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An analysis is made in terms of a semiclassical strong absorption model of all published angular distribu-
tions of intermediate energy alpha particles elastically scattered from heavy or medium weight nuclei as
well as some examples of elastic proton and deuteron scattering. Moderately good agreement is found for
radii obtained from different sets of data and also from analysis of fixed angle, variable energy experiments;
there is some indication that the sharp cutoff radius increases as the bombarding energy is lowered to the
Coulomb barrier. The connection between these results and optical model parameters is discussed. The
best-fit critical angular momenta, 7, are found to be essentially equivalent to the largest angular momenta,
Im, such that the lnth potential barrier is classically surmounted by the bombarding particle when the most
recent optical model parameters are used to represent the nuclear potential. It is suggested that, when the
penetration depth is small, the most important “effective’’ parameter is /.

I. INTRODUCTION

ONSIDERABLE experimental information has
been obtained in recent years on the elastic scat-
tering of intermediate energy (10-50 Mev) alpha
particles by nuclei; cross sections have been measured
as a function of energy at fixed scattering angles™? and
as a function of angle at fixed energy.>* The measure-
ments at fixed angle and some of the angular distribu-
tions* %% have been analyzed in terms of a semiclassical
strong absorption model (henceforth termed the sharp
cutoff model)?*® or “fuzzy” modifications of this
model.®¢ Improved agreement with the data is obtain-
able with optical model calculations*'® and, in par-
ticular, recent results obtained with the aid of high-
speed digital computers have reproduced experimental
angular distributions to a high degree of precision.!6-19
Angular distributions computed with the sharp
cutoff model for heavy elements reproduce the observed
break from pure Coulomb scattering, the average slope
in a region down to ~% Coulomb and the initial rise
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seen in many elements. The computed curves, however,
do not match the continuing downward experimental
curves; further, “diffraction” oscillations either are not
observed at all or have a smaller magnitude than
predicted. An extensive discussion of the range of
applicability of the sharp cutoff model, and some of the
factors determining the initial rise and diffraction oscil-
lations, is presented elsewhere.'

The purpose of the present note is (a) to discuss all
published intermediate-energy elastic-a angular dis-
tributions from heavy and medium weight nuclei in
terms of the sharp cutoff model as well as to apply this
model to some examples of elastic deuteron”® and
proton® scattering, and (b) to compare the results of
this analysis with the parameters of optical model
calculations.

II. ANALYSIS OF EXPERIMENTS

The chief assumption of the sharp cutoff model is
that the amplitude of the outgoing Ith partial wave is
set equal to zero for %l less than or equal to a critical
angular momentum, %’ ; if />, the outgoing amplitude
takes on the value it has for pure Coulomb scattering 2
The critical angular momentum, %/, is assumed to be
that angular momentum for which the projectile can
classically just penetrate the nuclear interior. For the
case of a nucleus described by a square-well potential,
the critical angular momentum may be accordingly
related to the sharp cutoff radius R, through

E=ZZ'¢/R+12 (I+1)/ (2uR?). 1)

The model contains but one free parameter, /', or its
equivalent, R. The computations of the resulting
angular distributions have been performed on the
University of Washington IBM 604 electronic computer.

Best-fit radii can be obtained in cases where oscil-
lations are not present or are greatly damped through
(@) comparison of computed and experimental angular
distributions in the vicinity of the break from Coulomb

2 1. E. Dayton and G. Schranck, Phys. Rev. 101, 1358 (1956).
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TasrLE I. Best-fit /" and radii. The best-fit R is related to /" through Eq. (1). dR is the change in R for Al=1. The classical parameter,
n, is defined as n= (ZZ'¢*/#v).

Nuclear Egm. Best Best-fit R dR
Element Projectile charge Reference in Mev n A4 in 10~18 cm in 108 cm
Th e 90 4 39.3 8.96 18 10.85 0.34
13 34.09 11.024-0.23
Pb a 82 3 21.58 11.01 4 11.38 0.19
4 39.2 8.17 18 10.46 0.34
6 47.3 7.44 21-22 10.12—10.44 0.32
13 32.7 10.4740.21
deut 8 14.91 4.70 6 10.71 0.79
Au @ 79 3 21.56 10.61 4-5 11.00—11.20 0.20
4 39.2 7.87 18 10.31 0.34
6 47.2 7.19 22 10.33 0.31
8 26.95 9.49 11 10.85 0.34
13 31.68 10.424-0.21
P 20 17.0 3.01 3 8.44 0.89
Ta @ 73 4 39.1 7.27 20 10.71 0.35
13 38 10.0740.2
Ag a 47 3 21.21 6.31 10 9.38 0.43
6 46.5 4.27 21-23 8.92—9.59 0.36
11 38.6 4.68 19 9.26 0.36
13 21.91 8.94+0.18
p 20 17.0 1.79 3-4 6.32—7.35 1.03
Mo a 42 11 384 4.18 18 8.72 0.37
Nb « 41 11 38.4 4.08 18 8.67 0.37
Cu a 29 10 17.8 4.20 9 8.15 0.52
11 37.6 2.89 18 8.32 0.41
13 22.7 7.81
Ti a 22 11 36.9 2.19 16 7.38 0.39

and (b) the “crossover” point recipe discussed else-
where,'® which supplants the previous one-quarter-point
recipe.’? When oscillations are present, their location and
spacing also are used to determine the best fits.

The best I and corresponding R, as well as values of
the classical parameter n(=ZZ'¢?/#v) are tabulated in
Table I. In many cases, a best I/ can be assigned quite
unambiguously ; unless otherwise stated, the error in R
is conservatively estimated by dR, the change in R when
I’ is changed by 1. For the heavier elements, the values
of R obtained from application of the crossover recipe
to fixed-angle measurements® are also presented as
well as the center-of-mass energy at which cross over
occurred. Radii computed from the crossover recipe
and the best-fit radii for the same angular data are
given in Table II. Specific comments on the data and
their analysis are made below in order of reference.

Wall, Rees, and Ford*—22-Mev a on Pb, Au, Ag.

TaBLE II. Best-fit and crossover radii for the
same angular distribution.

Crossover
Ele- Projec- Refer- Best-fit R in R in

ment tile ence 10718 cm dR 1078 cm
Th a 4 10.85 0.34 11.014-0.1
Pb «a 4 10.46 0.34 10.71+0.1
6 10.12, 10.44 0.32 10.594-0.3
deut 8 10.71 0.79 9.71£0.2
Au a 4 10.31 0.34 10.4940.1
6 10.33 0.31 10.57+0.3
8 10.85 0.34 10.6340.1
Ta a 4 10.71 0.35 10.79-0.1
Ag a 3 9.38 0.43 9.5440.2
11 9.26 0.36 8.67+0.2

This reference contains an analysis in terms of the
sharp cutoff model and a “fuzzy” modification. The
values of R in Table I are somewhat different from
those quoted in reference 3 since we are comparing
experiments only to the sharp-cutoff calculations and
we include some small center-of-mass corrections. The
cross sections of Pb and Au do not fall far enough below
Coulomb for the crossover recipe to be employed.
Wegner, Eisberg, and Igo*—40-Mev « on Th, Pb,
Au, and Ta. The computed angular distributions
provide a fairly good fit of the initial rise and the
general trend just below the break for Th, Pb, and Au;
the angular distribution from Th for the best fit, '=18,
is shown in Fig. 1. The radius here determined for Ta
Is substantially larger than that found in fixed angle
experiments®; in Fig. 2 it is seen that the computed
location of the initial rise in Ta is around 20°. Since the
experimental angular distributions have been nor-
malized to Coulomb at 21°, it is likely that the experi-
mental plot of ¢/v¢ for Ta is low by 10-20%,; a change
of that order of magnitude suffices to bring the Ta
radius into agreement with the radius reported in
reference 13. The values of # for which the computa-
tions of ¢/0¢ are carried out are about 19, below the
experimental values; such a small shift in # does not
change our assignment of best // (see reference 3, Fig. 5).
Ellis and Schechter®®—48-Mev « on Pb, Au, and Ag.
The best computed curves exhibit oscillations whose
spacing and location closely match the experimental
results. Indeed, the computed angular distribution for
Pb with /=21, Fig. 3(a), shows the observed “dimple”
in the initial rise. The experimental angular distribution
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from Au also oscillates slightly; this variation is par-
ticularly noticeable when experiment is compared to
the computed cross section for /=22, Fig. 4. There is a
sizeable uncertainty in assigning the best fit for Ag;
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¥iG. 1. Angular distribution of 40-Mev alpha particles from
Th relative to the pure Coulomb cross section. The solid curve
and dots represent the data of Wegner, Eisberg, and Igo. The
dotted curve and squares represent the computed angular dis-
tribution with /=18, R=10.85X10"1 cm. Experimental data
are plotted versus laboratory scattering angle while the computed
points are for center-of-mass scattering angle.
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Fic. 2. Angular distribution of 40-Mev alpha particles from Ta
relative to the pure Coulomb cross section. The solid curve and
dots represent the data of Wegner, Eisberg, and Igo. The dotted
curve and squares represent the computed angular distribution
with =20, R=10.71X10"12 cm. Experimental data are plotted
versus laboratory scattering angle while the computed points are
for center-of-mass scattering angle.
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Fic. 3. Angular distribution of 48.2-Mev alpha particles from
Pb relative to the pure Coulomb cross section. The solid curve
and dots represent the experimental data of Ellis and Schechter.
The data actually extend to larger angles than here shown; the
the points drop about another decade and then, within rather
large probable errors, show a small rise. The dotted curves and
squares represent the computed angular distribution; in Fig.
3(a), V=21, R=10.12X10"8 cm, in Fig. 3(b), =22, R=10.44
X 10718 cm. ¢ is the center-of-mass scattering angle.

=21 produces the correct location of the oscillations
while- I’=23 best describes the cross section in the
neighborhood of the break. Agreement between experi-
mentand the sharp cutoff calculations of course becomes
poorer as Z is decreased since the semiclassical model is.
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Fic. 4. Angular distribution of 48.2-Mev alpha particles from
Au relative to the pure Coulomb cross section. The solid curve
and dots represent the experimental data of Ellis and Schechter.
The data actually extend to larger angles than here shown; the
points drop about another decade and then show a slight rise.
The dotted curve and squares represent the computed angular
distribution for /=22, R=10.33X10" cm. ¢ is the center-of-
mass scattering angle.

most valid for large values of the “classical” parameter,
n=(ZZ'¢*/hv). We feel that the somewhat improved
agreement brought about by the modified sharp cutoff
model of Ellis and Schechter is not great enough to
justify the considerable extra effort that would be
required if we were to introduce another parameter,
Al, into our computations; further, one would then
lose one of the chief virtues of the sharp cutoff model,
that it depends on but a single free parameter.
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FiG. 5. Angular distribution of 27.5-Mev alpha particles from
Au relative to the pure Coulomb cross section. The solid curve
and dots represent the data of Gove. The dotted curve and
squares represent the computed angular distribution with I'=11,
R=10.85X10"3 cm. Experimental data are plotted versus
laboratory scattering angle while the computed points are for
center-of-mass scattering angle.
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Gove”8—27.5-Mev a on Au. Figure 5 indicates that
the data are well straddled by the computed curve for
I’=11. The parameter » and scattering angle near the
break are larger than was the case in the preceding
paragraph; in view of the discussion of fine structure
in reference 13 it is not surprising, then, that the dif-
fraction oscillations are apparently washed out.

15.2-Mev d on Pb. For once the envelope of the com-
puted curve falls off faster than does experiment, as
shown in Fig. 6. The discrepancy between best-fit and
crossover radii and the large value for dR suggest that
these radii should not be taken too seriously. There is
some indication in the observed angular distribution of
the predicted oscillations.

Eisberg, Igo, and Wegner®''—40-Mev « on Ag, Mo,
Nb, Cu, Ti. For this range of » there is poor agreement
with the observed magnitudes even at the smaller
angles. Nonetheless it is interesting to see that reason-
able /' fit the spacing and location of the maxima and
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F16. 6. Angular distribution of 15.2-Mev deuterons from Pb
relative to the pure Coulomb cross section. The solid curve and
dots represent the data of Gove. The dotted curve and squares
represent the computed angular distribution with /=6, R=10.71
X 10713 cm. Experimental data are plotted versus laboratory scat-
tering angle while the computed points are for center-of-mass
scattering angle.

minima of the oscillations. This is illustrated for the
case of Nb, I'=18, in Fig. 7 and for Cu, /=18, in Fig. 8.
As treated more fully in reference 13, such agreement is
possible because the location of the maxima and
minima primarily reflect the periodicity in the oscil-
lations of the amplitudes for pure Coulomb scattering
as a function of 7. Once again we have a situation familiar
from physical optics where a crude physical model cor-
rectly predicts the location of diffraction structure
although it incorrectly predicts the magnitude. Appli-
cation of the crossover recipe to the Ag data is hazardous
in view of the large oscillations.

Bleuler and Tendam!®—18.9-Mev  on Cu. The com-
parison in Fig. 9 reveals that fair agreement with the
magnitude of the cross section at small angles (as well
as correct predictions of the location of oscillations) is
achieved with the choice I'=9.
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Dayton and Shranck®—17-Mev protons on Au and
Ag. The angular distribution from Au is presented in
Fig. 10 to show that some of the quantitative features
of proton scattering are duplicated by the crude one-
parameter sharp cutoff model. Even though protons are
the bombarding particles, the parameter # is large

enough so that the semiclassical treatment has some-

meaning. The best-fit radius, 8.44X10~% c¢m is smaller
than the radius obtained with a scattering by an amount
substantially greater than the probable errors.

In summary, we may say that, wherever comparison
is possible, there is fairly good consistency between the
sharp cutoff radii obtained in alpha scattering from the
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F16. 7. Angular distribution of 40-Mev alpha particles from
Nb relative to the pure Coulomb cross section. The solid curve
and dots represent the data of Igo, Wegner, and Eisberg. The
dotted curve and squares represent the computed angular dis-
tribution with /=18, R=8.67X 10718 cm. ¢ is the center-of-mass
angle.

same element. However, the data of Wall ef al. on Pb
and Au and Gove on Au at energies close to the Coulomb
barrier do yield larger radii than do other determina-
tions.

III. COMPARISON WITH OPTICAL
MODEL RESULTS

In this section we will attempt to answer three
questions which rather naturally come to mind: (1)
what is the connection between the sharp cutoff
momentum /’ and the parameters of the optical model
calculation? (2) Why should the sharp cutoff model be
a good approximation to the optical model? (3) What
lessons may be drawn from the comparison?
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Fic. 8. Angular distribution of 40-Mev alpha particles from Cu
relative to the pure Coulomb cross section. The solid curve and
dots represent the data of Igo, Wegner, and Eisberg. The dotted
curve and squares represent the computed angular distribution
with /=18, R=8.32X 10718 cm. ¢ is the center-of-mass scattering
angle.

(1) At first sight the sharp cutoff and optical results
appear to be incompatible in that the sharp-cutoff radii
are considerably larger than the mean radii of the
nuclear potential 16 The discrepancy is only apparent,
however, since the two radii are quite differently
defined. We can relate these two radii by noting again
the basic assumption of the sharp cutoff model and
applying it to the tapered-well optical potentials which
give the best fit. The critical angular momentum, %7,
is assumed to be such that the projectile can classically
just override the potential barrier into the nucleus.} If
we have a deep nuclear potential with a “tail,” the
critical classical turning point is not located at the
mean radius but rather is found at a distance several
“surface thicknesses” beyond the mean radius, de-
pending on the strength of the potential, with corre-
spondingly large /.

To illustrate this point, we consider the familiar
Saxon-Woods? optical potential in the case of alphas
with 38.6-Mev c.m. energy scattered on Ag. The best
values of the optical parameters quoted by Igo and
Thaler®® are: the real part of potential at center of
nucleus, V= —37 Mev; the imaginary part, V;=—10
Mev; mean radius, 7;=(1.354%*+1.3) X108 cm=7.73
X107 cm; surface parameter, d=0.5X 10" cm. When
the real part of total potential including nuclear,
Coulomb, and centrifugal terms is plotted versus 7, as
shown in Fig. 11, it is found that J,,, the largest angular
momentum such that the classical barrier is safely
surmounted, is equal to 19. The top of the /,,th barrier
occurs at 7,=38.7X 1071 cm. (We see from Table I that
I’=19 also gives the best fit of the sharp cutoff model,

# R. D. Woods and D. S. Saxon, Phys. Rev. 95, 577 (1954).
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with corresponding sharp cutoff radius equal to 9.26
X107 cm.)

The largest angular momentum, 7., such that the
total barrier is surmounted by at least 0.1 Mev can be
similarly obtained for other elements where the optical
parameters are given.'®*® These are listed in Table ITI
together with R, the sharp-cutoff radius corresponding
to lm; 75, the radius at which the /,th potential is a
maximum; — Vg(7), the nuclear potential at 7;; the
best-fit I from Table I and corresponding sharp-cutoff
radius, R. This determination of /,, has not biased our
selection of the best-fit I’ since the best-fit analyses were
carried out before the optical parameters became

160

available. Inspection of Table III shows that !’ and I/,
generally agree or differ by only one unit of angular
momentum.

In the case of 22-Mev scattering from Ag, three quite
different sets of optical parameter are available which
fit the data: Igo and Thaler find Vg=—35 Mev,
r1=7.73X10"2% c¢m, d=0.5X10" cm, while Cheston
and Glassgold obtain adequate fits with both Vg=—350
Mev, r;=7.5X10"% cm, d=0.6X10"3 cm, and Vz=
—150 Mev, r1=7.09X10"8 cm, d=0.6X10"8 cm.
(There is apparently some disagreement on this point;
Igo and Thaler® do not find appreciable change in Vg
if 71 is changed.) The spread in /,, quoted for these cases
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Fi6. 10. Angular distribution of 17-Mev protons from Au relative to the pure Coulomb cross section. The solid curve and dots
represent the data of Dayton and Shranck. The dotted curve and squares represent the computed angular distribution with /=3,

E=8.44X1078 cm. ¢ is the center-of-mass scattering angle.
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TasLE ITI. Comparison of best-fit ’ and R to /n, the largest angular momentum such that the optical potential barrier is surmounted
by at least 0.1 Mev; 7s, the radius at which the /nth barrier is a maximum; R., the sharp-cutoff radius corresponding to lm; — Vr(7s),
the magnitude of the real part of the nuclear potential at the top of the barrier. Unless otherwise stated, the optical parameters chosen

are those of Igo and Thaler.2

Eoum. 7 R R
Element Reference in Mev Im 108 cm 108 cm v 10718 cm —Vr()
Ti 11 36.9 16 6.7 7.38 16 7.38 8.1
Cu 11 37.6 18 7.7 791 19 8.32 5.3
Nb 11 384 19 8.5 9.04 18 8.67 4.6
Mo 11 38.4 19 8.5 9.10 18 8.72 49
Ag 3 21.21b 10 9.2 9.38 10 9.38 1.8
Ag 3 21.21¢ 11 9.4 9.81 2.0
Ag 3 21.214 12 9.6 10.26 2.2
Ag 11 38.6 19 8.7 9.26 19 9.26 4.7
Ta 4 39.1 20 10.3 10.71 20 10.71 3.2
Au 3 21.56 5 10.8 11.20 4-5 11.00-11.20 1.1
Au 4 39.2 19 10.5 10.65 18 10.31 2.8
Pb 3 21.58 4 10.9 11.38 4 11.38 1.2
Pb 4 39.2 19 10.6 10.80 18 10.46 29
Th 4 39.3 19 11.0 11.19 18 10.85 24

a See reference 19.
b Igo and Thaler, Vr = ~35 Mev, 1=7.73 X108 cm, d =0.5 X10~13 cm,

¢ Cheston and Glassgold, Vr = —50 Mev, 1 =7.5 X10718 cm, d =0.6 X10718 cm.
d Cheston and Glassgold, Vr = —150 Mev, 1 =7.09 X10™8 cm, d =0.6 X10713 cm.

is somewhat deceptive, since, when V= —35 Mev, the
l=11 potential is just barely larger than the available
center-of-mass energy, E, and similarly, when Vz=
—150 Mev, the /=12 potential is just barely under E.
To emphasize the similar appearance of all three poten-
tials at the nuclear surface for the same value of angular
momentum, we plot the total real potentials versus r
for I=11 in Fig. 12.

We would like to make two rather interesting side
observations on the material in Table III: (a) the
sharp cutoff radius, R, corresponding to /. is always
larger than the radius at which the /, potential is a
maximum, 7;; this effect is due to the attractive tail
of the potential. () We observe in cases where there
has been an optical model analysis for the same element
at two different energies, that, even when Vjz is
decreased at the lower energy while 7, remains fixed,
the radii 7, and R,, are larger at the lower energy; this
effect is due to the taper of the nuclear potential and
the (1/7%) dependence of the centrifugal term, a term
which becomes more important at higher energies. It is
this effect which is probably responsible for the experi-
mentally observed increase in the sharp cutoff radii as
the energy is decreased, a result stated at the con-
clusion of Sec. IT and also found when the crossover
recipe is used to analyze cross section versus energy
data at four different angles for Au.®* We would like to
suggest that comparison of angular distributions carried
out at a variety of energies just above the Coulomb
barrier will provide the best means to study the tail of
the nuclear potential. One notes from Table IIT that
the nuclear potential may be as small as 1 Mev at 7; in
other words, 75 corresponds to a distance considerably
far out in the tail. We discuss these effects more quan-
titatively in an Appendix.

(2) Before discussing our second question, we should
first emphasize that the premise of the question is true:

that the sharp cutoff model is a good approximation to
optical calculations is indicated by the correspondence
in predicted cross sections and by the comparisons
made in the preceding paragraphs. Further, by plotting
the ratio of reaction cross section to maximum possible
reaction cross section, 1— |7;|2, as a function of / for an
optical model giving an adequate fit of 22-Mev Ag
data, Cheston and Glassgold find that there is indeed
a rather rapid change from large to small absorption
centered about the sharp cutoff /.

Some qualitative discussion concerning why there
should be a correspondence between the sharp cuotff
model and more sophisticated calculations is presented
elsewhere.’® We shall not repeat these arguments here
but will make two observations which are based on the
behavior of the now available optical potentials at the
nuclear surface.
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F16. 11. Real part of total potential for 40-Mev alpha particles
scattered from Ag versus radius near critical turning point for
three values of angular momentum: /=18, 19, 20. The optical
parameters of Igo and Thaler are used to provide the nuclear
potential. The center-of-mass energy is 38.6 Mev.
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E =212 Mev
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F16. 12. Real part of total potential for 22-Mev alpha particles
scattered from Ag versus radius near critical turning point for
1=11. The curves represent three different sets of optical model
parameters: Vp=—35 Mev, »1=7.73X10"8 cm, d=0.5X10"18
cm; Vp=—-50 Mev, 71=7.5X10"8 cm, d=0.6X10"8 cm;
Vr=—150 Mev, r1=7.09X10"18 cm, d=0.6X10"3 cm.!® For
parison, it is seen that the difference between these curves near
maximum is of the order of the difference between the —50-Mev
curves for /=11 and /=10.

If the transition between complete absorption and
pure Coulomb scattering is to occur in a small range of
1, not only must there be little transmission through the
barrier of the partial waves with >/ but also little
reflection of the partial waves with /</'. In the case of
40-Mev scattering from Ag, illustrated in Fig. 11, the
change in barrier between I=101'=19 and /=20 is suf-
ficient to cause a qualitative change in the transmission.
The transmission of the /=20 wave into the absorbing
interior can be roughly estimated by the standard pene-
tration factor, T'=exp(—2 Jfkdr), with #%2/2u=V—E,
and is of the order 0.1. We note that a sharp boundary
condition would give a smaller value for the integral
and hence larger transmission.

On the other hand, a sufficient condition that there
be little reflection in the barrier region of waves with
I<l' is that the WKB approximation be valid, or
equivalently, that the fractional change in wavelength
be small in a distance of one wavelength. It is seen again
in Fig. 11 that, although the potential changes rapidly
with distance for 7 less than 8.0X10~% cm, the wave-
length does not change by more than a factor £ in the
barrier region between r=8.0 and 10.0X10™ cm for
1 =18. For numerical orientation we mention that the
wavelength of an alpha particle with 5-Mev kinetic
energy is 1X107* cm. In this discussion of reflection,
we have tacitly assumed that only the real potential
contributes to the refractive index; this is not true,
however, for large values of the imaginary potential,
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and, indeed, there is a breakdown in the WKB con-
dition for sufficiently large Vr..Cheston and Glassgold!8
have already pointed out that reflection from the
surface increases with increasing V7.

The transition between absorption and pure Coulomb
scattering should be more rapid as a function of 7 for
heavy-ion scattering than for alpha-particle scattering
under comparable experimental circumstances, i.e., for
the same incident velocity; one can readily show for
these conditions that the transmission of the /41
barrier decreases as the ions become heavier (for the
same velocity, ! increases with the charge of the
projectile) and that the WKB criterion is more easily
satisfied with heavier ions since the corresponding
wavelengths are smaller. The sharp cutoff model has
already shown good agreement with experiment in one
case of heavy-ion scattering, namely elastic scattering
of N* from N, 2

(3) When data are analyzed in terms of a multi-
parameter theory such as the optical potential model,
the uniqueness of the model is almost always subject to
question. Equivalently, one can ask whether there are
some ‘‘effective” quantities, determined to a high
degree of accuracy by the experiments, which are non-
uniquely related to the parameters or models, and which
therefore establish necessary conditions on the choice
of parameters and models. The most recent example
of such a situation is that of high-energy elastic electron
scattering, where the data are most readily character-
ized by a mean radius and a surface thickness®; the
choice between the several possible charge densities
with the same mean radius and surface thickness
requires great experimental accuracy.

It has already been pointed out that there is again
such a lack of uniqueness when the optical model is
used to describe elastic alpha scattering. Glassgold and
Cheston!® find that two quite different sets of parameters
give adequate fits for 22-Mev alphas on Ag, while Igo
and Thaler? observe that not significantly worse fits
were obtained when the usual Saxon-Woods radial
dependence was altered so that the imaginary potential
was weighted at larger distances. Can we now find
“effective’” quantities in the case of alpha scattering
analogous to those mentioned in the preceding ex-
amples?

We would like to suggest, on the basis of the dis-
cussion in Secs. (1) and (2), that, when the penetration
depth of the bombarding particle is small, the most
important “‘effective” quantity is /., which for the
Saxon-Woods potential is a function of 7;, d and V.
Further, from the optical analysis of the data well
below the break, we guess that the next most important
parameters are d (or perhaps dVg/dr|w) and some
mean penetration depth relative to R for partial waves
with 1<l,,.

2 H. L. Reynolds and A. Zucker, Phys. Rev. 102, 1378 (1956).
2 D. G. Ravenhall and D. R. Yennie, Phys. Rev. 88, 277 (1955).
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Since these quantities are’properties of the nuclear
surface, we see that the primary role of the full optical
model is to furnish a means for describing the surface,
i.e., the scattering depends on the interior quantities,
Ve, Vi and even 7y, only insofar as they affect the
surface. The scattering should be particularly insen-
sitive to Vg '® because of the manner in which it deter-
mines /,; a large change in Vz can be compensated for
by a small shift in 7; so long as d is small. This is in
contrast to the situation found when the mean free path
is of the order of nuclear dimensions: Glassgold et al.2
observe in the case of elastic scattering of 10-Mev
protons that one of the “effective” quantities is Vgre.
Another corollary of the surface point of view is that
the usual expression for mean free path in the nuclear
interior is not necessarily a relevant quantity; the
larger share of absorption probably occurs before the
interior is reached. It should be possible to determine
definitively where the absorption occurs by inspection
of the radial dependence of the complex-potential radial
wave functions which have already been computed.

In summary, the prime lesson of the present com-
parison between the sharp cutoff and optical models, is
that the scattering of alpha particles is primarily deter-
mined by the aspect of the nuclear surface.
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APPENDIX. ENERGY OR ANGULAR
DEPENDENCE OF R

We may express the observations (@) and (b) of the
discussed section, IIT (1), more fully with the help of
the following short analysis. For the case of a tapered
nuclear potential, Ve, let us suppose that the critical
angular momentum, 7, (treated here as a continuous
variable) is determined by the joint requirement that
the total potential equal the available energy when the
potential is a maximum, i.e.,

E= V(?’b)
zz'¢ #(1+1)

T + nuel (rb),
7y 2#7’1,2

(A-1)

2¢ Glassgold, Cheston, Stein, Schuldt, and Erickson, Phys. Rev.
106, 1207 (1957).
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and
av
—| =0
d7’ h
1 ZZ’e2 h2l, (l/‘l‘ 1) d Vnucl
=——( +2 'f (A-2)
7p 7 2#7’1;2 dr |

For an attractive nuclear potential whose magnitude
is exponentially decreasing at the surface with (1/e)
distance d,
anucl 1
= ——Vnuel. (A-3)
dr d

With the assumption that (R—7;)<<rs, we can eliminate
I and 7 in Egs. (1), (A-1), and (A-2) and find (R—7)
=d; in words, the sharp cutoff radius corresponding to
' is larger than the radius at the top of the /’th barrier
by the value of the surface parameter.

To understand the second observation, let us first
denote 7y as the value of 7 at threshold energy, E,,
defined by /=0. We note that for threshold energy, Eq.

(A-2) gives
750
BjO= - —d——l Vnucl("bo),

so that the nuclear potential will be quite small at 7.
On the assumption that the nuclear potential is not
velocity dependent, we manipulate the above equations
to obtain the following approximate expression for 7,
corresponding to center-of-mass energy E

2E
rb=rbo—d ln(——-— 1)
E

If the crossover or one-quarter-point recipes are used
to determine R, Eq. (A-5) leads to

R=Ry—d In[csc(p/2)]. (A-6)

It is interesting to see what changes in this analysis
result when we relax the condition stated by Eq. (A-1).
If we assume that /' is the critical angular momentum
for which the available energy surpasses the total
potential at the top of the barrier by an amount §E,
then the energy dependence expressed by Eq. (A-4) is
essentially unchanged but

(A-4)

(A-5)

O0F
R=1’b+d(1+‘“—“_). (A-7)

Vnucl(rb)
The further assumption that 6E is half the energy
separation between the I'th and (/’41)th barriers, an
assumption which is not inconsistent with the corre-
spondence of I/ and /,, in Table III, leads to

(20)} (E—Eo)*
R=r+td|1l———|,

d 2E—-E,
when E is expressed in Mev, d in 107 cm. The dif-
ference, (Rn—73), then equals d only at Ey; for 1.1 E,

(A-8)
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< E<3 E,, the difference is practically constant and,
for the case of Pb and d=0.5X10"% cm, is of the order
0.20X107% cm. On the other hand the assumption that
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Our uncertainty regarding these various assumptions
and further, the result from optical analyses' that the
nuclear potential itself appears energy dependent,

cause us to refrain from using the above equations to

OE be constant would require
correct the data. Nonetheless we think the analysis does

7
R= rb-l—d[ ( ’ ) ( )] (A-9) provide a qualitative understanding of the observed
2E—E, angular and energy dependence of R.
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Transition in 26-min U?%™ of Less Than 23 Electron Volts
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The conversion electron spectrum from the decay of 26-min U2 has been examined by both magnetic
spectrometry employing preacceleration and by electrostatic spectrometry. The energy distribution is
peaked at 0.5 electron volts, with evidence of structure at 5 ev and at 19 ev, leading to an estimated upper
limit of 23 ev for the transition energy. Tests of the performance of the apparatus were made with the
conversion spectrum of the low-energy transition in 6-hr Tc®”, redetermined as 2.15 kev; with the “zero
energy’’ peak of Am*! and with the spectrum of photoelectrons excited from silver with ultraviolet light.

I. INTRODUCTION

HE existence of a very low-energy isomeric state
in U% following the unhindered 5.150-Mev
o decay of Pu?® (3+4) was recently discovered in-
dependently by Huizenga ef al! and by Asaro and
Perlman.! The 26.16+0.03 min isomeric decay? is thus
expected to go by an E3 transition from a presumed
3 state to the (measured) Z— ground state of U2,
That the very soft radiation was indeed coming from
U™ was established! both by chemical separation of
uranium from Pu*? and by observing the decay of
electrostatically collected recoils from the Pu?*® a-decay.
The radiation is detectable in a windowless Bradley
PCC-11 proportional counter, which has, for this
activity, a plateau 75 volts long of slope 109, per 100
volts. At the upper end of this plateau the counting
rate exceeds 509, of the a counting rate (in 27 geometry)
of the parent Pu®® sample from which the recoils are
collected. This lower limit on the counter efficiency
corresponds, as will be shown, to the counting of single
electrons of energy less than 19 ev ejected per decay
event. Identification of the radiation as very weak
electrons was established by the observation that an
absorbing film of ~2 ug/cm? of Formvar laid in
intimate contact with the sample backing ranged out
the count completely. For quanta above 1 ev such an
absorber is over 909, transparent.
The first actual energy determination was made® in
an internal sample proportional spectrometer in which

1 Huizenga, Rao, and Engelkemeir, Phys. Rev. 107, 319 (1957);
I. Perlman (private communication).

2 J. R. Huizenga (private communication).

3D. W. Engelkemeir (private communication).

it was shown that the pulse-height distribution from
U™ was nearly identical with that from single low-
energy photoelectrons ejected from the wall of the
counter with ultraviolet light. In the work reported
here by magnetic and electrostatic spectrometry the
radiation is seen to possess the magnetic rigidity and
energy characteristic of negative electrons distributed
in energy in the range 0-19 ev, peaked sharply at
0.5 volt.

II. SOURCE PREPARATION

Electrostatic collection of charged recoils from the
« emission in Pu®? was used for preparing essentially
weightless sources for this study. An “emanating” film
of 8 mg of Pu® evaporated on about 200 cm? of 1-mil
Al foil folded into a 4-inch diameter cup constituted
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F1c. 1. The effect of spectrometer pressure on electron lines of
various energies. The ordinate is the counting rate at any pressure
relative to that at 0.003 » Hg. The path length in the spectrometer
is about one meter. The source of conversion lines is Am?4!,



