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Plasma Diffusion in a Magnetic Field*
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The equations governing the diffusion of a fully ionized plasma across a magnetic field are derived. It is
assumed that macroscopic quantities vary slowly across an ion radius of gyration, and that the interparticle
collision frequency is much less than the gyration frequency. The relevant transport coefficients—electrical
resistivity, thermal conductivity, and thermoelectric coefficient—are derived. Some similarity solutions of

the equations are found.

I. INTRODUCTION

FULLY ionized plasma, confined by a magnetic

field, diffuses across the field by means of inter-
particle collisions,!? when a transverse density gradient
exists. In a recent paper,® Longmire and Rosenbluth
investigated the effects of like-particle and unlike-
particle collisions. They found that the effects of the
latter predominate if the relative change in density over
an ion radius of gyration is small.

In this paper the theory of diffusion is extended to
include the effects of a transverse temperature gradient,
in the same direction as the density gradient. A closed
set of equations is derived, by an expansion in two
small parameters: a~a|Vn|/n, the ratio of the radius
of gyration, a, to a characteristic macroscopic distance;
and y~ (w7)™, the ratio of the collision frequency
771 to the gyration frequency w=eB/mc.!

It is found that to second order in «, the ions and
electrons diffuse at the same velocity uq; to higher

* A preliminary report on this same subject had been issued as
University of California Radiation Laboratory Report UCRL-
4835 (unpublished).

t Work by this author was supported by the U. S. Atomic
Energy Commission.

LL. Spitzer, Physics of Fully Ionized Gases (Interscience
Publishers, Inc., New York, 1956).

2 Reference 1, Sec. 3.2b.

3 C. Longmire and M. Rosenbluth, Phys. Rev. 103, 507 (1956).
See also A. Simon, Phys. Rev. 100, 1557 (1955).

4 Because each component of the plasma has different values of
a, w, and 7, we shall require that all the appropriate « and «
are small.
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order in «, the diffusion velocities are different,® and
charge separation may occur. Such effects will not be
considered in this paper. Hence, for our purposes, the
densities of ions (assumed to be singly-charged, and all
of the same mass) and electrons are equal. A considera-
tion of relaxation times® shows that both components
arrive at local Maxwell velocity distributions in a time
short compared to the time for the plasma to diffuse
across a distance equal to an ion radius of gyration;
and that the two components come to the same tem-
perature in a time roughly equal to the latter. Thus, to
zero order in «, we shall take the ions and electrons
as being locally Maxwellian, with equal densities and
temperature.

The velocity distribution function f(r,v,f) for each
component is expanded as a power series in a:8

f=fotfitfotoos (1)
where
f . 71«( Miye )% [ 1 7)2/ij (2)
b= exXp| — M, ¢ .
"\ amer/) T
The moments of f that we shall use are
nute= fdsv vfie, (3)

6 Reference 1, Sec. 5.3.

6 Similar expansions have been used by S. Chapman and T. G.
Cowling, The Mathematical Theory of Nonuniform Gases (Cam-
bridge University Press, New York, 1953); L. Spitzer, Astrophys.
J. 116, 299 (1952); Chew, Goldberger, and Low, Proc. Roy. Soc.
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u= (mai+meue), 4

mit+me

j=3ne(ui—u°), ©)
Q= Z & Im(v—u)?(v—u)f. (6)

The first-order correction f; contributes to these
moments. It will be found that for no collisions (y=0),
there are component flows”

BXV(p/2
%nui,e=:}:5 .L/)’ (7)
e B?

where ¢ is the total zero-order pressure:
p=nkT. (8)

From Egs. (5) and (7), we obtain the first-order
equation of equilibrium:

(1/¢)iXB=Vp. )

To first order in v, we shall find equal flows in the
direction of the gradients:

N.1C? 1620 ExXB
W= ——Vpt-—VET)+o—r,  (10)
2 BZ B2
where?
m=(8/3)(r/2) *m}(kT)~% InA. (11)

The first two terms in (10) arise from momentum
transfer between the electrons and ions, whose flows
(7) oppose each other. In a magnetic field, gain of
momentum produces guiding-center drift, as shown by
Alfvén.® The appearance of the second term is a conse-
quence of the fact that for Coulomb interactions, the
collision frequency is velocity-dependent. The third
term is the well-known EXB drift; the electric field
E arises by induction from the motion of the dia-
magnetic plasma.

If E is measured in the frame moving with velocity
Ug.

E'=E+ (1/c)usXB,

Equation (10) can be written in such a way as to
resemble Ohm’s law, with a thermoelectric coefficient A :

j=n"E'—AV(kT)XB, (13)
A=2(nc/B?). (14)

(London) 236, 112 (1956); R. Landshoff, Phys. Rev. 76, 904
(1949).

7 Reference 1, Sec. 2.4.

8 See reference 1, p. 73.

9H. Alfvén, Cosmical Electrodynamics (Oxford University
Press, New York, 1950), Sec. 2.2.

(12)

Equation (9) remains valid to all orders in v, but
Eq. (10) would be modified by higher-order corrections.
This paper will restrict itself to the lowest-order effects.

To first order in a and v, the heat flow in the direction
of the gradients, and relative to the frame ug will be
found to be

Q= —KV(ET)+NeTE' XB, (13)
where
1 /2m;\* n2ckT
K:—-(-——) ML if MDMe. (16)
4\ m, B

The dominant contribution to the thermal conduc-
tivity K is from ion-ion collisions, which do not con-
tribute at all to the diffusion velocity us. Theappearance
of the large numerical factor in K causes heat flow to be
relatively much faster than mass flow [compare Eq.
(10)]. Thus, the diffusion process will tend to occur
at uniform temperature, in which case the thermo-
electric effect becomes unimportant. Note that the
same A appears in (15) as in (13); this is required by
the Onsager reciprocity relations.!

To second order in «, we shall find the moment
equations expressing conservation of mass and energy:

In/dt=—V- (nuy), 17
p/dt+ug-Vp=—(5/3)pV-uq
+(2/3)(E"-j—=v-Q). (18)

In the equation of state (18), the three terms on the
right represent, respectively, adiabatic heating (for a
Maxwell gas), ohmic heating, and heating by heat
conduction. The factor % appears because the thermal

energy density is § the pressure.
The equations above are completed by the Maxwell

equations
VXB= (4/0)j,

VXE=—(1/¢c)aB/at.

(19)
(20)

We have thus obtained a closed set of equations:
(8), (9), (11)-(20). Each equation is valid to lowest
order in the quantities that appear in it.

If an electric field exists along the magnetic field, the
only change that need be made is in Eq. (13), which
then becomes

j=0o-E'—AV(kT)XB, (21)
where

o=n,"'(1—nn)+75,'nn, (22)

and n is the unit vector along B. The calculation of
71 is independent of the presence of B. The two resis-
tivities are related!?:

(23)

10 See, for example, S. R. DeGroot, Thermodynamics of Irre-
versible Processes (Interscience Publishers, Inc., New York, 1951),
Sec. 61.

111, Spitzer and R. Hérm, Phys. Rev. 89, 977 (1953).

12 Reference 1, Sec. 5.4.

m= 1.9877[[.
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The next section contains the derivation of the
equations above. In the last section some solutions are
discussed.

II. DERIVATION OF EQUATIONS
The Boltzmann equation for ions is

d e 1
[—-}—v- V+-—(E+-VXB) . Vv]
a¢ m; c

X fi(r,v,t) =C¥4-Cie,  (24)
where C% and C? represent the contributions of ion-ion
and ion-electron collisions to (8/9f)f%. An analogous
equation applies to the electron function fe.

We shall use the Boltzmann collision integral for the
C’s; for example,

C“(r,v,t)=—fd3uwfd9¢r“

XLfie,v,) fo(rmt) — fi(x,v' ) fo(ru',) ], (25)
where
w=v—u, (26)
ole=1Le'u; 2w csct(30), 27
i t=mi A m (28)

The integration over angle will be cut off at small angles
in the usual way.® Alternatively, one may use the
Fokker-Planck formalism, and the same results are
obtained.

To zero order in @, we take only the term in B on the
left side of (24):

(VX4) - Vo foi(r,v,0) = Co¥+Co'e, (29)
where fo¢ and fo¢ are used in Cy, and
W;, = :i:eB/mi, eC. (30)

Let the z axis be in the local direction of B. Then, with
v,= 19 COsb,

V=10 COSf Ccos¢,
1)

the left side of (29) becomes —w;(8/d¢)fo’. Equations
(29) for ions and electrons are satisfied by the local
Maxwell distributions (2), where # and T are functions
of position and time. (An arbitrary mass motion
along B is set equal to zero.)

In order not to complicate the problem unduly, we
assume that Vuz and VT are in the same direction
(transverse to B), which we take for the x axis, and that
the induced field E is in the y direction. The first-order
(in @) Boltzmann equation is

v, =1 cosf sing,

€ 0
v-Vfo"+——E-vao"~w,g; 1i=Cri4-Crie. (32)

m;

IN A MAGNETIC FIELD 3

(We treat V as first-order in a; @ posteriori it is found
that 8/9¢ should be treated as second-order in @, and E
as first-order in « and in v.)

Multiply (32) by m,v and integrate over velocity
space. We find

1
%Vp—-%ne(E-{——uiXB) ~P,, (33)
C

where P, is the rate of momentum transfer (to order a)
from electrons to ions. The analogous electron equation
is

1
%Vp—}—%ne(E—i——u‘XB) =P, (34)
c

Because momentum is conserved in collisions,
Pie4-P¢i=0. Thus the sum of (33) and (34) is Eq. (9).
Acceleration terms are higher order in @, and so do not
appear in (9).

From the y-components of (33) and (34), we see that,
to order a, the flows in the x direction are equal:

(35)

Thus j,=0, as required by Eq. (9); there is no charge
separation.

To solve the integral equation (32) for fi, we utilize
the expansion in vy:

wi=ul=u,.

f1=f10+fu+ . (36)
The zero-order (in v) equation is
Ve Vfoi—w¢(6/6¢)f10i= 0. (37)
Its solution is easily found to be
w[ldn 3 OT v .
fm’=—[— e )] S
wiln dx 2T 9x 3kT
The v, moment of (38) yields Eq. (7).
To order v, Eq. (32) becomes
e . a . .. .
—E-V,fol—w—f11°=C10*+C1o%, (39)
m; (o)
where, with the substitution
fmi,e=f0i,eq>i,z, (40)
the collision integral C1o% (for example) becomes
—fo"(v)fd%wfo“(u)fdﬂa“
[2*(v)+2o(u) —2i(v) —2e(u)].  (41)

The quantities ® are given by Eq. (38), and its analog
for electrons. The solution is again easily found to be

m.C E,

vx . . . .
AT -,Bf01+v7w;(F2 +Fyie+Fyi) fol, (42)

fui:
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where

]
F1i°=_mi_l[é— ln(n]‘—%)]v-fdm’wfoe(u)fdﬂ
x
XA (mv—mu),
‘ ]
F218=%mi—1[a__(]‘—1)]v-fdmwfoﬂ(u)fdﬂ
x

(43)
(44)

XA (m Py —miutu),

Ad=A—4',

and

the change in a quantity 4 in a collision. Fs* is
analogous to F.%, with m.u replaced by —m2u; F.i%
vanishes from momentum conservation.

Although f1; is a complicated function of v, its
moments are simple. They are most easily evaluated
by transforming the variables u, v to the center-of-mass
and relative velocities. The evaluation of the double
integrals is then lengthy, but quite straightforward,
and one obtains (10) and (15).

To second order in «, the Boltzmann equation
(for ioms) is

d e 9
—fOi‘*‘V‘ Vfﬁ—'—“E V,,ff;—wr— 2i=C2ii+C2ie. (45)
ot mi do

Its zeroth moment yields the continuity equation (17).
Its second moment involves energy transfer between
electrons and ions. To eliminate this, we add the ion
and electron energy moment equations, and, after a
little manipulation, obtain the equation of state (18).

III. SOLUTIONS

We shall consider solutions of the diffusion equations
for the case that B is everywhere in the z direction, and
the gradients are everywhere in the x-direction.

Our first solution is for a plasma of finite extent in
the x direction, and whose pressure is small compared
to the field pressure B?/8r. In such a case, we may
neglect the induced electric field E (but not E’), and

! T T T T T T T

| | ] | 1 ]
o 2 A 6 8 [ 1.2

_L
£8.72

F16. 1. Solution of the diffusion equations for a
semi-infinite uniform plasma.

!
14 5

AND A. N. KAUFMAN

treat the quantity B? wherever it appears, as a constant
Our equations are then

p=nkT, 8
¢ 0p
1= (9)
B ox
n.6% /9 kT
ud=—L‘ —g—’ﬂ——), (10"
B2 \9x dx
1
E = ——udB, (12/)
¢
kT
Qa=—K—-FNkTE'B, (15)
ox
on
—=——(nua), 17)
at
ap ap 5 duqg 2 . 9Qa
—t U= ——p——{——(E'y—-——). (18)
at ox 3 ax 3 ax

By the use of Egs. (9), (12’), and (15), Eq. (18)
becomes
ap 10 29

kT
—=———(pra)+—— K——)
6 dx 30x ox

(46)

We search for similarity solutions of the set (8), (10),
(17), (46), where

m=no(T/To)?,

and K is given by (16). We assume solutions of the form

(47)

n(x,t) = (t/to) "™ 0g (£, (48)

p(x,t)=(t/t)™poL g (£) ], (49)
X ft\T™

§= - (‘;}) ; (50)

g(1)=0, (51)

g(0)=1, (52)

po=nokTo. (53)

Conservation of particles requires that m;=m4. Substi-
tution of Eqgs. (48)—(53) into Egs. (8), (10"), (17), and
(46) yields the solution:

m1=m2:m4=%,
my=1— (me/2m:)%,
g(8)=(1— 52)1—%(me/2mi)9’
1o 3 71421 (m./2m;)?
<, Lty

x2=t_. .
T P\ T 6 (mey2me)
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where, except in the last expression, we have expanded
the solution in powers of (m./m;)%.
We see that the plasma is nearly isothermal:

T =To(1— £)~t(mel2mi}, (55)

Only for £ nearly equal to 1, does the temperature
differ appreciably from 7. The distributions of density
and pressure are nearly parabolic, but as £—1, their
gradients become infinite, as does the temperature.
(Of course, in the neighborhood of £#=1, the basic
assumption of small « is not valid). As (m./m;)—0, the
solution becomes the isothermal parabolic solution
found by Holladay.

Another problem of interest is defined at =0 by a
surface of discontinuity at =0 to the left of which
there exists a vacuum with uniform B, and to the right
of which we have a plasma at uniform density, tem-
perature and magnetic field in the z direction. The
magnetic field at x=— is independent of time. In
this case the appropriate similarity variable is X/4/4,
where X is the mass coordinate, i.e., the initial position

13J. Holladay, Los Alamos Scientific Laboratory Report
LA-1962 (unpublished).

of the plasma element. The resulting nonlinear equa-
tions were integrated on the IBM 650 at General
Atomic by Miss Gwendolyn Roy. (The results are
shown on Fig. 1.)

Here 8 is the ratio of material pressure to the vacuum
magnetic pressure, and By is the initial value of 8. The
similarity variable £ is defined as

g=4rX>/nu, (56)

nio is the initial resistivity. Two cases are shown:
Bo=1, ie., no field initially in the plasma, and B¢<K1.

It can be seen that the time for the front to diffuse
a given distance is very nearly inversely proportional
to Bo. This is reasonable since the diffusion proceeds by
binary collisions. Because of the high thermal conduc-
tivity the wave is again almost isothermal, though
with a very narrow spike at £=0. Thus at the point
B/B0=0.5 the temperature in both cases is only 39,
higher than the initial temperature.
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