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Wave Equation for a Massless Particle with Arbitrary Spin*
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A wave equation for a noninteracting particle with zero mass and arbitrary spin s is given in this paper.
The Hamiltonian is proportional to the inner product of the momentum and spin operators so that the
wave function has 2s+1 components. As an auxiliary condition, solutions with spins not parallel or anti-
parallel to the momentum are discarded. With this condition the theory is Lorentz-covariant. The energy,
momentum, and angular momentum are defined in terms of expected values of the usual type of displacement
operator. The specialization s=-,' is the two-component neutrino theory and s=1 gives Maxwell's equations
for the photon.

where
Hy=iltay/at,

H=(c/s)p s, (2)

p is the momentum operator —ik&, and s are the
angular momentum matrices for spin s equal to —,

' or 1.
Furthermore the reQection properties of the two
theories are also parallel. These two facts suggest the
existence of a general theory for massless particles of
arbitrary spin s=-'„1,—', . with the above Hamiltonian.
The purpose of this paper is to give the details of this
theory.

The treatment of the photon divers from that of the
two-component neutrino in two respects which are
carried over into the general theory: 1. As an auxiliary
condition, solutions of the wave equation with spins

not parallel or antiparallel to the momentum are
discarded. 2. A distinction is made between the spinor
components P of the field and the wave function compo-
nents g which are used to form the energy, momentum,

and angular momentum from the displacement oper-
ators of the held. For arbitrary spin the relation is

I. INTRODUCTION

ECENTLY Lee and Yang, ' in their researches on
parity nonconservation and beta decay, have

~

~

~

emphasized the importance of Weyl's' two-component
neutrino theory. Also it has been shown that Maxwell's
equations for the electromagnetic held in vacuum can
be written in the form of a particle type of wave
equation. ' In each of these two theories the wave
equation is

The possibility of constructing such a theory can be
seen from the general Dirac-Pauli-Fierz discussion of
field theories. Their equations are

2 ~ Jg p ~ ~ ~ ~ p ~ ~ ~v gP Pg ~ ~ o ZKxgg ~ ~ ~

8""XP ...P"'=i','P. vP "
(&)

(~)

IL BASIC EQUATIONS

In this section the plane wave solutions of Eq. (1)
which fulfil the auxiliary condition are given and some

of their properties are listed.
The substitution

y=N expLik '(p x—Wt)] (6)

where p, x are spinors symmetric in the dotted and
undotted indices (ranging from 1 to 2) and ~ is propor-
tional to the mass. If the mass is zero the system

permits of only two independent states' and the second

equation uncouples from the first. Then Eqs. (5) are a
set of first-order equations which apply to a particle
with spin s, with a (2sj1)-component wave function x,
and with two independent states. However Eqs. (5)
cannot be identified with Eq. (1) because they contain

auxiliary equations. The relationship is illustrated by
the spin one specialization in which iaxq corresponds

to the electromagnetic field and q, "to the four-potential.

Equation (5) gives all four of the Maxwell field equa-

tions'; the curl equations are Eq. (1) and the divergence

equations are the auxiliary condition.

reduces Eq. (1) to the matrix eigenvalue problem3

Both of these differences are necessary to make the
theory Lorentz-covariant. The first is consistent with

the fact that only polarizations with or against the
momentum are permissible for a relativistic particle with

zero mass. '

(c/s)p sN=WN.

By specializing to an axis in the direction of p, one sees

that the auxiliary condition requires

*This work was carried out in the Ames Laboratory of the
U. S. Atomic Energy Commission.

T. D. Lee and C. N. Yang, Phys. Rev. 105, 1671 I'1957).
' H. Weyl, Z. Physik 56, 330 (1929).
3 R. H. Good, Jr. , Phys. Rev. 105, 1914 (1957).
4 V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. U. S.

34, 211 (1948).

The usual representation of the angular momentum

' See, for example, H. Umezawa, QNantlm Infield Theory (Inter-
science Publishers, Inc. , New York, 1956), Chap. IV, Sec. 3.

' O. Laporte and G. E. Uhlenbeck, Phys. Rev. B7, 1380 (1931).
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matrices (with the factor )t not included) is~

(s,)~, = (s,)~ ~,=—2L(s—m.) (s'+m+1)]~ (9a)

(s2) ~i, ———(s2)~, ~i—— —', i—P(s —m) (s+m+1)]'*, (9b)

1. When the P; are all real, the transformation is an
angular displacement in the right-hand sense through
angle P.

2. When the P; are all pure imaginary,

(s~)m, m=m, (9c) )=i(v/o) arc tanh(m/c), (16)

(u+)-=
-p 2+p 2- -', 8- - —',~i-~p+ p

—m

. (10)
4p' (1+m)!(s—m)! pi+i p2

Some of the properties of these solutions are'.

Qy Qy= 1)H

Qy Qp=0)

u+~s,u+ ——&sp,/p,

Qg SsQp =0)H

(11a)

(11b)

(11c)

(11d)

u~ Bu+/Bp, =ai psp 2/I 3p(pi'+p )2], (11e)

u+ ~u+/~p2=~~spipa/Lp(pi'+p2')], (»f)

uy Buy/Bp3 =0)

u~~Bup/alp; =0.

These are required in the arguments below.

(»g)

III. TRANSFORMATION PROPERTIES

The transformation properties of the spinor compo-
nents f in the general case can be inferred from the
properties for spin 2, in which case f is a spinor of first
rank. With respect to the proper Lorentz transforma-
tion,

/+a ~ap~p)

the spin —,'transformation is

|P'(x') =Alt (x),
where

C~pa p
—A. 0 OA.II

(12)

(13)

(14)

Here o4 is i and o; (j=1,2, 3) are the Pauli matrices.
The three complex parameters P;, defined by

A=exp(i-', g o),

where P' is P,P;, are convenient for discussing the
transformation. It is easily seen that this parametriza-
tion exists for every h. and that the P; have the following
properties (proofs are given in the Appendix):

7 See, for example, L. I. Schi6, Quantum Mechanics (McGraw-
Hill Book Company, Inc. , New York, 1955), second edition,
Sec. 24.

'The superscripts ~ and ~ denote the complex conjugate and
Hermitian conjugate matrices. Unless otherwise speci6ed, Latin
indices run from one to three, Greek from one to four (x4 is ict)
and a sum is understood to be mq, dq on indices repeated within
y, term.

where the elements not listed are zero and the subscript
m, which ranges from —s to +s, refers to the row or
column which has ns on the diagonal in s3. In this
representation the solutions of Eqs. (7) and (8) are

the transformation is a pure Lorentz transformation
with relative velocity v.

3. In general, g is a complex three-vector with respect
to simultaneous rotations of primed and unprimed axes.

For the general spin, with respect to the Lorentz
transformation of Eq. (12), the transformation

~t'(x') =exp(iy s)It (x) (17)

depends only on the commutation rules for s. Since the
commutation rules are the same for all spins, the
consistency for all spin follows from that for spin 2.
The components of iP form a spinor since they transform
linearly under Lorentz transformations.

The next step is to show that a function f(x), that
satisfies Eq. (1) and the auxiliary condition in the
unprimed system, transforms into a function that
satisfies Eq. (1) and the auxiliary condition in the
primed coordinate system. In other words, the wave
equation and the auxiliary condition together form a
covariant statement. I

Since |p and p are related by
Eq. (3), if P satisfies Eq. (1) and the auxiliary condition,
so also does P.) To make the proof, let the solution of
Eq. ' (1) and the auxiliary condition in the unprimed
system be

|P(x)= (2s.k) ' dyE+(p)P' 'u+(p) expLih '(p x—cPt))

+ (2~k)—i dpE (y)p' 'u (p)
, f

&&expI ik '(p x+cpt)], (19)

where Ezp' 'are the coeKcien—ts for expanding f(x)
into plane waves. I The factor p' ' is included because
E~ turns out to be a scalar. ) To show the covariance
it is sufhcient to consider a pure Lorentz transformation
in the 3-direction and a pure rotation about the 3-axis,

9 F. Hausdorff, Leipzig, Ber. Gee, Wfss, , ma&h-phyp. Kf. ~&,
19 (19II6),

can be assigned. It is clear that this assignment is
consistent when products of transformations are made
because the calculation of the transformation matrix
exp(iI)o s) for transformations A and 8 successively
applied,

exp(iso s)
=exp(igni s) exp(i)~ s)
=exp(2IIii's+Zgg's+2I zgii's) zing'8]

+(I/12)I35s's, Lip, s, iI)~ s]]
+(1/12)LLigii s, i)~ s], i)~ s]+ ), (18)
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The special Lorentz transformation can be written as and the time reflection

IS] Xg)
I

$2 I$2) (2o)
I I

&i &i) &4 &4)

xa' —ix4' =e'~ (x~—ix4),

0-'=c"V . (22) P'(x') = [C11(x)] ,

(21) the transformation of the spinor components is'

(32)

In the usual way, the integrals in Eq. (19) can be put
into a covariant form in terms of E(p„), u(p„) defined

by
C„,„=(i)'"5„, (33)

where in this representation, Eqs. (9), C is defined by

E(y,p4) =E+(p) when ip—4)0
=E (p) when ip—4(0,

and similarly for N. One finds

tp(x) = —i(27rh)
—'*) d'pE(p) p' 'u(-p) expfih 'p„x„j

xL~(p+'p )+~(p 'p)3—
2i(—2m&) ' d4pE(p)p'u(p)

Csi= —s;~C, (34)

and in consequence the covariance of Eq. (1) follows
immediately. The transformation properties of E are

E+'(p) =E+'(p), (35)

E+'(p) =E+'(—p), (36)

The matrix C is Hermitian and unitary. It anticom-

(23) mutes with si, s3 which are real and it commutes with
s2 which is pure imaginary. Therefore one can write

for the space and time reAections respectively. These
are easily found by substituting the plane wave expan-
sion on the right in Eq. (32) and using the results

XexpLia-~p„x„)~(p,p,). (24)

$Cu (p)) =u (p)
=u~( —p) (37)

(25)
to express f'(x') also as a plane wave expansion.

(26)

p2'= p2p& p&/

p '~p'="(p +p).

To reproduce a plane wave expansion in the primed
system, one makes a change of integration variable
from p„ to p„' parallel to the coordinate transformation:

When this is combined with Eq. (10) it is seen that IV. EXPECTED VALUES FOR PHYSICAL
QUANTITIES

(27)cis///p su (p)
—p/ su (p/)

*„'=*„'(x), @'=y'(y),

that leaves the form of Eq. (1) unchanged, there is a
conserved quantity whose density is rt/~(H/

~

H
~ )8/t and

pt i$—]p /x /]g(p /p /) whose flux is (c/s)rt/~s(H/
~

H
~ ) 8&, where the operator

8 is defined by

p'(x') = —2i(27rk) & d'p'E (p)p"u(p')

Just as in the special case of the photon, "for every

Therefore the transformation of Eqs. (20) to (22) gives

E'(p') =E(p). (28)

Since this result is of the same form as Eq. (24),
P'(x') fulllls Eq. (1) and the auxiliary condition in the
primed coordinate system. Also E(p) is to be identified
with E'(p'),

y'(x) = 8@(x). (38)

To find 6 for the transformations discussed in the
previous section, one first determines 8~ in the usual
way such that

4"(x)= &~4 (x)

As well as E, E+, and E are seParately scalars. A and then, according to Eq. (3),
similar proof applies for the pure rotation 8= H '+'t) H (39)

xi'+ix, '= e '~(x,+ix2),
I I

$3 —$3) $4 $4)

(29)

(30)

(31)

and again E is found to be a scalar.
As well as the continuous transformations, reQections

also must be considered. With respect to the space
reQection

I
&i +i) +4 +4)

(40)

(41)6=
[ H ~-'+&LxH —c'~p —ichsj [H

~

'-&.

"Reference 3, p. 1918.

For transformations to new origins of space and
time, the wave function is assumed to be a scalar and
one finds the operators p;, iH/c For rotations . of the
space axes and pure Lorentz transformations the
operators 8 are

J=xXp+As,
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The corresponding conserved quantities are

dxyir(H/IH I)p,y, (42)

The quantity

dxP~P

P4 (i/c) ——dx@~(Z/ I
BI)jjg,

Z4p3(p, p,)Z'Z, (5O)

fe;;= de (II/I III).;,,S,y, (44)

which is to be interpreted as the number of particles, is
constant in time and is a scalar for both the continuous
transformations and the rejections. For a Fermi
particle S must be normalized to unity.

0;4= —04;= (i/c) dxrt»~(Z/
I
&

I )G,&. (45) V. DISCUSSION

The first three are the momentum, energy, and angular
momentum and the last gives the center of energy
theorem.

The justification for these dednitions and for the
original choice of wave function in Eq. (3) is that P„
is a Lorentz four-vector and that O~„, is an antisym-
metric tensor (044 is defined to be zero). The tensor
properties for the special transforrnations of Eqs. (20)
to (22) and (29) to (31) can be demonstrated by using
the plane wave expansions of Eq. (19) as weH as Eqs.
(11) to rewrite P, 0~ in terms of integrations in mo-
mentum space:

This gives a c-number theory for a single particle of
zero mass and spin s. For bosons one expects that
particles can be accumulated into a single state until
the wave function becomes observable, as for the
Maxwell field; then Eq. (1) becomes the equation for
the observable Geld and S is the total number of
particles.

In the special case s= 2 the spinor components»P are
identical with the wave function»t and the theory
reduces to that of the two-component neutrino.

In the special case s=1 the theory applies to the
photon. The presentation above diGers from the
previous work' in the choice of representation of the
spin one matrices and in a constant factor in»p. In a
diGerent representation,

~'p5(p. p.)&'(p /I p I)p.&, (46) B,=Ss;8 ', (51)

d'p5(p. p.)&'(p4/ I p4I ) C=ScCS ', (52)

the C matrix with the properties of Eqs. (34) and (37)
is found from

where x„ is ill/Bp„The qua.ntity T„„is defined by

r 0

PiP4 PiP2ZS

(~)»» = (48) ACKNOWLEDGMENT

It is a pleasure to thank Professor B. C. Carlson,
Professor G. V. Rainich, and Professor E. P. Wigner
for very helpful discussions.

Pi'+P2 P2P4 P1P4

0P2P2 —PiP2

and it has the property that

p»'x»+ "~»'")+» (4 ) and in the representation used earlier C is the identity.
According to Eq. (32), the electric field E transforms
as an axial vector and the magnetic field B as a polar
vector, opposite to the earlier assignment. "This is the
transformation rule recently suggested by Wigner"

0 and Landau. "

&"(p') =~.ao-2'a. (p) (49) APPENDIX

when the momenta are transformed according to Eqs.
(20) to (22) or (29) to (31). The fact that P, 0~ are
tensors with respect to the continuous Lorentz group
follows then from the transformation property of E,
Eq. (28). Also, using Eqs. (35) and (36) and expressing
P and 0 explicitly in terms of E+ and I», one sees
that they are regular tensors by space reQection and
pseudotensors by time reflection, as required.

The purpose of this Appendix is to outline proofs of
the assertions made in Sec. III concerning the P
parameters.

In the special case of real P;, rewriting Eq. (15) as

h. =cos'2P+i(g/P) o sin22P,

» Reference 3, Eq. (21e).
'2 E. P. Wigner, Bull. Am. Phys. Soc. Ser. II, 2, 36 (1957);

Revs. Modern Phys. 29, 255 (1957)."L.Landau, Nuclear Phys. 3, 127 (1957).
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and substituting into Eq. (14), one obtains

~;,=5;; «sP+ e"(P./P)»np+ (PA/Ps) (1—«sp),
u;4= a4;=0, a44= 1.

It is seen that p; is the angular displacement vector
because it is the eigenvector of a,, and a;; is (1+2cosP);
the sense can be verified by considering the transfor-
mation for small g,

&'~ =5o+ e', I PI

When the p, are pure imaginary, they can be written
as in Eq. (16) and a similar calculation leads to the
pure Lorentz transformation in standard form. "

In general, g is a complex three-vector with respect
to simultaneous rotations of primed and unprimed axes.
To see this, let the spinor transformation matrix A
correspond to a rotation of axes so that it is unitary
and satisfies

rz;,~; = (A )&&;A-

where a;, are the coordinate transformation coeKcients.

"C.Mgller, The Theory of Relativity (Oxford University Press,
New York, 1952), p. 41, Eq. (25).

If this rotation is performed in both the primed and
unprimed axes, related by

P' =exp (i-,'P,o.;)it,

the new wave functions are

(53)

so that g is a vector in this special sense.
There only remains to show that any transformation

matrix h. can be written in the form exp(isrp, o;). Any
such matrix can be written as a product of pure rota-
tions and pure Lorentz transformations which, as
argued above, are of this form. As is seen from Kq.
(18), the exponential form is preserved when products
of exponentials are taken since the commutation rules
for e can be used to reduce every term on the right in
Eq. (18) until it is linear and homogeneous in o;.

Then, by operating from the left with A in Eq. (53)
one finds that

4' =exp(tzpi~i)~
where

P'= a',P~,
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It is shown that a very large class of meson-nucleon interactions leads to the same first-order scattering
equations as would be obtained by adding simple nonlinear terms to the familiar linear pseudovector
coupling in the Chew-Low-Wick formalism. The class of interactions under consideration is large enough
to include what one would expect to be a reasonable form for the nonrelativistic limit of the charge-sym-
metric pseudoscalar interaction.

In the gauge-invariant extension of the theory to photoproduction, the E-wave coupling constant is not
exhibited explicitly in the energy-independent S-wave part of the inhomogeneous terms of the integral
equation for the transition amplitude. It is shown directly, however, that the contribution of the higher
order terms in the limit of zero total energy is exactly as required for the satisfaction of the Kroll-Ruderman
theorem.

I. INTRODUCTION

1

�~HEW

and Low' have shown that the assumption~ of a linear pseudovector meson-nucleon coupling
in a fixed extended-source meson theory leads to
integral equations for the scattering matrices that have
provided a successful qualitative description of low-

energy meson-nucleon scattering. An extension of this

*Taken in part from a Ph.D. thesis submitted to Harvard
University, January, 1957. The author is grateful to the Shell
Companies Foundation for a fellowship for the fall semester of
1956.

t Now at the International Business Machines Research Center,
Yorktown, New York.' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).

approach' to low-energy meson photoproduction met
with similar success.

Application of a Foldys-type transformation to the
relativistic pseudoscalar theory, for example, suggests
that the linear pseudovector coupling is not of sufhcient
generality to be considered as an approximately
equivalent nonrelativistic coupling even for low-energy
processes, except in the case of weak coupling. It is the
purpose of this note to demonstrate that a more general
choice of equivalent nonrelativistic coupling leads to
exactly the same scattering equations as obtained by

2 G. F. Chew and F. E. Low, Phys. Rev. 101, 1579 (1956).
'L. L. Foldy, Phys. Rev. 84, 168 (1951);Berger, Foldy, and

Osborn, Phys. Rev. 87, 1061 (1952).


