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Anisotropic Effects in Optical Excitation of Excitons in Molecular Crystals*
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The expression for the energy of an exciton state contains certain dipole lattice sums. These sums are
strongly dependent on the direction of the propagation vector of the exciton, even when the magnitude of
this vector is very small. As a result, the energy of an optically-excited exciton may depend strongly on the
direction of propagation of the absorbed radiation, if the excitation takes place coherently over a region
whose linear dimensions are comparable with or much larger than a wavelength. The behavior of the lattice
sums may also introduce a dependence of the exciton polarization and of the absorption coeScient on the
direction of propagation. The magnitudes of these effects were calculated for the cases of the fIrst and second
transitions of naphthalene and of anthracene. Experimental observations of the extent to which these effects
occur could provide information on the dimensions of the region of excitation of the exciton.

I. INTRODUCTION

~W~PTICAL transitions from the ground state of a
crystal to an exciton level are forbidden unless

the propagation vector k of the exciton equals ks, that
of the absorbed radiation. ' The number of exciton states
corresponding to a given excited molecular energy level,
and having a given k, equals the number of molecules
per unit cell times the degeneracy of the molecular
level. ' ' There may, therefore, be more than one allowed
transition from the crystal ground state to each exciton
band, even when the corresponding molecular level is
nondegener ate. These allowed transitions generally
dier from one another in energy and polarization.
Splitting of nondegenerate molecular levels (Davydov
splitting') has been observed by Craig and Hobbins' and
by Sidman' in anthracene, by McClure and Schnepp' in
naphthalene, and by Broude, Medvedev, and Prikhot'ko"
in benzene.

The ratio of ks to the magnitude of a primitive
translation vector of the reciprocal lattice is small

(10 ' to 10 '). For this reason, it was assumed by
Davydov that in calculating the magnitude of the
splitting and predicting the polarizations, one may take
k=0 as an approximation. If the intermolecular inter-
action energy which causes this splitting can be ex-
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panded as a series of multipole interactions in which all
the terms are of higher order than dipole-dipole, ' this
approximation is valid. However, if the expansion does
contain dipole-dipole terms, the convergence problems
of dipole lattice sums must be considered " if an
exciton packet is excited with coherent phase over a
region whose linear dimensions are greater than a wave-
length of the absorbed radiation, the sums are strongly
dependent on the direction of 4, even for small k. As a
result of this direction dependence, the frequencies and
polarizations of the absorbed radiation vary with
k-direction, if the exciton-packet dimensions are suffi-
ciently large at the time of excitation (Secs. III and IV).

In addition to a discussion of these variations we
present the results of calculations of the magnitudes of
the various eGects in the cases of the first and second
electronic transitions in naphthalene and anthracene.
For two reasons, these numerical values should not be
taken as predictions of the results of future experiments,
but rather as a guide to the interpretation of these
experiments. First, the calculations are based on the
assumption that each photon is absorbed over a region
of dimensions large compared with a wavelength; if
this is not so (i.e., if a small exciton packet is excited)
the variations will be reduced, and possibly not ob-
servable. Second, in at least one case (the second
transition in anthracene), there is some question as to
the rapidity of convergence of the perturbation calcu-
lation which was used, so that even with assumption of
coherent absorption over a large region, the results are
good only in order of magnitude.

The Davydov splitting itself indicates some degree of
nonlocalization of the excitation at the time of absorp-
tion. In each of the experiments performed to date, the
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observations were made with only one direction of kp.
A study of the dependence of transition energies and
polarizations on direction of kp can yield further
information as to the extent of coherent excitation.

may be constructed from crystal states 0 J in which
the Jth molecule is excited to the nth (nondegenerate)
state, and all other molecules are in their ground
states; rg is the position of the center of the Jth
molecule with respect to some arbitrary origin. The
functions 4'g are antisymmetric with respect to elec-
tron exchange. For a given o., they are degenerate eigen-
functions of H p. The functions (1) (with k taking on the
usual allowed values in the first zone of k-space) are,
therefore, also eigenfunctions of Ho, but they diagonalize
the submatrix of V which corresponds to a fixed «x

(the rr submatrix), and V splits the degeneracy.
If there are q molecules per unit cell, and the o.th

molecular level is again nondegenerate, we may take
the "one-site excitons"

a P e~k.r;~ a

as basis functions. ' ' The antisymmetrized function 4;g
represents a crystal state in which the molecule at
the jth molecular site of the Jth cell, at position r, J, is
excited to the nth state, and all the other molecules are
in the ground state. The function (2) represents a
sharing of the excitation among jth-site molecules only.
Matrix elements of V between states with different k
will vanish, but the 0. submatrix will contain non-
vanishing o8-diagonal elements between states with
the same k but different j.The correct zero-order wave
functions, obtained by diagonalization of the o. sub-
matrix, will be the q linear combinations

Cak Pj Ca Pjk (3)

of the one-site excitons. The set of coeKcients C, &

depends on both k and n.
An optical transition from the crystal ground state to

one of the exciton states (3) is allowed only if k is
equal to kp, the propagation vector of the incident
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II. EXCITON ENERGIES AND DAVYDOV SPLITTING

The material of this section has been described in
detail elsewhere. ' 4 ""We shall discuss, without proof,
certain results which will be required.

The crystal Hamiltonian may be written as
H=Hp+ V, where Hp is the sum of molecular Hamil-
tonians, and V is the sum of interactions between
molecules. In treating the lowest states of molecular
crystals, the term V may be taken as a perturbation.

The ground state of the crystal, in lowest order, is the
product of ground state functions of all the molecules.
In a crystal with one molecule per unit cell, the exciton
functions'

where y; is the molecular transition dipole moment
taken between the nth excited state and the ground
state of a molecule with jth-site orientation. The vector
P, is dependent on k and a. The integrated absorption
coefFicient of the transition from the crystal ground
state is, in lowest order,

(4n'e /rikcv) P, ' cos'y,

where n is the real part of the index of refraction of the
crystal, v is the volume of a unit cell, and y is the angle
between P, and the polarization vector of the absorbed
radiation. The maximum possible value of cosy will be
one only if the optically active exciton is transversely
polarized. In designating the polarization of an absorp-
tion, we shall refer to the polarization of the exciton,
rather than to that of the radiation.

With the set of functions (2) as a basis, the elements
of the n submatrix of V contain the following types of
terms' ' ' ": (a) Coulomb terms, representing inter-
actions between pairs of ground-state molecules, or
between ground-state and excited molecules; (b) excita-
tion-exchange terms, which are matrix elements of the
interaction between two molecules, taken between one
state in which only the first molecule is excited and
another in which the excitation has been transferred to
the second molecule; (c) electron-exchange terms
(arising in the usual way from the antisymmetrization
of the wave functions), in which a pair of electrons is
exchanged between the two interacting molecules;
(d) electron- and excitation-exchange terms, in which
both a pair of electrons and the excitation are ex-
changed.

In crystals of aromatic molecules, terms of type (d)
are negligible. ' ' The terms (c) are either negligible or
else cancel in the difference between crystal ground
state and exciton state energies, so that they do not
affect the transition frequencies. The terms (a) usually
cannot be neglected; however, they appear only in the
diagonal matrix elements of V, and are independent of
k and j.They will, therefore, not enter into the varia-
tion of energy or of polarization with kp, with which we

shall be primarily concerned. Their contributions will

be discussed brieQy in Sec. III.
The terms (b) are modulated sums of the form

P e'"'j~ ~ pip'P; g)*Vp' Pp~Pj J drpdrp (6)

radiation. For each direction of kp, this selection rule
permits one transition for each value of 0. Some of these
transitions may be prohibited by further selection rules
arising from the symmetry restrictions imposed by that
subgroup of the factor group which leaves k invariant. s

The polarization vector of an exciton state may be
defined as

P.=P jC, 'Pj,
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where fs and P;~ are the ground state wave functions
of molecules at the origin and at the jth site of the Jth
cell respectively, while the primed functions designate
the corresponding excited states; Vo&~ is the interaction
between the zeroth and the jJth molecule. In the
diagonal elements of the e submatrix, the two inter-
acting molecules occupy the same site in their respective
cells, while in the oG-diagonal elements, they occupy
different sites.

If the interaction Vo&'~ is expanded as a series of
multipole-multipole terms, each matrix element con-
tained in the sum (6) will be expanded into a series of
interactions between transition multipoles. If the mo-
lecular optical transition is dipole-allowed, the lowest
order terms in the expansion will be dipole-dipole.

The preceding discussion may be generalized to the
case in which the nth molecular level is m-fold de-
generate. ' The basis functions (2) are then replaced by
a set of mq functions in each of which the index 0. is
supplemented by another index, n=1, 2, , m, which
designates the particular molecular state of the de-
generate level which is excited. The degenerate case is
discussed brieRy in Sec. VI.

III. FIRST-ORDER PERTURBATION CALCULATIONS

In this section, we shall consider a crystal with two
molecules per unit cell; the excited molecular state from
which the exciton functions are constructed is non-
degenerate. The mixing of states of different exciton
bands (in higher order of perturbation theory) will be
ignored, and it will be assumed that at the time of
absorption, the excitation is coherent over a large
enough region that calculations for exciton functions of
infinite extent apply.

The two molecular sites in the various unit cells will
be designated by j=A and j=B.For simplicity, 3 and
8 will also be used to designate the one-site excitons
p» and q», respectively. The matrix elements of V,
corresponding to a given k, are Vga, VgB, VB~, and
VBB, with the index k implicit.

In the dipole-dipole (d-d) approximation, the matrix
elements (6) may be written" "
V' =Z~ s'""L(p' p;) lr;~l-'

3(p" ri&)(p~" ri&)lr~&l ''j' i j=~, &; (7)

whe~e p~=—p~, pB—=pB, with Eq. (7) in this form, the
origin must be located at an ith-site molecule.

The summation in (7) may be carried out by Ewald's
method. "If the exciton is excited optically, k equals ks,
so that kts is of the order of 10 2 (where a is the average
lattice constant). The result of the summation, except
for terms of order k'u', may be written as

V;;=4 v-rP2[(~ (;)2+r,],
VAB VBA=42rv p Dsf'(A) (2f '(B)++2]&

(A ' (dl) 4 l 7 2= (A (d2) ' (B&

"P.P. Zwald, Ann. Physi 64, 253 (1921).

where v is the volume of the unit cell; p= j p& )
=

( pB (;
rf, (g, and (B are unit vectors in the directions of k, p~,
and pB, respectively; (dr) and (ds) are tensors (de-
pendent on the lattice structure, but not on k) which
may be evaluated by methods described in references 9
and 10.

Lattice suxns of higher order in the multipole expan-
sion converge su%ciently rapidly with distance that
they are independent of k for small ka. These contribu-
tions, therefore, change only the constant terms, T» and
T2, in Eqs. (8). In a molecule which, like naphthalene or
anthracene, has a center of symmetry, transition mo-
ments will be either all even or all odd, so that if the
transition is allowed, the next higher interaction terms
will be dipole-octupole (d-o), followed by octupole-
octupole (o-o).

Another constant correction, but only to T», arises
from the Coulomb terms Lterms (a) of Sec. IIj. In
molecules having no permanent dipole moment, these
terms are quadrupole-quadrupole and higher, where the
Coulombic quadrupole moment of the entire molecule,
either in ground or excited state, is involved.

Calculated values of the transition octupole moment
or of the Coulombic quadrupole moment are generally
inaccurate in these molecules. Furthermore, some of the
contributions to T» and T2 from second-order perturba-
tion theory depend on certain unknown parameters
(Sec. IV). Since we are primarily concerned here with
the variation of frequencies and polarizations with
direction of k, the total corrections to the constant
terms may be determined empirically by comparing
calculated and observed frequencies for the k-direction
used in the experiments.

With a large octupole transition moment, the o-o
terms of (6) will be of the order of 100 cm ' in crystals
like naphthalene and anthracene; with the largest
reasonable moment and extremely favorable molecular
orientation, one may get about ten times this value. '
The d-o contributions will be of the order of the geo-
metric mean between the d-d and o-o terms. Usually,
the Coulomb terms will be' of the order of 1000 cm '.
(All energies are given in wave numbers to facilitate
comparison with experimental results. )

Since the A-molecules have the same geometric
relationship to one another as do the B-molecules, the
k-independent term Tr in (7) is the same in V~~
and VBB. The k-vector, however, spoils this symmetry,
and the erst term is different in the two matrix
elements, unless rf (~=&rf (B. In the latter case,
V~~=V~~, and the diagonalization of the matrix is
simple. The first-order energy corrections are then
Vgg+ V~g, corresponding to the eigenfunctionsC~=2 &

X (2&8) and the polarization vectors P~=2 &

X(p~+pB) "
"This is an application, in non-group-theoretical language, of

the discussion of reference 3. The condition 2f (g=&rf (B is
equivalent to the statement that k is invariant to the operations
of the symmetry group of the dipole lattice (which may be a larger
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In other directions of g the difference between V~g
and Vsn will generally be of the order of the d-d
approximation of either matrix element, and the
energies, wave functions, and polarizations may be
quite diGerent from those given above. The first term
of each matrix element of Eqs. (8), which gives rise to
these variations, depends on q, but not on k; it there-
fore cannot be neglected, even for small ka. (When
4=0, this term is indeterminate; however, this in-
determinacy has no physical meaning, since it would
appear only if the exciton were truly infinite in extent. ")

Details of the calculations of energies and polariza-
tions as functions of g are given in Appendix I.We shall
discuss here the results as applied to the electronic
transitions between the ground state and the two lower
excited states of naphthalene and anthracene, limiting
ourselves to the case of q lying in the uc plane, where
the condition q (~——g (s is satisfied.

In each of these substances, transitions between the
ground and the lower excited states of the free molecule
are polarized in the molecular plane, along either the
short or the long molecular axis. Both crystal lattices"
are monoclinic, belonging to space group C2g'. The
direction of p& may be obtained from that of p& by
reflection in the ec plane; the difference of the dipole
vectors is therefore in the direction of the monoclinic
b axis, while the sum is in the ac plane, along what will

be called the u direction. The orientarion of the I axis
within the ac plane depends on which of the four cases
is being considered. The crystals grow with developed
ab faces. The observations of references 4-6 were

carried out with g along the normal to the ub plane

(called the c' direction).
With q in the ac plane, V&z equals V», and the

two allowed crystal transitions are b- and N-polarized.
The first-order energy correction for the b-polarized

exciton, gg&", is independent of 8 (the angle between g1

and the c' axis) while that of the I-polarized exciton is

g„&o=C&+Cs cos2 (8—P), (9)

where p is the angle between the gg and c' directions.
Expressions for the constants q, '", C~, and C2 are given
in Appendix I and values in Table I.

The maximum Davydov splitting occurs when g is
either in the b direction or in the I direction, depending
on crystal and molecular parameters. In either case, one
of the components is longitudinally polarized and so
cannot be observed in absorption experiments. The
largest observable splitting would then be in the
neighborhood of one of these directions.

group than that of the actual crystal; in higher orders of perturba-
tion theory, it is the group of the actual crystal that must be
considered).

~~Abrahams, Robertson, and White, Acta Cryst. 2, 233, 238
{1949);Sinclair, Robertson, and Matheison, Acta Cryst. 3, 245,
251 (1950).

IV. SECOND-ORDER PERTURBATION
CORRECTIONS

Corrections to the transition frequencies arising from
second-order perturbation calculations may be im-
portant. In determining these corrections, one must
take as perturbing states not only "single" excitons
(similar to the state of Eq. (3), but with different &r),

but also, as Dexter and Heller have shown, "multiple"
excitons, in each of which more than one molecule is in
an excited state. '7

The mixing of the exciton (3) with other single
excitons has been discussed by Craig, 4 who, however,
treated only the case in which long-range effects may
be neglected. If the exciton is excited coherently over
a large volume, the mixing will be k-dependent. In the
ac plane, where the first. -order perturbation energy of
the gg-polarized component is given by (9), the second-
order energy is of the form

g„&'& =Cg+C4 cos2(8—Pi)+Cg cos4(8—P&), (10)

while the corresponding term for the b component, ~&",
is independent of g. The sum of Eqs. (9) and (10) is

su, = gJ ~+ g~& ~ =Cg+C7 cos2(8—Pg)

+Cg cos4(8—P~). (10a)

Contributions to the second-order energy arising
from the mixing with multiple excitons depend in part
on transition moments between pairs of excited states
of the molecule, which are generally not known. Fortu-
nately, the sum of those terms which cannot be calcu-
lated is independent of k (see Appendix II); further-
more, it is the same for both Davydov components and
so contributes nothing to the splitting. The remaining
terms give results which are similar to those arising
from perturbation by single excitons; in particular,
Eqs. (10) and (10a) remain correct, except for a change
of the numerical values of the constants, when the
multiple-exciton contributions are added, and e~( & is
still independent of 0 when g is in the cc plane.

Values of the constants in Eq. (10a), including
multiple-exciton contributions, are given in the table.
The third term on the right produces an additional
"ripple, "which, where detectable, can give a measure
of the mixing of higher states.

The mixing of exciton states will also mix transition
moments and so will change the intensities of the two
components. In this connection, one must take into
account both the perturbation of the function (3) by
other single excitons and of the ground state by double
excitons. ""

McClure and Schnepp reported changes from molecu-
lar to crystal frequencies of —545 and —379 cm ' for
the e and b components, respectively, in the first elec-
tronic transition in naphthalene at 20'K. The values
calculated from Eq. (9), with 8=0, are both less than
10 cm ', with negligible corrections from (10). Even if

' D. L. Dexter and W. R. Heller, Phys. Rev. 91, 273 (1953).
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an average value over a packet in k-space must be
taken (Sec. V), the results cannot be changed by more
than a few wave numbers. The contributions from the
remaining (g-independent) corrections could easily
account for the observed values, if the unknown param-
eters are large enough. The corrected values of T~ and
T2 would then be so large as to overwhelm the q-de-
pendent terms in Eq. (8). The diagonalization of the
matrix V;, would then be as predicted group-theoreti-
cally for the case k=0, ' ' and one polarization vector
will be in the b direction, the other in the ac plane for
any g; however, as will be shown later, the magnitude
of either polarization vector and the direction of the
latter one within the ac plane may vary. The variation
of transition frequencies will be very small, and prob-
ably not detectable.

In the same transition, McClure and Schnepp ob-
served a ratio of less than 0.005 between the intensities
of the I and b components, while the predicted value
for unperturbed excitons is 4. They proposed the mixing
with single excitons of the next higher band (short-
axis transition) as an explanation of this discrepancy.
They showed that a mixing coefficient of —0.068" for
the u component would lead to cancellation of the
polarization contributions from the perturbed and per-
turbing states, so that a coefficient in this neighborhood
is required to explain the small intensity ratio. We have
calculated an e8ective coeKcient of —0.052 for the
I component (the effective coeScient takes into account
the perturbation of the ground state) and of +0.006
for the b-component, leading to a value of 0.8 for the
intensity ratio. This result is still far from the experi-
mental value, but because of the near-cancellation of
the polarization contributions, an increase of only 30%
in the mixing coefficient for the u component leads to
agreement with the observed value. Alternatively, an
increase of 30% in the molecular transition moment of
the higher excited state would also give the correct
value. Part of the required correction may arise from
mixing with still higher exciton states, and part from
d-o and o-o terms in the calculation of the mixing
coeKcient.

Although the transition frequencies are independent
of g in this transition, the ratio of intensities of the two
components will vary in a fairly complicated way.
With g in the m plane, the b axis is always perpendicular
to g, and the b component mixing turns out to be
independent of 0, so that the absorption coefficient of
this component will be constant. The absorption coe%-
cient of the u component will vary for two reasons.
First, the angle y between the polarizations of the
exciton and of the radiation would vary with 8, even if
there were no mixing with the higher state. Second, the
mixing coefficient will vary; since the polarizations of
the perturbed and perturbing excitons are not parallel

' McClure and Schnepp's value is +0.068, but they apparently
have a different convention for the sign of one of the molecular
transition moments.

in this component, both the magnitude and the direction
of the resultant will vary with 8. The first effect alone
would give an absorption coeKcient proportional to
sin'(8 —8) =~[1—cos2(8—8)$; to give agreement with
the small observed ratio at 8=0, the angle 8 would have
to be of the order of 1, so that the absorption would be
nearly symmetric about 8=0. With the second (long-
range) effect taken into account, the absorption coeK-
cient will contain "ripples" of the form cos4(8—8') and
cos6(8—8") and the near symmetry about the c' axis
will be removed.

In the last three columns of the table are listed the
values of the Davydov splitting when k is in the c'

direction: first the calculated values to first order then
the calculated values with second-order corrections in-
cluded and in the last column the experimental values.
It may be seen that the agreement is not good. We have
already seen that for the first transition in naphthalene,
corrections such as the o-o terms can account for the
discrepancy. For the second transition the same may
be true if the components of the transition octupole
moment are very large and if the molecular orientations
are unusually favorable, but it is more likely that part
of the discrepancy indicates that the exciton-packet
dimensions are not very large compared with a wave-
length. A variation of frequency with direction may
still show up if these dimensions are somewhat smaller
than a wavelength, but it would be smaller than that
calculated here.

The smallness of the exciton packet may also account
for the discrepancies in the two anthracene transitions,
but here there is also a question as to the rapidity of
convergence of the perturbation calculation. In the
case of the first transition, the second-order correction
is larger than the first, while for the second transition,
both calculated and experimental corrections are com-
parable with the spacing between molecular states. The
slowness of convergence will probably not change the
order of magnitude of the energy variations described
here, but it may seriously acct them in detail. It
should be noted that perturbation corrections of still
higher order can show up as higher-order ripples in
the energy variation but again only if there is long-
range coherence of the excitation.

V. EXCITON PACKETS»

The calculations of the preceding sections were based
on the assumption that the dimensions of the region of
coherent excitation are large compared to a wavelength.
Lattice vibrations and other crystal imperfections may
limit this region seriously. Even in a perfect crystal,
if the absorption is strong, the exciton at the time of the
optical excitation will be a packet whose depth below
the surface of the crystal is no greater than the absorp-
tion depth of the radiation.

If all the packet dimensions are at least an order of
'~ We wish to thank Dr. M. Cohen for his criticisms of an earlier

version of the material of this section.
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magnitude smaller than a wavelength, the change in
phase across the packet will be very small and the long-
range eGects previously discussed will not show up. In
such a case the energy will be strongly dependent on
the shape and size of the packet. Furthermore, there
will be a contribution to the width of the absorption,
either because the packet is a mixture of eigenstates,
or because k is no longer a good quantum number (in
the case of serious limitation by imperfections), or for
both reasons.

The spread of energy over the k-packet (the trans-
form of the exciton packet in k-space) is a lower limit
for the width of the absorption, so that the latter sets
upper limits for the dimensions of the k-packet. Because
the energy LEq. (8)] depends strongly on the direction
of k, this limit is fairly small for the width of the
k-packet in directions perpendicular to ko. On the other
hand, in the direction of ko the limit is large; in fact,
if the expressions for the lattice sums in Eqs. (8) were
accurate for all k, there would be no energy spread in.

this direction. The corrections for larger k become
significant when the length of the k-, packet in the
ko direction is about a tenth the magnitude of a primi-
tive reciprocal lattice vector or greater, corresponding
to an exciton-packet depth of 10a or less.

The absorption coefFicient of the b component of the
second electronic transition in anthracene was estimated
by Craig and Hobbins' to be about 4X10' cm '; the
width of the absorption at room temperature is an
order of magnitude smaller than the k-dependent terms
of Eqs. (8). If the exciton packet were limited only by
the strength of the absorption, its depth below the
surface would be about 30u, while the dimensions
parallel to the surface would be those of the crystal;
in that case, only a small part of the absorption width
would come from the spread of energy over the k-packet.
On the other hand, if all the absorption width were
attributed to this spread, the depth of the exciton
below the surface would be greater than 10a, and the
average lower limit in other directions would be about
ten times as large. The excitation would then be shared
coherently by at least 10' molecules.

Craig and Hobbins estimated the absorption in the
I, component to be at least five times stronger than in
the b component. The absorption width of the former at
room temperature is comparable with the k-dependent
terms of (8). In such a strong absorption, the corrections
to (8) for large k become important, and the calcula-
tions of the preceding sections and of the appendices
should be correct only in order of magnitude. At low
temperatures and in good crystals, the packet size may
be increased considerably in this absorption if the
polarizations of the radiation and of the exciton are
almost perpendicular to one another; in that case, the
variation -of the energy should be like that predicted
here. Alternatively, one could obtain a continuous
variation of transition frequency by rotating the
polarization of the radiation while keeping ko fixed

(preferably not close to the normal to the crystal
surface) .

VI. GENERAL CASE

Winston' has discussed the general case of an exciton
formed from an e-fold degenerate excited molecular
state in a crystal containing q molecules per unit cell.
He assumed that the energies of optically active
excitons are very close to the energy for k=0. The
modifications to take into account the strong de-
pendence of energy on g are straightforward. For a
given k, a qe-dimensional matrix is to be diagonalized.
In the d-d approximation, the oG-diagonal matrix
elements are now sums of interactions between dipoles
which are at diGerent sites, or which are not parallel,
or both. Winston discusses the extent to which group-
theoretical methods can be used in diagonalizing the
energy matrix when k is not close to 0; his discussion
must also be applied to optically active excitons.

One new feature is introduced by the large energy
variation in the neighborhood of k=0. In crystals with
more than two molecules per unit cell, some of the
transitions allowed by the condition k=ko are for-
bidden by selection rules arising from factor-group
symmetry. ' "Winston developed a procedure for finding
these selection rules, on the assumption that one may
take k=0. If this assumption is not correct, the group
which leaves k invariant' "must be used in predicting
these rules. For most directions of k, the selection rules
break down, and all qn components, except those which
are longitudinally polarized, have allowed transitions to
the ground state.

There is at least one case in which none of the new
features discussed in this paper will appear. This is
the cubic atomic crystal, in which the optically active
exciton states are constructed from atomic p-states. "
In this lattice, (di) is one-third the unit tensor. If,
for each k, the three p states are chosen in such a
way that each exciton is polarized either transversely
or longitudinally, then for small k, the three-by-three
matrix will be diagonal. For any p, the first-order
energy correction of either transversely polarized state
will be —4vrp~/3, and that of the longitudinally polar-
ized state 8irp'/3. Since the latter state is optically
inactive, there is no Davydov splitting. The polariza-
tions and energies are independent of g. (For large k,
the excitons will not be transversely or longitudinally
polarized unless k lies on a symmetry element of the
crystal. )
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APPENDIX I
In the first order of perturbation theory, the matrix

elements of V are given by Kq. (8) . Solution of the
secular equation yields as corrections to the molecular
transition energies the values e~(') and &2'", corre-
sponding to the wave functions (o1——(aA+bB) and
p2= ( bA+a—B), respectively, where (b2+62= 1; the
coeKcients a and b are real, since the V,, are real .
The ratio R1——a/b (or R2 ———1/R1) determines the
functions q ~ and q 2, as well as the corresponding
polarizations: P1= (apA+bpB) and P2 ——( t)pA+a—yB).

We de6ne new variables

x=fo2)oT2 *) f fb'gbT2

l1~= (—T1+ca„("/42rp2)T2 ', 2)b= 1, 2, (11)

where 1)„and 2)b are the components of q= k/k in the
u and b directions, respectively; f and i b are the corre-
sponding components of (A = pA/pA, the c™ponents
of (Bare f „and l b, 2,—T1 and T2 are defined in Sec. III.
It is assumed here that T2)0; the alternative possi-
bility is discussed below.

In terms of the new variables, equations are obtained
which do not depend explicitly on the parameters of the
crystal or of the transition,

l( = x2+y2&Q,

R„=(—2xyaQ)/(x2 —y2+ 1),
Q2 —(x2 @2+1)2+4x2y2 (12)

with m = 1 corresponding to the upper, and m =2 to the
lower, of the signs

If T2(0, the variables x and y are imaginary. We
may define the real variables x' = ix and y' =iy and
find that

i% 1 (or 2)(xy g j T2) )12 (or 1) (P 1 x j T2) ~

A similar relationship holds for 8 . In the following, it
will be assumed that T2)0.

While the behavior in the infinite xy plane is the
same for all crystals of the type considered here, im-
portant diGerences arise from the fact that the rela-
tionship 1) '+2)b'& 1, or

x2/t 2+y2/t 2(T —1 (13)

restricts the variables to the interior of the limiting
ellipse whose equation is obtained by taking the equal
sign in (13)~ Because of this restriction, a large value
of T2 (small limiting ellipse) leads to a small variation
of X or of R with change of k direction, as would be
expected from the form of Eq. (8).

The lines of constant energy are the coordinate

curves of a two-dimensional elliptical coordinate system
with foci at x=0, y =~ 1. Lines of constant 8 are
hyperbolas whose axes intersect at the origin and have
slopes E~ and E2 ~

When q is in the ac plane (the symmetry plane of the
crystal), y is zero. The behavior in this plane was
described in Sec. III; the constants used there have
the values

C1=E(T1+T2+t. )q C2= Ego 1 bb'"=E(T1 T2), —

where E=42rP2/v.

A plane through the b axis and perpendicular to the
I direction (x=0) is another symmetry plane of the
dipole lattice, but not of the actual crystal. As a conse-
quence, the behavior in this plane is somewhat similar
to that in the ac plane, but only to first order, since a
perturbing state may have a different I direction. To
this order, the optically active excitons will be b- and
e-polarized, but in this case, it is the energy of the
u component which is independent of angle, while the
variation of energy of the b component is of the form
of Eq. (9).

In other directions, the polarizations will not neces-
sarily be in the b and u directions. The nature of the
variation of polarization direction with change of
k direction (Eq. (12)] depends on the parameters of
the crystal and of the transition. For example, one of the
polarizations may always be close to the b direction, the
other close to the I direction, for any g. On the other
hand, for diGerent values of the parameters, there may
be a continuous change of one of the polarizations from
the 6 to the u direction, and of the other polarization
from I to b as g is varied.

APPEND IX II

We shall outline the calculations involved in the
mixing of single excitons of different bands only for the
case in which k is in the (bc plane. Primes will be added
to previously defined symbols to designate quantities
associated with the molecular excited state e'. For
example, diagonalization of the n' matrix leads to the
eigenfunctions p„'= 2 l(A'&B') when k is in the ac
plane; the index k is omitted again, since only states of
the same k will be mixed by the perturbation. It may
be shown by symmetry arguments' ' that there will be
mixing between y and q „' only if m =e. The second-
order corrections will be

c„( )=
~
VAA'&VAB

~
(E + ')

where E and E ' are the energies of the molecular
states. In deriving this expression, the relationships
VAA' —VBB' and VAB ——VBA (valid in the ac plane)
were used. In the d-d approximation, the matrix ele-
ments are

v- =4 pp"-'L(~ (.)(~ (.') —(' (d ) (.'],
(15)

VAB' 42rPP" 'L(q. (A) ('g ' (B ) (A (d2) ' (B ]p



OPTICAL EXCITATION S OF EXCI TONS

TABLE I. Values of constants for naphthalene and anthracene. All quantities, except the angles, are in wave-number units (cm ').
The letters N and A in the erst column designate naphthalene and anthracene, respectively; the numbers 1 and 2 refer to the first
and second electronic transitions, respectively. The constants in the following ten columns are those used in Kqs. (9) and (10a) and
in the adjacent text. The constants of Eq. (10a) are omitted where the second-order corrections are negligible. The last three columns
list the Davydov splitting for k in the t,' direction (8=0), with a positive sign indicating that the u component has the higher energy;
the erst of these columns contains the theoretical value to erst order of perturbation theory, the next contains the values corrected to
second order, while the last contains the experimental values. Two experimental values are listed in the second row because of an un-
certainty in the identification of one of the components'; the two values in the third row were taken from different authors. '

Trans. C1
N1 5
N2 —165
A1 —270
A2 17 000

C2
6

450
210

16 000

Cg

—190—1800

C6 Cy P
—26'

41'
—1000 —840 46'
12 000 9200 —30'

0 10
—30' —28'

b(l)

—1—1300—920—3000

~b(2)

—30—100—75

Davydov splitting
Exptl.

10 10 166
1200 1200 170 or 320
660 —940 0 or 25

28 000 21 000 ~13000

where the tensors (dr) and (ds) are those which appear
in Eq. (8). Equation (10) follows from the fact that in
the ac-plane, q (~ l„c——os( 0—P)=q (n and similarly
for the primed quantities; the constants of Eq. (10) are

Cs=L(T'+sl f„"), C4=2LTl„t ', Cs=sLg 'f ",
L= (4spp'/s)'(E. —E )

—',

7'=M ' cos(P —P')- 4 (d ) 4'- ( (d ) &
' (16)

The procedure for the other directions of k is the
same, except for the fact that the lower symmetry
allows mixing of states with m/e. The algebra is
further complicated by the fact that the coeKcients
a, b, a', and b' appearing in q and p„' are direction-
dependent in the general case.

We must consider the perturbation of the state (3)
not only by other single excitons, but also by double
and triple excitons. " In the case of anthracene, the
contributions of the latter are significant.

It may be shown that the total energy correction
arising from the mixing of an entire band of double
excitons with the state (3) is independent of k and is
therefore not important for the present discussion;
furthermore, this correction is the same for both q i
and q 2, so that it contributes only to the average shift,
but not to the Davydov splitting. Calculation of these
terms is not feasible at present, since it requires the
knowledge of transition moments between excited
states.

A triple exciton state will not mix with (3) unless one
of the three molecular excitations is the same as that
involved in (3) (i.e., the ath). We shall designate by

(n,o.',o.") a triple exciton state in which there is one n,
one o.', and one o"excitation; for a complete description,
one would also have to specify a propagation vector
for each of the excitations. "

The total second-order energy contribution arising
from the mixing of (3) with all the states of the band
of excitons (o.,o.',n") will contain k-dependent terms
and contributions to the splitting if and only if one or
both of the molecular states n' and 0." is the same as n.
The total of the k-dependent terms from the band of
states (n,n,n') (where now n and rx' may or may not be
equal) is

~
&~~ ~&~a ~'(t'..—2)(&.+&") ' (17)

This expression has the same k-dependence as does the
right member of Eq. (14). In the case of anthracene,
if one of the states n or n' represents the first excited
electronic state and the other represents the second,
the energies are such that (17) is about a third of (14);
if one is interested primarily in order-of-magnitude
results, the contribution of (17) is not important.
However, there is a case in which it may be important.
The largest values of the numerators in (14) and (17)
are found when both o. and o.' represent the state with
the strongest transition from the ground state (in
anthracene, the second excited state). However in
Eq. (14), o. cannot equal n', that is, the exciton (3) is
not to be mixed with itself; on the other hand, a may
equal n' in (17), and if both represent the second excited
state of anthracene, (17) is of the order of 1000 cm '.

As long as we may neglect electron exchange terms,
excitons of higher multiplicity need not be considered
in this order of perturbation theory. "


