51) yields

—s'= Q'+(u' —((v'/Q') (ET/m) k'.

For 0'«~' there results

(52)
If one wishes to compute Re s, it is necessary to write
s=i~ p in t—he second line of Eq. (54) and to evaluate
asymptotically the imaginary part of the integral. The
result is—s'= 4Q' —3 (ET/nz) k'. (53)

The gap for the interval Q'& Is'I &4Q' corresponds to
the range in q for which the sum of the first two terms
in Eq. (50) are negative. Its width in frequency is
38k'ET/mQ. Clearly similar results can be obtained for
the other branches of the curve n es q. The gap width is
always proportional to ET in the limit A«1.

An interesting feature of this dispersion relation for
waves propagating perpendicular to the zero-order
magnetic field is that it corresponds to a nonuniformity
in the limit 0—4. That is, as one tends to this limit,
the dispersion relation LEq. (48)) obtained from the
general dispersion relation I Eq. (37)] by first setting
8=s./2 and then letting Q~O still yields frequencies
spaced roughly at multiples of the gyration frequency,
while one expects that the frequencies obtained be
those derived .by Landau, which corresponds in the
general dispersion relation to first setting 0=0, and then
choosing 8=ir/2. The resolution of this apparent dif-
6culty is that the anomalous waves are a set of measure
zero. That is to say, as 0—4, those waves which depart
in character from those found by Landau are confined
to a sector of width 88 about 8=s./2, but 58~ with Q.

"Gaps of this kind were 6rst noted by Gross, reference 3, for
the case of a delta function equilibrium distribution.

"G. N. Watson, Theory of Bessel Puectioes (Cambridge Uni-
versity Press, New York, 1948).

t'ir) * ~' ( sP ) sin'8''Q'
~=I —

I
—-pI —

I 1+
( 8) i' ( 2P') 24 v'

(56)

1+k'a'=s~t Ch exp( st i2v'P cos'8— —-
0 —2k'p sin'8 sin'(2Q/))

& (57)

the term sin'(2Qt) can be replaced by its average value
of —,', whence on asymptotic expansion of the resultant
integral, as treated in the preceding case, there results"

—s~ =aP cos 8L1+3k a —p /a g,

(m. y
* a&' cos8 / oP $

E8 ) v' ( 2v')
"The results reported in Eqs. (55) and (58) have been obtained

independently by William Newcomb by a diAerent method which
will be published in the near future.

Equations (55) and (56) are the same results as have
been obtained by Gordeyev. Note that they reduce to
Landau's results in the limit Q—4.

Consider now the case where k'p2«k a «1, the case
of large magnetic field and low temperature. One
anticipates a root of the dispersion relation s ko cos0.
Then, in the dispersion relation in the form
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Equation (58) indicates that the plasma behaves as
though the electrons were free to move only along the
lines of force. To lowest order the frequency is just
that of a plasma wave whose wave vector is k projected
onto the zeroth order magnetic field Sp. Note that the
exponentially small Landau damping falls off to zero as
8~/2.

In order to investigate the case of large Landau
damping which occurs in the zero magnetic field case
for k'a'=v'/piP))1, one can consider first the case of
small magnetic field, and write Eq. (54) in the form

1 ( s )1+k'aP=s exp! I

' dt exp —v
42v'i Jp 2 k v'i

X[1+(1/24) v'Q't' sin'8+. ]. (60)

One anticipates a root for which —Re s))!Im s!, in
which case the lower limit in the integral in Eq. (60)
can be taken to be —~, while in the power series in
the integrand it is sufhcient to drop all terms past the
one in t4, in which term one can set t= —s/v'. The result
is

1+k'a = (2m) &(s/v) [1+(1/24) Q's' sin'8/v']

Xexp[-,'s'/ v']. (61)

When Q=O, Eq. (61) is just I.andau's result. As long
as the term in 9"" in the above expression is small
compared with unity, which of course is the assumption,
the magnetic field has only a logarithmic effect on the
determination of s. The damping is then given to good
approximation by Landau's result, which can be
readily obtained by taking the logarithm of Eq. (61),
namely

If also k'a'))1, we expect from our previous results
for @=0 that the roots in g lie near the integers. Thus
for the root q~m))1, one can in Eq. (65) neglect all
terms with xsam, and all powers of p greater than the
first. There results

2m'e "I (X) ti k'a'
q'=m'+ 1+— (66)4'. e "I ()i).

Equation (66) is valid so long as 2e ~I (X)/k'a'(&1, and
(ti/va') [k'a, '/e "I () )]'&(1

If X(&1 (low temperature and/or large magnetic
field) we can expand the Bessel functions in powers of
)i via Eq. (49). For the root, in the interval 1&!q! &2,
it is sufhcient to write

3X'p,
1+k'a'= 1+ +—+

(q'-1) (q' —4)

ti)i( q'+4q' 1)—3ti'—
+ . (67)

4

q= —is/Q, there results after appropriate integration
by parts

p 3p
1+k'a' —e "Ip(X) 1+—+ +

q2 q4

2q'e "I„P~) ti(q'+3')
1+

n=1 q2 +2
g

—S

3 t'i(q'+10n'q'+5'')
+ ~ ' . (65)

t(q' —n')4

s= —„[4lnka in2~]l ~iv[4 lnka ln2~] —~ (62) If one drops terms quadratic in )i and ti, there results

If k'a'))1, but 0 is large, one can as before employ
Eq. (57) with sin'(2Qt) = p, whence =-', (1+(pi'/v') —[(1—piP/v')'+4ip' sin'8/v']l). (68)

t' s ) t'
1+k'a'=s exp! ! ~

dt
E2v' cos'8) J

1 t s
!Xexp ——v' cos'8! t+

2 ( i ' cos'8 l

6. LONGITUDINAL OSCILLATIONS INCLUDING
THE ION DYNAMICS

Consider as before the limit c~~, but assume that
there is present one kind of positive ion. The second of
Eqs. (34) then yields the dispersion relation

Equation (63) can be treated exactly like Eq. (60). The ( ~+ l " f, /G+ ) 8fp+(v )k's'=! ! d'v dy'k v! !
k.

result is
E Zr )& ~„(Q,) 8v'

s = —v cos8[4 lnka —ln2~]-*'

xi[4 lnka ——ln2~]*'v cos8. (64)

Note that the damping decreases as 0 increases from
zero. This is in agreement with the exact result of no
damping of waves propagating perpendicular to Sp.

Consider the waves for which 8 m/2 (k Sp '0,
whence ti«1). If one .employs in Eq. (40) the variable

t spi p) r t'v t 6 ) Bfp (v')
dy'k v! —!k, (69)( iV)& J . 3nL) av'

where pi~'=4irEe'/m~, Q~=!e8p/m+e! fp~ is given by
Eq. (2) with the mass and temperature chosen appro-
priately, and G~ by Eq. (11), Equation (69) yields, on
performing three of the indicated integrations in the
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manner of Appendix II,

1+(T+/T )+k3a '

=s t dt exp{—st —2k3p+' sin'8 sin3(20+t)

—-,'v+' cos'8t')+s(T+/T ) dt
kp

Xexp{—st —2k3p ' sin'8 sin'(20 t)

——,
'

v ' cos'8t') (70)

T+ S f )3r1

T ~ v cosa&2&

$2

+
s cos 0

(71)

On the right in Eq. (71) it is sufFicient to keep only the
terms in s', s ', and s'. If k3a '»T+/T, the result is"

s=&i(ET k3/333+)' cos8[&i (3N /3—N+)'*(3r/8) ~5 (72).
Note that because 333 /333&+(T+ T/«1, it follows that
~lm s~&&~Res~, and there will be many oscillations
before damping occurs. The same results for Ims is
derived by Spitzer, "for the case of zero magnetic field,
from the hydrodynamic equations. He, however, derives
no damping. This is because the stress tensor is not
isotropic, as is conventionally assumed in hydro-
dynamic treatments, but rather obeys a complicated
equation of state. The case of zero magnetic field is
effectively realized in Eq. (72) by setting 8=0. Note
that the result of Eq. (72) can be interpreted by saying
that in a strong magnetic field the charged particles are
tied to the lines of force.

'7. GENERAL ELECTRON OSCILLATIONS

(a) Weak Magnetic Field

Consider the case of a weak magnetic field and
neglect the motion of the positive ions. One can then

"The observation that Eq. (72) fol}ows from Eq. (71) is due
to John M. Greene.' L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience
Pub1ishers, Inc. , London, 1956), Chap. 4.

where a '=KT /43rNe3, p~3=ET~/333~0~3, and v~3
=ET gk3/333~.

If one considers the case T+= T, it can readily be
shown that when 83——0 the inclusion of the ion dy-
namics makes corrections to the frequencies calculated
in Sec. V of order (333 /333+)3«1. If, however, T »T+
there appear frequencies characteristic of so-called ion os-
cillations. In order to see this, consider for simplicity the
case of large magnetic field, so large that 1))k p+ ))P p
Then k3p+3 in Eq. (70) can be replaced by zero, and
if one then expands the first integral in descending and
the second in ascending powers of s, there results

T+ v+ cos 0 3v+ cos 0
1+ +k3a '=1— + ~ ~ ~

T S

where v3=KTk3/333, n3 is a unit vector in the direction
of k, n3 is a unit vector in the direction of kX83,
n&=naXI13, and

J= t dt exp[ st —'v'—t'5-2

1 v' 3v4 1 t'3r
+ — +-I —

I
exp(s3/2v3) Ll+ 7

s s' s' v E2)
(74)

In Eq. (74) the asymptotic representation indicated by
is useful when

(
Im s

~
&&~ Re s ~, which corresponds to

v3(&co3=4m.Ne3/333. In this latter case the dispersion
relation (27) reads, if one neglects exponentially small
terms which yield the here-negligible Landau damping,

~
R~ =0 where the elements of the matrix R are

Rii=s +c k —(GP/s ) (v +Q cos 8)

R33=oPQ cos8/s,

R3i =—aP03 sin8 cos8/s',

Ri3 ———oPQ cos8/s,

R22 s2+c2k3+~2 (~2/s2) (v3+Q3)

R33———&u30 cos8/s,

Ri 3———u303 sin8 cos8/s',

R33——~30 sin8/s,

R33——s'+co'(aP/s3) (3v'+ 0' sin'8)

(75)

In the determinant, which is a function of s', 0' and v

are to be considered as of comparable smallness, say of
order 3. Equation (75) is then of the form f(s', c) =0.
The roots of f(s,0) =0 are sP=s3 = —(co'+c'k') cor-
responding to the electromagnetic waves, and s3'= —co2

corresponding to longitudinal electron oscillations. In
order to solve the determinantal equation, it is con-
venient to expand f(s3, 3) in a joint Taylor series about
s'= s,3 (i= 1, 2, 3), and about 3=0. In computing a root,
it is necessary to retain only the lowest order non-
vanishing terms separately in ~ and s' —s,'. For the
root near s3', it is suKcient to keep only first derivatives.
The result is

—s'=H+3v'+03 sin'8+oP03 sin'8/c'k'.

employ Eq. (31) to expand the dyadic Q of Eq. (21)
to the second order in O'. The result is readily shown to bt.

Q = (n,n, +n3n3) SJ+n3113[(S'/v') —(S'/v') J5
+Qs{(n,n, —n3n3) cos8 BJ/Bs+ (n3n3 —n3n3)
X-', sin8(B/Bs) [J+(s'/v') —(s'/v') J5)
+0's{—(nini+3n3n3+n3n3) (1/24) v' sin'8B'J/Bs'

+n3n3-', (cos'8/ v') (B'/Bs') (s' —s'J)
+3B'J/Bs'[(nini+n3n3) cos'8+n3n3 sin'8

+ (n,n, +n3ni sin8 cos85}, (73)
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Note that in the limit c—+op Eq. (76) goes over into
Eq. (55). For the double root sip=sop, it is necessary to
go to second order in both parameters of smallness. The
result is

—s' =c'k'+ &a'~ ooQ cos0/(oo'+ c'ko) O

(b) Arbitrary Parameters

Consider the case of a plasma composed of an equal
number of electrons and protons. It is convenient, to
revert to the representation of Eq. (7) and introduce
the unitary matrix

—1 0

R„'=s'+-,'c'k'(1+cos'0)+Q aPMp

Rp, ' ———-', c'k' sin'0+ + cv'L

Roi' ———2 '*c'k' sin0 cos8+Q a&'E~

Rip' ————,'c'k' sin'0+ Q co'L

R ' =s'+-', c'k'(1+cos'8)+Q &u'M

Roo' ———2 lc'k' sin8 cos8+P oooX

Rio' ———2 &c'k' sin8 cos8+P a&'X~,

Roo' ———2 'c'k' sin8 cos8+P cv'X

Roo' ——s'+c'ko sin'8++ ~'W

(81)

0

0 0 v2

(78) where again the upper sign refers to positive particles,
and where

where the scalar factor i/W2 is understood to multiply
each element of the matrix. If one defines R'= PRP ',
since )R[ =

~

P—'R'P~ = ~R'~, the dispersion relation

(27) can be written
~

R'~ =0. The transformation essen-

tially represents E in terms of circularly polarized waves.
The matrix Q'= PQP —' which enters R', where Q is

given by Eq. (21), can be expressed in terms of variables
n= ', (p'+p) —and P= W-', (g' —p), where the upper sign
is to be taken for positive particles, and the lower for
negative. Namely,

fsl("& t'"
Q'= —P( —

f

—
/

dw w du
&Qi (x)~,

p
oo tIe+2w

X
~ dP~ dn GT, (79)

0 P

where the summation is extended over all the particles
present, and where the elements of the matrix T are

L=X (0/N. ) (s/Q) dy
4p

Xexp L
—(s/Q) y —

7W, (1—cosy) —pipy'g

Mp=)1+X(0/BX)) (s/Q) dy
4p

Xexp L
—(s/Qai) y 7t (1 c—osy) —ppy' j—

X~= —(Xp) l(s/Q) dy sin-', y

Xexp' —(s/Qa p)y —7i (1—cosy) —
opy'3,

+'=(1+2 (0/0 )j (/Q) " dy
Jp

(82)

Tii e+"~w8fp/Bw-—
T„=e".wa fo/&w,

Toi &2e'& ~+~'ufo/——0w

Tio=e ' w0fo/0w,

Too e+"ew8fp/Bw-—,

To, V2e '& +»u8 fo/——8w,

T,o ——&2e '& +e&u&fo/Bu,
—

T„=v2e'& +e~ua fo/0u,

(80)

XexpL —(s/Q) y —X (1—cosy) —-'py'j

As usual X=KTk' sin'8/m, p=KTk' cos'8/m, Q=Zego/
mc, and ooo =4n.Xse'/m.

Consider hrst the situation T=O. This corresponds
to the case where the organized velocity is very much
greater than the random velocity. Then I =0,
M+ ——s/(s&iQ), X+——0, and W=1. If 8=0, the dis-
persion relation

~

R'~ =0 reads, for a plasma composed
of an equal number of electrons and protons,

Too= 2uBfp/Bu.

The 6rst index on T;, indicates the row, the second the
column.

Three of the four integrations indicated in Eq. (79),
effectively those over w, u, and n, can be performed (see
Appendix II). The result is, in terms of the elements

ks'+c'k'+Q (o's/(s&iQ) j
XLs'+c'k'+g co'/( &isQ)]ps'+Q co'j=0. (83)

One solution of Eq. (83) is s'= —P ooo, which corre-
sponds to an electron plasma oscillation along Sp, since
&o '))op+'. The other solutions of (83) are of two kinds.
First there are high-frequency solutions s~ick for
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which the proton motion can be neglected. These can
be obtained by writing ss+csk'+~ ss/s(s&i0 ) =0, a
result which corresponds to Eq. (4-13) of Spitzer. 's

The second class corresponds to hydr orna gnetic
waves for which ~s'~((c'ks, 0+'. In this case one can
write for the erst factor in Eq. (83) (similar results are
obtained from the second),

0=s'+c'k'+P (u's/(s Wi0)
=s'+c'k'+ (see+'/i0+) [1+(s/iQ+)+ ]

—(sar '/iQ )f1—(s/iQ )+ 7. (84)

fully ionized plasma in the absence of collisions cannot
exhibit a monotonic increase in time. The proof is due
to William Newcomb, and relies on the fact that in the
absence of mechanisms for the degradation of energy
(e.g. , collisions) the entropy of the system must be a
constant of the motion.

In order to effect the proof, note that if fp denotes
the space- and time-independent Maxwell distribution
of Eq. (2), which characterizes each kind of particle in
thermal equilibrium, then the entropy 5 can be written

But co+'/0+=io '/0 =4oril7ec/Sp. Thus, if we neglect
small terms, Eq. (84) reads

S= EP —d'r d'vlf lnf —fp lii fp]. (A-1)

whence

0=c'k'+s'(o '/0 '

—s'/k'=Sos/47r1Vm+. (86)

a result already found by Gross. The low-frequency
solutions which correspond to hydromagnetic waves are,
as before, given by s'/k'=Bps/47r—lVm+, after neglect-
ing small quantities. Thus for these limiting cases the
results are just those which hydromagnetic theory
predicts. ~
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APPENDIX I. DIRECT THERMODYNAMIC PROOF
OF THE ABSENCE OF TIME

INCREASING SOLUTIONS

It is possible to show directly, without having to
explicitly solve the linearized equations, that the most
general small motions about thermal equilibrium of a

"Note added il proof The results of T. Pradhan [.P—hys. Rev.
107, 1222 (19571j for the propagation of electromagnetic waves
along 80 can be obtained by setting 8=0 in Eq. (81) and writing

The expression on the right above is the well-known
expression for the square of the phase velocity of a
hydromagnetic wave.

The case 0=or/2 yields the dispersion relation

0= f (s'+ —',c'k'+P eo's/(s&i0)7
XLs'+-'c'k'+Q eo/ss( wsi0)7

—sr c4k4) [s'+c'k'+ Q (v'7 (87)

where again the upper sign refers to the ions. Consider
first the high-frequency solutions, for which the ion
motion can be neglected. These are

—s'=c'k'+~ ' ~ '+r(0 '+c'k')
L(Q 2 csk2)2+40 2& 2

The summation is extended over all the classes of
particle present. The expression above is so normalized
that S=O for thermal equilibrium. If the departure
from thermal equilibrium is of bounded extent at any
finite time, Eq. (A-1) is well defined when one extends
the integration in d'r over all space. If one wishes to
consider disturbances which vary spatially like e'"',
the space integration can be considered as extending
over a cube each edge of which is one wavelength 2s./k
in length, and one face of which is perpendicular to k.

The time rate of change of S is given by

dS t. Bf itfEP ~~ d'r —d'v —+—lnf .
at

The term in Bf/itt alone vanishes in virtue of conser-
vation of the total number of particles. The term in
(itf/itt) lnf can be transformed by employing the Boltz-
mann equation (1) with (elf/ctt)„» 0 to yield, ——if q is
the algebraic charge, and we revert to Latin letters for
the electric and magnetic fields,

dS r
=E P ' d'r d'v lnf——$vf7

dt Br

8 qt' 1
+——

i
E+-vXB if . (A-3)

Bv .m4 c )

If one integrates by parts so as to shift the differential
operators on to lnf, since all surface terms vanish, Eq.
(A-3) results in

dS t itf q ( 1 ) elf
EQ I d'rd'v v —+——

i E+—vXB d.—
dt ar mE c 2 an

Thus S is a constant of the motion.
It is also easily demonstrated from Eq. (1), and

Maxwell's equations (13), and (14), that the total
energy W, if Bp denotes the constant external magnetic
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6eld, is given by

1 t

W=— d'rt E'+B'—Bppj
8x ~

m
+Q d'r d'v —v'Lf —fpg, (A-5)

is also a constant of the motion. Note that 5" has been
normalized to zero for equilibrium.

If one expands each distribution function f, essen-
tially in powers of the small initial departure from
thermal equilibrium

0 1 2

00 pCO titO

Q»' ——Q (QPs/0) ' dww dQ dPJ, ~ „J,
pP+2m

X ' da(2m+'/ET) (m/2v E'T) **

J,
Xexp f —m(N'+w')/2ET —2iPkl cos8/0

2i cos—n sinPkw sin8/0 —2Ps/0)

CO poO

=p (ppps/0) ) dww du
0 —QO

2%'

X d(x(2m''/KT) (m/2v KT)&
"0

and writes correspondingly

E=0+E,+Ep+
B=Bp+B,+Bp+

(A-7)

Xexp( —(m/2KT) fu+2iPk cos8ET/mQ)'

—2P'k'ET cos'8/mQ' —2Ps/0

then correct to second order in the parameter of
smallness

mv' )S=—KP, "dPrdPv f, j
1+a-

2ET)

2i cosn sinP—kw sin8/0). (A-10)

The integral over I is elementary. The integral over o.

can be effected by noting that"

mv' ) fP
I+

2KT) 2fp
The result is

2v Jp(s) = ' dec"''"' (A-11)

The constant A =—', ln(N'*m/2v ET).The terms above in
(1+2) vanish in virtue of particle conservation. The
terms in mv'/2ET can be transformed by employing
Kq. (A-5) expressed correct to second order.

The result is

f 1
S= E]—

)
d''r PEP+ B 'j

I g~KT) J
t

1'
+-', d'r d'v —. (A-9)

Note that the quantity in brackets above is the sum
of essentially positive terms, while S=const by Eq.
(A-4). Thus there can be no solutions for which any of
the quantities E&, B&, or f& increase monotonically and
hence in particular exponentially in time, since the
others could not compensate so as to keep S constant.
Clearly, however, an exponential decrease in time is
admissible, since then compensation can occur.

APPENDIX II. EVALUATION OP
CHARACTERISTIC INTEGRALS

Consider a typical integral occurring in Q', namely
)see Eqs. (2), (7), (10), (11), and (76}j

dww (2m/ET) (1—4@p')

XJp(2(P m/KT)iw sing

Xexp f —(mw'/2ET) —2'' —2Ps/0), (A-12)

where X=ETk' sin'8/m, and p=KTk' cos'8/m. One can
next carry out the integration over m by employing the
formula"

dww~'J„(aw) exp( —wp')

=a"(2p')—~' exp( —a'/4p'). (A-13)

The result is, if one sets 2p=y,

Q»'=Z(~'s/0) ] dyL1 —py'j
0

Xexp( —2& sin'2y —~&vy' —(s/0)y&

OO

=P(ass/0) 1+2~— I dy
Bp, 0

Xexp{—(s/0)y —X(1—cosy) —-', py') . (A-14)


