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In6uence of Shell Structure on the Level Density of a Highly Excited Nucleus*
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(Received June 17, 1957)

Some features of the influence of shell structure on the level density of a highly excited nucleus (—10 Mev)
are studied on the basis of an idealized independent-particle model for which accurate formulas can be
obtained in closed form. The theory is especially useful for estimating the ratio of the level densities of two
nuclei in which the same degenerate (shell model) levels are being filled in the ground state, but which
differ by a few units in the number of particles which occupy these levels. Observable effects persist to
high energies ( 10 Mev) and they become very large in the neighborhood of the magic numbers. Thus,
it is possible to determine experimentally whether or not the shell model of the nucleus retains any validity
at high excitations.

I. INTRODUCTION

'ANY years ago Bethe' calculated the density of
~ energy levels of a heavy nucleus which is excited

to any energy of about 10 Mev, on the simplifying
assumption that the nucleons move as independent
particles in a suitable average potential (Hartree
approximation). Then the energy levels of the nucleus
are given simply by the sums of the energies of the
individual particles. Given a set of independent-particle
levels, the problem of calculating the average level
density of the excited nucleus is reduced to counting
the number of levels of the combined system of particles
which lie within a suitable interval of energy. In the
counting process due regard must, of course, be paid
to the exclusion principle.

Counting, while simple in principle, may be very
difFicult in practice, and so it is with the problem
outlined —except for very low values of the excitation
energy. Bethe's derivation of the level density is
therefore based on the "statistical method of counting"
in which an essential step is the evaluation of certain
sums over discrete states which, generally speaking,
can only be carried out by some approximate method.
Bethe used the well-known "continuous approximation"
in which the sums are replaced by integrals. The
subsequent work of Van Lier and Uhlenbeck' showed,
in a rather general way, that in this approximation
only one parameter (one for each kind of particle)
pertaining to the arrangement of the independent-
particle levels is of importance for the level density of
the whole system, namely, the number of quantum
states per unit energy near the Fermi level, ' which we
shall denote by p. By adopting a reasonable dependence
of p on the mass number A, Bethe explained two gross
features of the observed level spacings: For a given
nucleus the level spacing decreases rapidly with exci-
tation energy, and for a 6xed value of the excitation

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' H. A. Bethe, Phys. Rev. 50, 332 (1936).' C. Van Lier and G. E. Uhlenbeck, Physica 4, 531 (1937).' This is certainly the case for the energy range under discussion
(~10 Mev); for much higher energies see N. Rosenzweig, Phys.
Rev. 105, 950 (195/).

energy, the level spacing decreases rapidly with in-
creasing A.

During recent years there have been significant
developments, both theoretical and experimental which
make a further study of the level-density problem
worthwhile:

1. A good deal of experimental information on nuclear
energy levels has been accumulated and more will
become available in the near future. The data, especially
those obtained from slow-neutron resonance experi-
ments, have been analyzed by various authors' in
terms of Bethe's theory and other very similar theories~
which are based on the continuous approximation. It
seems fair to say that these theories are in over-all
agreement with experiment, as noted above, but are
incapable of reproducing the observed irregular vari-
ations by factors of 2 or more as the particle numbers
change by a few units. Moreover, the theories fail
altogether in the regions of the magic numbers where
anomalously large level spacings occur.

2. During the last decade the independent-particle
-model of the nucleus has been revived with notable
successes in the form given to it by Mayer and by
Jensen, Haxel, and Suess. ' More recently it has even
been stated, as a result of the work initiated by
Brueckner and collaborators, ' that a theoretical foun-
dation of the shell model, including a clear delineation
of its region of validity, has been found.

See especially T. D. Newton, Can. J. Phys. 34, 804 (1956);
also Harvey, Hughes, Carter, and Pilcher, Phys. Rev. 99, 10
(1955); G. Brown and H. Muirhead, Phil. Mag. 2, 473 (1957).

e J. M. B.Lang and K. J.LeCouteur, Proc. Phys. Soc. (London)
A47, 585 (1954); J. M. Blatt and V. F. Weisskopf, Theoretical
nuclear Physics (John Wiley and Sons, Inc. , New York, 1952),
p. 371.

6 To make this point clear, consider a set of isobars excited to
the same energy. According to Bethe's theory all the isobars
would have the same level density.

~M. Goeppert Mayer, Phys. Rev. 75, 1969 (1949); Haxel,
Jensen, and Suess, Phys. Rev. 75, 1766 (1949) and Z. Physik
128, 295 (1950). A comprehensive account of the scope of the
shell model is given in M. G. Mayer and D. Jensen, Elemerltcry
Theory of Nuclear Shell Structure (John Wiley and Sons, Inc. ,
New York, 1955). We shall refer to the scheme of independent-
particle levels given on p. 58 as the Mayer-. Jensen scheme.

e Brueckner, Eden, and Francis, Phys. Rev. 98, 1445 (1955).
For a more corn lete set of references see H. A. Bethe, Phys. Rev.
103, 1353 (1956 .
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One of the main purposes of this paper is to show that,
contrary to some widely-held opinions, a refinement of
the statistical method of counting is capable of yielding
valuable information about nuclear structure when
confronted with observed level spacings at high energies
of excitation ( 10 Mev). For example, our work shows
rather convincingly that it should be possible to deduce
from such data whether or not the nuclear shell model
with a strong spin-orbit force retains its validity at
high energies of excitation ( 10 Mev). This possibility
arises mainly from the fact that, in the regions of some
of the magic numbers, the Fermi levels (i.e., the incom-
plete subshells) have an especially high degeneracy. Our
calculations show that a high degeneracy of the Fermi
levels leads to pronounced diGerences in the level
density of nuclei for which the same independent-
particle (Fermi) levels are being filled in the ground
state, but which differ in the Number of particles which
occupy these levels in the ground state. H the shell
model is valid, one may hope to obtain (eventually)
detailed information about such quantities as the
distance between the shells' and the number of quantum
states per shell.

The theory based on the continuous approximation
has fairly clear limitations in connection with these
questions: by means of it one may hope, at best, to
deduce the ratio of the average number of states per
shell to the average distance between the shells. More-
over, the continuous theory makes no distinction be-
tween the level densities of two nuclei which have the
same arrangement of levels and which diGer only in
the number of particles which occupy the Fermi level.

Actually, the double problem of considering the
effects of shell structure on the level density and of
refining Bethe's theory was clearly recognized by
Margenau" long ago, in the era before the popularity
of the shell model waned in the light of the success of
Bohr's theory of the compound nucleus. Margenau
avoided the continuous approximation by carrying out
some numerical computations" which, in spite of their
very limited scope, clearly suggested that shell eGects

may be important even at high excitations. More
recently, the problem of improving on the continuous
approximation has also been considered by Bloch."
His method is partially analytical, but since he attempts
to treat a rather elaborate model he has to make many
approximations. Sloch considers two interesting physi-
cal questions, viz. , the distribution of angular momenta

Knowledge of this type would enable one to deduce the
magnitude of the effective mass of a nucleon inside nuclear
matter; see, e.g. , V. F. Weisskopf, Revs. Modern Phys. 29, 174
(1957).However, we shall not deal with that problem in this paper.

~o H. Margenau, Phys. Rev. 59, 627 (1941).
"A numerical solution of the saddle-point problem may still

be the best approach for elaborate nuclear models. With modern
computing machinery, a comprehensive study along these lines
is entirely feasible."C. Bloch, Phys. Rev. 93, 1094 (1954).

and the eGects of the interaction between the particles,
and he furnishes some evidence that the method of
statistical counting is adequate for the purpose at hand.

In this paper we have attempted to shed some further
light on the eGects of shell structure by steering a
middle course between the extremes of direct numerical
computation and elaborate analytical approximations.
Ke shall do this by treating an idealized nuclear model
which has at least some of the essential features of
shell structure, and yet is sufEciently simple to permit
an accurate solution of the mathematical problem in a
closed form which can easily be surveyed. In fact, our
final formulas bear a close resemblance to the familiar
results of the continuous approximation, with which
they become identical when the energy of excitation is
sufficiently high. The precise criteria in terms of the
parameters of the shell structure are quite simple, and
they show that the shell eGects for our model nucleus
are still very significant at excitation energies which
correspond roughly to an energy of 10 Mev for a real
nucleus. %e shall place considerable emphasis on the
rather convincing evidence, which we have obtained,
that the statistical method of counting is suKciently
accurate for describing the (considerable) shell effects.

Our simple model consists of a mixture of two kinds
of Fermi particles (neutrons and protons) each of
which occupies a set of uniformly spaced energy levels.
Furthermore, the degeneracy of each independent-
particle level is the same, although the spacings and the
degeneracies of the neutron and proton systems may be
diGerent. This model enables us to evaluate the crucial
sums over states very accurately by means of the
Euler-Maclaurin summation formula. For the sake of
both clarity and brevity we shall treat the case of one
kind of particle in Sec. II and the more pertinent case
of two kinds in Sec. III.

Although we have succeeded in obtaining accurate
results for our fictitious model, the application of these
results to the more realistic level schemes leads only to
a rough, though useful, estimate of the shell eGects in
nuclei (Sec. lV). With this qualification we may
summarize the conclusions of physical interest as
follows: A potential well having a depth of about 40
Mev and a range equal to the nuclear radius leads to
the correct order of magnitude (on an absolute basis)
for the level density for the entire range of mass
numbers. An average degeneracy of 5 to 6 particles per
level leads to an (irregular) variation in the level

spacing (for a constant energy of excitation) within a
small range of mass numbers. The magnitude of this
variation is compatible with experiment. The value of
5 to 6 for the average degeneracy is consistent with the
Mayer-Jensen scheme of levels. The anomalously large
variations in the regions of the magic numbers can be
accounted for by the especially high degeneracies and
the varying occupations of the Fermi levels in the
ground state.
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Clearly, all the values of E and Q which are accessible
to the system are integers.

We are interested in calculating the number of
distinct ways in which the S particles can occupy the
levels so as to give a total energy E. We shall denote
that number by C,(E,E). In applying quantities of the

type C, to nuclei we shall have to make the usual
assumption' that C, represents the average density of
states in a small interval of energy containing E (see
Sec. V). For convenience, we shall even now refer to
C, as the level density.

Throughout this work we shall restrict our consider-
ations to degenerate Fermi systems. By this we mean
the following: given a number of particles E, we shall
assume that the energy of excitation Q is not greater
than the amount required to create one hole in the
lowest independent-particle level of the system. Or,
equivalently, given a value of Q, we shall assume that
there are enough particles present so that Q will again
not be larger than the amount required to create a
hole in the zero level. A rough formulation of the above
condition which is sufFiciently close for our purpose is

gQ&&. (2)

A little reflection shows that for a degenerate system,
C, (E,E) is determined entirely by g, Q, and the number
of particles n which occupy the Fermi level in the
ground state of the system. We shall therefore employ
the convenient, though mathematically unsound,
notation

II. (APPROXIMATE) SOLUTION OF THE
COMBINATORIAL PROBLEM FOR

ONE KIND OF PARTICLE

In this section we shall assume that all the Fermi
particles are identical. This is the simplest case both
from the physical and mathematical point of view.
Nonetheless, the method of our treatment as well as
almost all the features of the shell eGects are revealed
in this simple case. Therefore, after presenting a fairly
detailed exposition of the simple case in this section,
a much briefer account will suKce for the system which
consists of two kinds of Fermi particles (Sec. III).

More specifically, the model consists of a number X
of noninteracting Fermi particles which occupy a set
of uniformly spaced energy levels, each of which is
g-fold degenerate. The constant difference between the
adjacent levels will serve as the unit of energy. The
numerical value of the energy of the lowest level which
a particle can occupy will be set equal to zero.

I et 8 denote the total energy of the system, including
the zero point energy Eo. The energy of excitation Q
is given by

Q= E—Eo.

P Co(1P,E')x"'ys'= Q (1+xy")&,¹,E' en=0
(4)

the sums and the product being over all the positive
integers and zero. We shall write down the exact
solution for Q=O, 1, 2 and 3. , To save space we shall
introduce the auxiliary function

F'-(~) =
I I+ I(n—0.) En+0 i

(4a)

which we shall further abbreviate by F(o). Then

Co(n, O) =-,'F(0),

C, (n, 1) =gF(1),

C.(n 2) =g'F(0)+gF(1)+I IF(2),
&2)

Co(n, 3) =g'F(0)+g 1+~
~

F(1)
i2i

+g'F (2)+ ( ~F (3).
&3i

The factors P arise from the various occupations of the
Fermi level. We shall return to a further consideration
of this fact in Sec. IV.

In the above form the result is not easily surveyed.
However, there is one general feature which emerges:
n occurs only in the factors F, , Since F„,, is invariant
under the replacement

n—+g—n, (6)

it is rigorously true for all values of Q (for a degenerate
system) that

C.(n, Q) =Co(g —n, Q)

This means that (for our model) a system with n
particles has the same level density as a system with
n holes.

We have used the formulas (5) to obtain some exact
numerical values for C, (n,Q) which are listed in column
4 of Table I. It will be noted that for a given value of
g and Q the level density is greatest for a system which
has a half-ulled shell and is least for a system which
has a completed shell in the ground state. If g is an
even integer, then convenient measure of this shell
eBect is the ratio

1. Exact Solution for Low Values of the
Excitation Energy

For low values of Q it is possible to obtain the exact
solution to the combinatorial problem either~by direct
enumeration or from the generating function,

Co(X,E)=C, (n,Q). (3) E.(n Q)—=Co(og Q)lCo(n Q). (8)
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TAsLE I.Data illustrating that the asymptotic formula Cu'(n, Q)
provides an accurate description of the shell eGect—measured by
Eu'(n, Q)—even for low values of Q.

integral

dxdy.
1 2 3

0

2 0
2

2 1
2

3 1
2

6 0 3
6

1 3
6

2 3
6

3 3
6

4
Exact

Cg(e, 0)

12
9

24
20

20
1

180
36

1080
297

4852
1588

6.22 1.56
5.08 1.27

13.89 1.16
11.43 1.27

28.99 1.21
24.27 1.21

24.54 1.23
a a

211.5 1.17
44.42 1.23

1191 1.10
335.8 1.13

5254
1759

1.08
1.11

6
Asympt
&g'(+ 0) &gV&g

3.85 1.93

7

Exact
Rg(e, Q)

1.00
2.00

1.00
1.00

1.00
1.33

1.00
1.20

1.00
20.00

1.00
5.00

1.00
3.64

1.00
3.06

8
Asympt
Ru'(n, 0)

1.00
a

1.00
1.22

1.00
1.22

1.00
1.19

1.00

1.00
4.76

1.00
3.55

1.00
2.99

The integrand has one and only one saddle point on
the positive real axes. It is convenient to make the
exponential transformation:

x= e~ y= e—t'. (10)

(f« f~plt

(fp fpp)
(13)

Carrying out the saddle-point integration in the usual
way, one obtains

ef(at P)

C,(N, E)— —=C,'(N, E),
2m (detA)'

in which

f(n,P) =EP Nn+g—Q ln(1+e~P ), (12)

the sum being over all integers; and 3 is the symmetric
matrix of the second partial derivatives,

12 0 6
9

12

924
220

1

1043 1.13 1.00
259.6 1.18 4.20

a 92400

1.00
4.02 All the quantities must be evaluated at the saddle

point (n,p) which is determined by the equations

6
9

12

19008
6732

144

20 690 1.09 1.00 1.00
7377 1.10 2.82 2.80
154.6 1.07 132.00 133.80

2 6 217 404 232 400
9 91 476 98 310

12 4644 5124

3 6 1 779 008 1 885 000
9 833 680 886 100

12 67 840 72 970

1.07 1.00 1.00
1.07 2.38 2.36
1.10 46.81 45.3

1.06 1.00 1.00
1.06 2.13 2.13
1.08 26.22 25.83

' At these values the asymptotic formula C' breaks down.

2. Derivation of the Asymptotic Formula

We shall now derive an asymptotic formula for
C, (rt,Q) for large values of Q by means of the Darwin-
Fowler method which was first used in a similar con-
nection by Van Lier and Uhlenbeck. m From (4) it
follows that C,(N,E) is given exactly by the contour

Some numerical values of R, (I,Q) are tabulated in
column 7 of Table I. As noted above, the maximum
ratio is given by Rg(g, Q). It should also be noted that
Rg(g, Q) increases with increasing values of g.

Evidently, the shell effect is very important for low

values of Q, as would be expected. However, we shall

soon see that the eGect persists to very high excitation
energies, and that it probably plays a significant and
sometimes a dominant role in the understanding of the
level density of a highly excited nucleus.

Q ln(1+ca-Pna)—
m-0 aJ 0

ln(1+e P )Cx

+-', ln(1+e )+ +e(n,P). (16)
12(1+e )

f-=fp=o.

At this point one must deal with the sums which
occur in the equations. In the past, this has been done
by such means as numerical computation, " the "con-
tinuous approximation, '"' ' and more elaborate ana-
lytical approximations. " Our method differs from all
of these. For our model a virtually exact and entirely
tractable expression for p ln(1+earp ) can be obtained
by means of the Euler-Maclaurin summation formula
provided that we retain the degeneracy assumption
(2) and make the further assumption that the system
is highly excited, i.e., that

Q))1.

We now wish to outline the course of our mathe-
matical argument which will lead to the solution of the
saddle-point problem. We shall obtain an expression
for the sum of logarithms in (12) which becomes exact
as n—+~ and p—+0. We shall then verify that the
solution obtained in this way indeed satis6es the
assumptions (2) and (15). Since the solutions of Eqs.
(14) are unique, the procedure is mathematically sound.

The Euler-Maclaurin formula applied to our sum
reads
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(,p) =o( —.)+o(p'). (17)

The remainder e(n, r3) is readily shown to be of the form More significant for our purpose is the fact that the
shell eGect is adequately described by the asymptotic
formula even for low values of Q. To see this we define

If e)0, the integral in (16) is given by the convergent
expansion:

R,'(u, Q) =C,'(~g, Q)/C, '(u, Q) (25)

in analogy to (8). The values of Eg' are listed in column
8 of Table I, and they should be compared with the
exact values given in column 7. It should be noted that
the error in R,' is small compared to the variations in E,.

From the derivation we may expect that the asymp-
totic formula will be (relatively) even more accurate
as Q increases. We therefore conclude that the asymp-
totic formula adequately describes the efkcts of shell
structure for the model under discussion.

~2 ~2 ~ ~
—ke

ln(1+e —)dx= —+—+ Q
2 6 a=i k~

(18)

Thus, as n—+~ and P~O the expression for f(n,P), on
which subsequent calculations are based, assumes the
relatively simple form:

g(n m ) (n pi
f&~A) =E& &~+ —

I
—+—-I+gl -+—

I (19)
P(2 6) (2 12)

(b) Symmetry betvveee Particles aud Holes

The asymptotic solution has the symmetry property

C,'(,I=C,'(g—u, I, (26)

which, as we have demonstrated, the exact solution
also possesses.

By using the above expression for f, the saddle-point
problem can be solved exactly by elementary algebraic
operations. By use of the identity

1
E—(&——:g)'=Q—(I——:g)',

2g 2g

C,' may be expressed in the form

expLv-(-;gQ, )-:j
C.'(u Q) =

(48)'Q.
in which

g I
Q.=Q+——(u —lg)'.

12 2g »&,'(u, Q)—v
~ ~

——( ——,'g)';
(3Q ) 16 4g

(27)

To complete the argument we shall verify that the
solution, which we have obtained, satis6es the assump-
tions (2) and (15).From Eqs. (14) one finds that

and for the maximum effect (half-filled shell to closed
shell) one obtains

(c) Asymptotic Behavior of the Shell Effect

As Q
—+~, R'—+1, and the shell effect disappears.

However, the eBect declines rather slowly with in-
creasing energy. To obtain a convenient measure of
this behavior, let us assume that g/Q«12. Then the
variation in the denominator of (21) may be neglected,
and one obtains

(22)

(23)

(24)

From (23) one sees that P—+0 implies Q~~. If P is
determined by holding Q at some fixed (large) value,
then Eq. (24) shows that n~~ implies X—+~. How-
ever, that is entirely consistent with the assumption
(2) since, as we have already noted, the solution to the
combinatorial problem, if the system is degenerate,
depends only on n—not on X. Therefore, we may take
E as large as we please or, equivalently, let e—+.

3. Remarks about the Asymptotic Formula

(a) Adequacy of the Asymptotic Formula

We have evaluated the asymptotic formula, Eq. (21),
for very low values of Q, and have listed these in
Table I, column 5. These 'values should be compared
with the exact values given in column 4. It will be
noted that even for low values of Q the relative error
is small, as may be seen from the values of the ratio
C,'/Cg which are listed in column 6.

expl. (-'gQ)'j
C.'(u, Q)= —=B.(Q)

(48)'Q
(29)

Formula (29) is the familiar result which was first
obtained by Bethe and also by Van Lier and Uhlenbeck
on the basis of the "continuous approximation. " It
may be worth noting that formula (29) can be obtained
formally from (21) for all values of Q by setting

I=gl -~
I

0.9g or 0.1g.
42 (6)~)

(30)

lnR. '(g,Q)=—' g(2g/3Q)'=lg(g/Q)' (28)

Formulas (27) and (28) are in good qualitative agree-
ment with the numerical results obtained by Margenau'
on the basis of a more elaborate nuclear model (see
Margenau's Fig. 4). However, Margenau's calculations
are not extensive enough to exhibit the rather slow
variation of (28) with energy.

Thus, for very large values of Q our formula (21)
becomes independent of e, and we shall denote the
resulting expression by B,(Q); i.e.,
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c,'(~,Q/&) a, (Q/&). (31)

In order to compare various systems which have the
same value of g/y, we have plotted in Fig. 1 the values

of the dimensionless ratio logtp(Cs/8g) against the

pure number logtp(gQ/p) for various values of g and ts

Clearly there are significant differences when gQ/y
&g'/36; and in the same region the result B,(Q/y) is

obviously inadequate. For a fixed value of g, the curves
in Fig. 1 illustrate once more the shell effects resulting
from different occupations e of the Fermi level.

In Sec. IV we shall take the point of view that the
level density of a nucleus which is excited to about
8 Mev should be described by the curves in those
regions in which the shell effects are considerable. "

(d) Comporisori, of Systems huoirtg the Some 1VNmber of
QNarttgm States per Unit Energy

In the above we emphasized the di8erences in the
1evel density which arise from different occupations of
the Fermi level for a Axed value of g. It is of some
importance to note, however, that there may be
considerable differences in the level densities of systems
which have diferent values of g but which have the
same number of (independent particle) quantum states
per unit energy.

In order to show this we shall introduce explicitly
the constant spacing between adjacent levels, to be
denoted by y. (Up to this point we had y=1.) The
number of quantum states per unit energy is given by
g/y. The level density becomes C,'( I, Q/y) /y. Equations
(25) to (28) hold with Q replaced by Q/p. If Q/p))gs/36,
then

Cg, g(1t/, P,y, "o,E)= Cg, s(rl,,p,y, "o,Q). (31)

For low values of Q it is easy to obtain the exact
value of C,, ~ by direct enumeration. We shall cite
only one example which we shall use below for com-
parison with the asymptotic formula. For y=5=Q= 1,
one obtains

III. TWO KINDS OF PARTICLES

In this section we shall discuss the case which is
more pertinent to the nuclear problem; we shall assume
that the system consists of tmo kinds of Fermi particles,
neutrons and protons. Qualitatively, the result will be
much the same as in the previous section. However,
quantitatively the differences are significant, and they
matter even in the very rough evaluation of the nuclear
shell eGects which we shall undertake in Sec. IV.

We shall retain the assumptions that the spacing
between the levels is uniform and that the degeneracy
of each level is the same; however, we shall allow these
quantities to be different for the neutron and proton
systems. We shall use the following symbols. For the
neutron system: X denotes the number of neutrons,
e the number in the Fermi level, g the degeneracy of
each level, and p the spacing between adjacent levels.
For the proton system: J' denotes the number of
protons, p the number in the Fermi level, d the degen-

eracy of each level, and 8 the spacing between the levels.
For the combined system: E denotes the total energy,

Q the excitation energy, C,, d (X,P,y, o,E) the level

density, and C,,
~' the asymptotic formula for C,, ~. As

a matter of convenience we shall occasionally drop
some or all of the variables.

We shall again assume that the system is degenerate
and we may then write, in the same sense as in Sec. II,

c..d(~ p Q=1)=gI I I I+I
Ep &I 1) &e+1—

g'l d
+dI I I I+ I I (32)

&~) &p —1) &p+1)

As before, the symmetry property between holes and
particles hold rigorously for all values of Q. Thus

Loe„(g any)

C, g(e,p) =C, gg(g n, p, ) = C—gg(e, d —
p, ). (33)

The combinatorial problem can be solved asymp-
totically by the Darwin-Fowler method in a similar

way and with the same degree of rigor as was done in
Sec. II for one kind of particle. We shall therefore
merely cite the result:

exp(~I:-:(g/~+d/~) Q.j')
(34)

4L216Q.'(g/7)'(d/&)'/(g/7+d/~)'i'
"Actually, conclusions for nuclei must be based on the results

for two kinds of particles."/see Eq. (34)7.

Fro. 1. Plot of logio(Cg'(n, Q/y)/Bg(Q/7)7 ss logio(gQ/y). The
graph illustrates the various aspects of the shell effect discussed C &( p & g Iin the text; g and n are specified by (g,e).
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in which

gp p d5

Q. =Q+ ——( —sg)'+ ——(p —sd)'
12 2g 12 2d

It should be noted that C' satisfies the symmetry
relations (34).

For comparison we have calculated some exact values
for C using (32) and the corresponding values for C'
using (34) and have listed the results in Table II. A
convenient measure of the shell eGect is the ratio

~g, d(rtipiQ) Cg, d(sgisdiQ)/Cg, &(rtipiQ) ~ (33)

The corresponding quantity obtained from the asymp-
totic formula is denoted by R'. Some numerical values
of R and R' are listed in Table II. We see that the shell
effect is very important for low values of Q, and that
the asymptotic formula provides an accurate and simple
description of it. Furthermore, the shell eGect persists
to high energies: Assuming that Q))(1(12)(gy+d5),
one obtains in complete analogy to (28):

gy+d5 (g dl 1
lm, .'(g, d,Q)=

5i Q
(36)

However, as Q—+ec, the replacement of Q, by Q in
C,,

&' Eq. (34), produces a negligible error, and the shell
effects disappear. (One then obtains, incidentally, the
result of the cruder continuous approximation. s)

IV. APPLICATION TO NUCLEI

In this section we shall attempt an order-of-magni-
tude discussion of the degree to which the arrangement
of the nucleons in well-defined independent-particle
levels sects the level density of nuclei. For this purpose
we shall assume that nuclei have their levels arranged
according to the shell model with a strong spin-orbit
force, ' and we shall suppose that the energy levels of
a nucleus are given by the sum of the independent-
particle levels, paying due regard to the Fermi statistics
as was done in Secs. II and III. In order to make some
numerical estimates it will be necessary to extend the
results of the preceding sections to the more complicated
level scheme of Mayer and Jensen. In this paper we
shall describe a simple approximate method of doing
that, and we shall use the method to make some
rough estimates of the shell effects. We shall be con-
cerned primarily with the range of excitation energies
which corresponds to the binding energy of the "last"
neutron.

1. Nuclear Model

the eigenvalues of a Hamiltonian having the form:

A2

H, =— V,s+ V (r,)+G(r,)1,' s;.
2m

(37)

TABr.E II. Illustrates that the asymptotic formula C' provides
an accurate description of the shell effect which is measured by
R'. The parameters not listed have the values y=B=Q=1, d=6,
p =3) and g= 12.

6
7
8
9

10
11
12

Exact
C

546 480
483 120
331 980
174 240
67 560
18 240

3060

Asymptc'

634 873
561 402
386 140
203 086

78 987
21 374

3576

Exact
R

1.00
1.13
1.65
3.14
8.09

30.0
179

Asympt
Rf

1.00
1.13
1.64
3.13
8.04

29.7
178

In the above, the interactions between nucleons are
taken into account insofar as they give rise to the
effective potentials V(r) and G(r). We shall neglect all
further perturbations.

It is well known that in terms of the above model
many nuclear data pertaining to the ground state and
to the low-lying excited states can be explained,
especially in the regions of the magic numbers. There
is much less evidence that the model remains valid at
higher excitations. " Nonetheless, we shall adopt the
assumption that the energy levels of a highly excited
nucleus (5 to 10 Mev) are given by the sums of the
eigenvalues of the independent-particle Hamiltonian
(37).

Approximate eigenvalues for suitable wells have
been obtained by various authors. " For our present
considerations we shall only need some of the qualitative
features of these solutions, the most important being
the following: There are only a few (2 to 6) bound
levels above the Fermi level. This statement holds both
for the neutron and the proton systems. Let us consider
a nucleus which is excited to about 5—10 Mev. Then
it should be noted that, provided the mass number
A&20, this energy is not sufficient to create a hole in
the lowest independent-particle level of the nucleus,
and the nuclear system therefore is degenerate in the
sense described in Secs. II and III.

Thus, the situation described above is similar to the
one of Sec. III in those respects which are responsible
for the shell effect: (1) the existence of well-defined
levels, each of which holds an appreciable number
(2j+1) of particles; (2) the existence of nuclei which
have the same (or nearly the same) shell structure and
which di6er only in the number of particles which

We shall adopt a literal interpretation of the nuclear
shell model with a strong spin-orbit force, i.e., we shall
assume that the energy levels of a nucleus are given by

"E. Fermi, Nuovo cimento 11, 407 (1954).
's K. Bleuler and C. Terreaux, Helv. Phys. Acta 28, 245 (1955);

A. E. S. Green, Phys. Rev. 104, 1617 (1956).
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TABLE III. Data showing that the nuclear shell model leads
to the correct order of magnitude for the level spacing and
indicates the maximum variation due to shell structure for
"average" nuclei.

0/v

1
2
3

5
6

Approx. A.

50
75

125
175
200
225

Level spacing in ev

500—15 000
50-1000
10-100
2-15

0.3-2.5
0.1—0.6

occupy the Fermi levels, and (3) the nuclei are degener-
ate for the range of energy under discussion. It therefore
seems rather clear, in the light of Secs. II and IlI,
that one may expect considerable shell eGects in nuclei.
We shall now consider the matter in greater detail.

2. She11 Effects in Regions Remote from
the Magic Numbers; Q= 5—10 Mev

(a) Order of Magnitude of Level Spacing and
Maximum Shell Effect

The above nuclear model, when completely defined,
leads to definite values of the level density. We shall
show, in a rough way, that the adoption of reasonable
values for the parameters which occur in the Hamil-
tonian (37) results in the correct order of magnitude
for the level density for the entire range of mass
numbers.

With Green" we shall assume that V(r) has a depth
of about 40 Mev and a range given by the nuclear
radius. The strength of the spin-orbit coupling is as-
sumed to have a magnitude which is consistent with
the existence of the observed magic numbers. The
eigenvalue problem so defined leads to a definite
number of bound levels. In columns 1 and 2 of Table III
we have listed the number of bound levels which lie
above the Fermi level and the approximate mass
number A which corresponds to it.

For the purpose of estimating the absolute magnitude
of the average spacing by means of formula (34) of
Sec. III, we shall use for g and d values which are
obtained by forming averages over the Mayer-Jensen
scheme of levels. We find the following:

Number of particles: 20 40 75 100 150
Average number of particles per level: 3 4 5 6 6

For our rough estimate we have adopted the values
g= 6, d=4. The parameters y and 8 are fixed as follows.
In the first place we shall assume that 7=8. Next, let
Q be the binding energy of the last neutron (5 to 10
Mev), then Q/y represents the number of bound levels
above the Fermi level, i.e., the numbers in column 2 of
Table III. On this basis we have calculated the order
of magnitude of the average level spacing in ev and
have listed the results in column 3 of Table III. The
indicated range in the level spacing represents the

difference between half-filled. and completely filled
Fermi levels and represents the nsaximum shell eGect
for nonmagic nuclei. Both the order of magnitude and
the maximum Quctuation are compatible with the
observed level spacings. "

(b) Minimum Shell Effect

The simple model of Sec. III should also su%ce for
predicting the minimum effect which the arrangement
of nucleons in shells produces on the level density. In
almost any independent-particle model which has been
proposed the degeneracy of each neutron level and of
each proton level is at least 2. Let us use formula (35)
for a rough evaluation of the minimum shell eBect.
Let us set g= d= 2; for simplicity again let y=8, and
put Q/7=4 in rough correspondence to the neutron
binding energy of a moderately heavy nucleus. With
these values of the parameters, one obtains

Z,, ,(n=1, p= 1)=2.

The above has the following implications: For excitation
energies roughly equal to the neutron binding energy,
the shell structure of nuclei causes the level density to
vary by a factor of at least 2 as the mass numbers

change by about 5 units.

3. Effects Near the Magic Numbers
Q =5 to 10 Mev

As noted previously, the shell effect increases rapidly
with increasing g and/or d. Now, it follows from the
Mayer-Jensen scheme of levels that in the region of the
magic numbers the values of g and/or d are especially
large because of the high degeneracy which is associated
with the high values of the orbital angular momenta
of the levels g9/2 g7/2 k9/2 k]$/2 ~$3/2 etc., which separate
the major shells. We shall see below that when we are
dealing with models in which the degeneracy varies
from level to level, as it does in the Mayer-Jensen
scheme, the quantities which are decisive for the shell
eB'ect are still the same as in Secs. II and III, viz. , the
degeneracies of the Fermi levels and the occupations
in the ground state of the system. That, together with
the high degeneracies, leads immediately to the con-
clusion that the shell eAect should be especially large
for nuclei in the regions of the magic numbers.

The levels observed in slow-neutron resonance experiments
usually refer to only one or two values of the total angular mo-
mentum of the compound nucleus. In order to obtain the order of
magnitude of the level spacing for all the levels, the observed
level spacing must by multiplied by an appropriate factor, which
is given, for example, by Sloch, reference 12, Eq. (17). We are
primarily interested in estimating the variation in the level density
resulting from the 61ling of an incomplete shell. For that purpose
it is not necessary to reproduce accurately the absolute magnitudes
of the level density, and no attempt has been made to do so in
this paper.
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(a) Significance of the Fermi Level for Lovo Q

We shall brieQy discuss the dominant role which the
occupation of the Fermi level plays in the shell eBect.
Let us focus our attention on two nuclei in which the
same neutron level and the same proton level is being
6lled. Then the only di6erence between the two nuclei
lies in the number of neutrons and in the number of
protons which occupy the Fermi levels. Let both nuclei
be excited to the same energy Q. We make the following
assertion about the ratio of the level densities of these
two nuclei: The ratio is given approximatety by the
ratio of the quantities C,,

~' of Sec. III with the under-
standing that now g and d refer to the degeneracy of
the Fermi levels, n and p are the numbers of neutrons
and protons which occupy the Fermi levels in the
ground state, and y and 5 are average values obtained
from the immediate vicinity of the Fermi level.

The above statement has approximate validity
provided the excitation energy is not too high and the
degeneracies of the Fermi levels are appreciable. We
shall not give a general analytical treatment of this
important feature. However, an insight into the situ-
ation may be gained from the following simple example.

Let us suppose, for simplicity, that there is only one
kind of particle, and let the spacing between adjacent
levels again be unity. Let the degeneracy of the Fermi
level be g and the degeneracies of all other levels be X.
Denote the level density by Dq(n, Q). Let us introduce
the ratio

R~(n, Q) =D~(lg, Q)/D. (n,Q), (38)

in complete analogy to (8). For low values of Q, D is
given exactly by the formulas {S)provided one replaces

g by X in the factors which multiply the functions F
(only). Then it will be noted that

R), (n,0)=R,(n,0), Rg(n, 1)=R,(n, 1). (39)

Thus, our assertion regarding the ratios holds exactly
for Q=O and 1. For Q= 2 and 3 the ratios are the same
to within 8% and 15% respectively for values of X

having the magnitude which is characteristic of nuclear
levels. From this example, and others as well, we
conclude that the theory of Sec. III may be used for a
rough estimate of the shell effect in nuclei for excitation
energies which correspond to the neutron binding
energy. This amounts to an extrapolation from Q=3
to Q—6.

We shall now consider some particular nuclei. No-
where in this section has any attempt been made to
establish the best values of the parameters, we merely
wish to assess the order of magnitude of the effect.

(b) Isotopes of Tin

The ground states of Sn isotopes are presumably
formed by Riling the 6h»~s level in the Mayer-Jensen
scheme. The proton gef2 level is completely filled, and
a major proton shell is closed. According to our theory,

TABLE IV. Possible values for the ratio of the level densities
of Au' '/Phs' . This illustrates the large shell effect which occurs
in the regions of the magic numbers.

Ratio

7.8X10'
3.5X10'
1.9X10'

3.0X104
1.2X 104
5.8X103

1.5X105
5.1X10'
2.3X104

the total variation in the level densities of the Sn
isotopes is given by C'{-',g,d)/C'(g, d) with g= 12, d= 10.
We shall set y=1 and shall take the larger separation
between major proton shells into account by putting
8=2. We shall set Q=S to correspond roughly to the
neutron binding energy. With these numbers the level
densities vary by a factor of 30.

(c) Ratio of the Level Densities of Au"r and Pb"s

In the region of the periodic table which contains
these two nuclei, there is a competition in the Ailing of
several levels of the Mayer-Jensen scheme. This pre-
sumably means that the competing levels lie fairly
close together, and for our rough estimate of the shell
e6ect we shall treat these levels as coincident. Thus,
the Fermi level of the proton system consists of the
coincident 4d3f2 and 3s~~2 levels. The Fermi level of the
neutron system consists of the coincident 7i»~s, 4p„,
and 4prts levels. Thus, we arrive at the following values
of the parameters:

Au19~

Pbs)8
20
20

8
20

4. Higher Excitation Energies

We shall briefly discuss, in a qualitative way, the
shell effect for Q&10 Mev on the assumption that the

We have evaluated the tatio of the level densities for
several values of y, b, and Q and have listed the results
in Table IV. It is seen that the shell e8ect is enormous,
and by a suitable choice of the parameters one can
evidently account for the especially large level spacing
of the nuclei surrounding Pb"' which has been observed
in neutron resonance experiments. In this connection
it should be noted that we have compared the level
densities for the same value of the excitation energy,
whereas the neutron binding energies may dier by as
much as 30%. Within the framework of our theory
we find that the diGerence in binding energies can
account at the most for a factor of 10—50 in the ratio
of the level densities, the remaining factor of about
100 is due to the shell e6ect.
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nuclear model as outlined above remains valid. We
shall be interested only in the density of levels in which
all the particles are bound. If Q is larger than the
binding energy of the last particle, then the theory of
Secs. II and III does not apply, strictly speaking,
because we assumed there that an infinite number of
levels is available for occupation by the particles,
whereas actually only a finite number —in fact only
very few—are bound in the nuclear well. For that very
reason, however, one may expect the shell effect to
persist to even higher energies than is indicated by the
results of Secs. II an.d III.

For 10&Q&40, the nucleus remains a degenerate
Fermi system in the sense described in Sec. II, and the
shell effect is probably considerable. For Q of the order
of several hundred Mev, the picture is rather complex;
the shell eGect is presumably diminished.

The picture becomes very simple again for extremely
high energies of excitation (although the nuclear model
presumably breaks down long before that point). As
we have already noted, the number of levels in the
nuclear well is 6nite, and therefore there exists an
upper limit, Q, , to the excitation energy for which
al/ the particles are bound. This Q,„is of the order of
1 Bev. In a small energy range below Q, ( 10 Mev)
the situation is essentially the same as for the relatively
low energies (5—10 Mev) which we have considered at
length in this section; in fact, the only diGerence
within the framework of the model is that the particles
and holes have interchanged their roles. Thus, near
Q, the density of bound levels again becomes very
small. The shell effect becomes large and is determined
essentially by the degeneracies and occupations of the
Fermi level of the system of holes.

V. MISCELLANEOUS REMARKS

j.. Our mathematical treatment is based on a strict
independent-particle model. This leads to the result
that a certain value of the total energy E is realized
in many ways (see, e.g., Table I) and that there is a
relatively large (empty) interval of energy between the
adjacent levels of the system. This does not correspond
to what one finds in a real nucleus. It is well known,
for example from neutron resonance experiments, that
the levels of a nucleus are spread out, more or less
uniformly, over the finite interval of energy in question.

It is therefore necessary, at least in principle, to admit
the existence of perturbations which will remove the
degeneracy (presumably the only degeneracy which is
ordinarily left in a nuclear level is the degeneracy with
respect to the s component of the total spin). On the
other hand, in order to retain the main features of the
shell effect, it is probably necessary to assume that the
shifts in energy, which are caused by the perturbations,
are small compared to the spacing between the shells
in the Mayer-Jensen scheme. The perturbations which
will produce these eGects must presumably be looked
for in the residual part of the interaction between the
particles which is not represented by the effective
potential, Kq. (37). We have not considered these
important questions at all, but have proceeded on the
assumption that the residual interactions do not aGect
appreciably the average level density as obtained from
our calculation.

2. In Sec. IV we presented an order-of-magnitude
discussion of the shell effects which one may expect to
find in nuclear level densities. A detailed analysis of
the experimental data on level spacings derived from
neutron resonance experiments is being carried out at
the present time in collaboration with L. M. Bollinger.
The analysis proceeds on the basis of considerations
which are similar to those of Sec. IV, except that we
also take into quantitative account the fact that only
certain spin states are observed in slow neutron reso-
nance scattering. If we should find that the main
features of the shell eGects, as described in this paper,
are realized in nuclear level densities, we would infer
that the shell model retains a considerable degree of
validity at high energies of excitation ( 10 Mev).
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