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(d9/dE —1/Ep) is also reasonably consistent with this
value of Eo.
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An exact formal expression is derived which treats the initial and final states of a nuclear reaction in a
symmetric manner. The specific example treated is the (d,l) reaction. The Coulomb interaction is not
taken into account. Estimates of some of the terms of the general expression which is obtained provide
some indication of the reasons for the similarity of the final results of the various approaches to direct
interaction. One of the terms of the development includes eR'ects of compound-nucleus formation. Sugges-
tions are made for a single-particle model of the intermediate state. The process of exchange and heavy-
particle stripping is incorporated into the formalism in the Appendix.

I. INTRODUCTION

HE purpose of the present work is to derive an
exact, though formal, expression for the cross

section of a nuclear reaction df the stripping type. An
attempt has been made to strive for conciseness and
simplicity in the derivations. Rather than make specific
and detailed predictions, the principles behind the
argument are stressed and brieQy outlined. With this
aim in mind, the discussion has been restricted to the
(d, ts) reaction, though it would apply equally well to
the (d,p), (He', p), etc., cases. Furthermore, the Cou-
lomb interaction' has not been taken into account.
Inclusion of this effect does not present any serious
di%culties, but the results become somewhat cumber-
some to write down. For similar reasons, no detailed
treatment of spins or angular momenta has been
undertaken either. Appendix A presents a brief discus-

sion of the formal methods by which exchange and
heavy-particle stripping' can be taken into account.

The point of view in the calculations has been to
treat the initial and final states involved in the nuclear
reaction on an equal footing. The results obtained in

the present paper can be derived by a series of purely
formal manipulations from previously known expres-
sions. ' The present point of view enables one, however,
to suggest a reason for the success of the various
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approximate treatments of deuteron stripping' in fitting
experimental data. Finally, our results lead naturally
to suggestions for ways of including effects of compound-
nucleus formation on the cross section.

II. GENERAL EXPRESSION FOR THE
(d,n) CROSS SECTION

The notation of the present section follows in its
general features that of Lippmann and Schwinger' and
Chew and Goldberger. ' We consider only the outgoing-
wave solutions 4&+&, but suppress the superscript (+).
We also assume that when the energy Z appears in a
Green's function, it contains a small positive imaginary
part (E~E+ie, e)0). Such a choice' is equivalent to
a boundary condition which selects only outgoing waves
at indnity.

From here on, we shall always refer explicitly to the
(d,e) reaction. The complete Hamiltonian for this
reaction can be written in the form:

H =Hp'+Ht'=Hpr+Htr,

where Ho is the zeroth-order Hamiltonian, and H&

represents a "perturbation. " The superscripts i and f
refer to the initial and final state configurations. The
operators depend on all the variables of the system,
which consists of the target nucleus and the neutron
and proton in the deuteron. We have not written down
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the explicit dependence of H on these variables, but
this dependence is specifically implie'd.

The separation of H into Hp and H~ is different for
the initial and the final state. From the point of view
of the initial state, we have

the energy h. Use of Kqs. (9a), (7), and (4) gives

)I'i+G»(VNT+VPT)++G»(VNP VPT) (+ 4'i) )

pi G»(@ Hp )pi+G»(VNT+ VPT+ VNP VPT)+)

or
Hp' HT——+TN+TP+VNP, (2a) V=G»(VNT+ VNP)%=G»H) +. (10)

and
Hl VNT+ VPT

Finally, use of Kq. (9b) yields:
2b

and
Hp»=HT+TN+TP+VPT,

H)»= VNP+VNT.

(3a)

(3b)

We next define the Green's function and wave func-
tion corresponding to Bp by

In the above expressions, Hz represents the Hamil-
tonian of the target nucleus, T~ and TI the kinetic-
energy operators of the neutron and proton, and V~~,

Vpp the neutron-proton, neutron-target, and
proton-target interactions respectively.

From the point of view of the final state, Hp and Hi
can be defined as

G»=Z
jV

(12)

We write f» in the form

4=G»Hg»[1+GHg']P;,
or

G» (VNT+ VNP) P+G(VNT+ VPT)]pi.

In order to obtain the scattering amplitude, we consider
the final-state asymptotic limit in which there is an
outgoing spherical wave of neutrons and the proton is
bound to the nucleus with a binding energy —e&.

Gy can be explicitly. written as

(E—Hp')G;(E) =1, (4)
P»

——(2~) *e' &')N Z(TP). (13)

and
(E—Hp')4, =0. (5)

The part of G~ we are interested in is its projection
to the x(T,P) state:

Similar equations are used to define GJ and O', . The
functions 4'; are a complete set of eigenfunctions (E
can be taken to go over all possible eigenvalues) for
the problem involving a neutron-proton system and a
target nucleus which do not interact with each other.
Analogously, +y describes all possible states of the
system involving a target nucleus plus a proton which
have no interaction whatever with a free neutron. We
can rewrite Kq. (4) in the form

N»(TPN; T'P'N')

=x(TP))jxt(T"P")G (T"P"N; T'P'N'). (14)

y(T,P) is the specific bound state solution (T,P)
with eigenvalue —pP. N» has the explicit form

N»(TPN; T'P'N')

(E Hp»+ VpT V—N p)G, =1. —

Equation (6) leads immediately to the identity,

(6)
&&»' ~ (~N—rN')

=~(TP)x'(T'P') (2~) ' ' d'&', (15)
kN' —k"

where 3E is the nucleon mass and'
G; =G»+G»(VNP VPT) G, . — (7)

The equations satisfied by +, and the corresponding G,
both associated with the complete Hamiltonian H, are

(E H)4=0, (E H)—G=1. —(g)

h= (h'/2M)kN' —pp —pT.

In the asymptotic limit, 8 becomes

lim $»(TPN T'P'N')

(16)

alld
+=/;+G;H&'4,

%=P1+GHg'7f, .

(9a)

(9b)

The function f; above is a solution 4; of Kq. (5) for

We consider now a specific value of the energy, and
call it B. 8 is the sum of the kinetic energy of the
incident deuteron, the deuteron binding energy —e&,
and the target energy —ez.

The solution for 4' in which the incident deuteron
wave is explicitly present can be written in the two
forms

e,ikNrNM
x(TP) t lim

2+5' 'fN~oo
4'(T'P'N') (»)

The scattering amplitude E is by definition the
coeScient of y(TP) (ei"""N/rN) or

9"= (2)rh') 'M(To+ T'),

7 Corrections due to the recoil of a finite-mass nucleus are
neglected in Eqs. (15), (17),and (21).They can be included rather
simply, and do not change the basic argument. For example,
kN and rN simply become the wave vector of the relative motion
and the relative displacement of the neutron and residual nucleus
in the c.m. system.
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where

To= 4'g'Vxpg'd&=&fl Vxpli),

T'= Pyt(VNr+Hg~GHg')P;dv

=(fl VNr+Hi'GK'li).

The differential cross section is:

(19)

(20)

(21)

equation, as one is when Pf and P; are explicitly re-
quired, the potentials involved can be obtained by
simple differentiation. The only claim we make is that
Eq. (25) is in somewhat more transparent form than
(19), may be evaluated more simply than Eq. (19) in

specific cases, and together with Eq. (20) represents
the achievement of our aim: the presentation of
expressions in the amplitude for the (d,e) reaction in
which the initial and final interactions appear sym-
metrically.

III. DISCUSSION

01

do. M' nf—l(fl V~pl~)+&fl V~r ~~)
dQ (2mb)' v.

+&fl K'GK'li) l',

where ey and v; are the velocities of the neutron and
the deuteron respectively. ~

Equations (18)—(21) are derivable by a few formal
manipulative steps using the approach of Gerjuoy or
Tobocman. ' The stress here, however, has been on the
point of view of treating the initial and final states
symmetrically. Carrying this point of view further, we
observe that To can be written in the form:

To=(fl h —(Hr+Tx+Tp) li) . (22)

If we now assume that a shell-model picture of the
residual nucleus is valid, the initial and final states can
be written in the c.m. system as

P;= (2m) '@o(rN rp) -exp(2ik—~ (r~+rp))
Xexprikr rr]fr($), (23)

and
(Mr

Py =(2m) 'gpt(rp —rr)t'rt($) exp —ikr l
rr

&Mg

M+» l expL —ik~ r~j, (24)
Mr )

where kr and rr are the wave vector and coordinate of
the center of mass of the target, P represents the internal
coordinates of the target, and k~ and M~ represent the
c.m. wave vector and the mass of the residual nucleus.
Further, in the c.m. system, kr ———k& and k~= —kz.

T0 can now be considerably simplified by utilizing
the Fourier transforms of Pf and f,. In fact, To has
the form of a simple overlap integral between the
initial and final states, multiplied by an expression
which is a known function of momentum:

To=
l @+~r— Po' —2k' k~+2&yj l&fli) (25)

2M

Equations (19) and (25) are of course identical in
content. If one is given the solution to Schrodinger's

In order to clarify somewhat the role T' plays in
relation to the overlap integral To, it is useful to make
an arbitrary division of G into two parts. G can be
thought of as an expression of the form

+„(x)@„'(x')

E—E„
(26)

where the %„are solutions of the complete Hamiltonian
H. One can classify these solutions into scattering and
compound-nucleus (resonant scattering) solutions and
write G as a sum of two terms:

and
Ts=&fl V~r+Hi'GsHi'li), (20a)

T,=&flH, JG.H;li). (20b)

The term with the. function G8 can be conceived of
as corresponding to intermediate states of the deuteron-
target system for which, in the asymptotic limit, some
parts of the system are well separated, and all con-
stituent parts of the system are found near each other
only for a rather short time. More specifically, one can
think of the intermediate states as appropriately dis-
torted waves representing the scattering of deuterons
on the target, neutrons on the target plus proton, etc.
The term &f l Vzr l i) is naturally to be grouped with Gs.
Some rather crude and qualitative estimates involving
a plane-wave approximation to Gq, indicate that the
ratio Ts/To is of the order of 15% or less.

A possible suggestion for a model of compound
nuclear states would be to consider the various reso-
nance scattering terms which may arise in the deuteron-
target system. As in the analysis of n-particle decay,
a potential barrier of some kind is required for such
resonant terms. Two ways in which such a barrier can
arise in the (d,m) rea, ction intermediate states are
immediately apparent. One type of barrier is the
Coulomb barrier presented by the nucleus to the
deuteron, leading to resonant terms in deuteron scat-
tering. A somewhat less obvious eGective barrier can
arise in the following way: Suppose the proton of the

G=Gs+Gc.

Correspondingly, one can split T' into its constituent
parts, Ts+Tc.
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deuteron is captured by the target, and the residual
nucleus is left in a state of sufficiently high excitation
so that it can bind the neutron. This state would be
highly unstable. Decay to the ground state of the
residual nucleus can be expected to be accompanied
by re-emission of the neutron.

The net result of both of these processes is resonant
scattering: the probability amplitudes have large values
for small distances between constituents of the scatter-
ing system, in the language of stationary states.
Alternatively, one may say that in a deuteron-target
resonant scattering state, for example, if the incoming
deuterons have a kinetic energy near a certain value,
they will spend a rather long time in the vicinity of the
target. As is well known from the n-particle problem,
for energies far from the resonant energy, the state
essentially becomes an ordinary scattering state.

If the resonances are well separated, and a resonance
occurs at Eo, with an associated half-width F, G~ may
be approximated by

A(~)A'(*')
~c=

h —Eo+-2'iF
(28)

where iPO is the bound state eigenfunction near the
energy Eo, when the barrier is made infinitely high.
The way in which this approximation arises in a simple
specific case is illustrated in Appendix B. The term Tq
is expected to make a large contribution to the (d,N)

amplitude relative to To in the vicinity of a resonance.
There are two reasons for this: the energy denominator
in Gq becomes quite small, and the overlap of the
intermediate state wave functions with the potentials
and the initial and final state wave functions is large.

The above considerations may provide some expla-
nation for the agreement between experiment and the
various approximate calculations. '4 In one way or
another these approximations all consider only the
overlap integral To. The simple overlap integral of
To exhibits the behavior of the angular distributions.
In order to fit the experimental distributions in detail
it is customary to use a cutoff procedure which limits
the integration to the regions exterior to the nucleus.

The qualitative discussion above indicates that far
from resonances To would be expected to be the
dominant term. Further, the presence of the Coulomb
repulsion added to the fact that the other processes
constitute an absorption from the incident beam at
points inside the nuclear radius would lead one to
expect that the contribution of the core region to T0
may be small, at least for low energies.

In conclusion, we would like to emphasize that the
material in the present section is necessarily qualitative
and discursive. The developments of Sec. II are of
course independent of the present considerations, and

may perhaps find a calculational use quite aside from

the illustrations which we have used,

APPENDIX A

The processes by which a neutron other than the
neutron from the deuteron constitutes the outgoing
particle have been called "heavy-particle stripping. '"
This mode of reaction can be included formally by
incorporating the exchange wave functions for several
separate processes.

We illustrate the method by considering a (d,n)
reaction for the case of a target nucleus which is de-
scribed by a neutron and a core. For the sake of sim-

plicity we neglect all exchange processes which take
place-in the core. These processes can be considered,
but the expressions become somewhat cumbersome.

The initial state in this formulation is described in
somewhat more detail than in Sec. II. It consists of a
deuteron with a neutron labeled 1 plus the associated
proton; a core, and a neutron, labeled 2, which is
bound to the core.

The complete Hamiltonian for the process can be
written in the form

+C+TN(1)+TN(2) +TP+ VN(1) P+ VN(2) P

+VN (1)C+ VN(2) C+ VN(1) N(2) +VPC (A1)

As expected, (A1) is symmetric in neutrons 1 and 2.
The deuteron stripping process described in Sec. II

will be indicated in the Hamiltonian by the superscripts
1 and 2 for the initial and Anal states respectively (in
place of the superscripts i and f), with

+T=+C+TN(2)+ VN(2) Cl)

VN(1) T VN(1) C+ VN(1) N(2)1

VPT VN(2) P+ VPC.

Equations (2) and (3) become

+0 +T+TN(1)+ TP+ VN(1) P)

+1 VN(1)T+VPT)

(A2)

(A3)

Ho' HT+ TN(1)+ TP+ V P—T—)

ff1 VN(1) P+ VN(1) T.

, Deuteron stripping is the process in which the out-

going stripped neutron is the neutron initially in the
deuteron. Neutron 2 remains bound. The complete
solution 4(1,2) of the Hamiltonian H, written in a
form which makes the presence of the deuteron stripping
apparent, is

+(1,2) =G2(1,[2);1',[2'))
&& (II1'[1+G&1'))(1'»', 1",2")4'(1",[2")),

ol

4'(1,2) =G2 (1,[2); 1',[2'))H '(1',2', 1",2")0 (1",2").
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The indices of neutrons 1 and 2 are explicitly given in
Eq. (A5). The bracketed numerals indicate the neutron
bound to the core. 62 is the Green's function corre-
sponding to Hp'.

An exchange process is also possible in the present
case. Both the neutron and the proton in the deuteron
are captured in this process and neutron 2 goes out.
It should be noted that this exchange component
vanishes when one computes

lim %(1,2).

One can calculate the wave function in a form which
exhibits the exchange most clearly by formal manipu-
lations analogous to those involved in Eqs. (7)—(10).
The results, however, can be written down immediately
if one recognizes this process as the so-called "heavy-
particle stripping. " The deuteron captures the core C;
the neutron 2 is stripped o6 from the core and is left
free. In analogy with (A2), we require

to unity, the normalization of Y is chosen to express
the fact that two physical processes can now take place:
deuteron stripping and heavy-particle stripping.

As in Sec. II, we are once again interested in the
projection to the x(TP) state and want to consider the
coeflicient of y(TP)rN(» 'ex—p[ikN(»rN(») as rN&1) is
made large.

The scattering amplitude V' thus becomes

frt (1,[2))H12%'(1,2)— ))t rt (2,[1))H14%(1,2),

(A11)
&=(fi. (2) IH1'(1+GH1') I». (2))

(f2, (1) IH1'(1+GH1') Ii), (2))

Finally we note that the overlap amplitude, taking
into account the symmetry relation connecting H&' and
B~', becomes:

Tp [8+pr ——()24'/2M— )(kD' —2kD kN+2kN'))

HD TN(1)+ TP+ VN(»P)

UN(2) D= VN(1)N(2)+ VN(2) P,

VcD UN(1)c+Upc.

The analogs of Eqs. (2) and (3) are now

(A6)
f

X) frt(1,[2))[P;(1,[2])—f;(2,[1))). (A12)

The f)rst 'terms of (A11) can also be written by
keeping the antisymmetry in the anal state function

and

Hp =HD+HC+ TN(2)+ VN(2)C=Hp ~

Hi VCD+VN(2)D Hi i

Hp HD+HC+TN(2)+ UCD)

Hi VN(2) C+ VN(2) D

(A7)

(AS)

It follows immediately that the wave function 'can

be written in the form

11r(1,2) =G (2,[1];2', [1'))
X (H14[1+GH12)) (1 ~2 r 1 ~2")Pi(1",[2")), (A9)

or
4'(1,2) =G4(2,1;2', 1')H14(1',2', 1",2")4'(1",2").

64 is the Green's function corresponding to Hp'.
Incidentally we note that Hp' goes to Hp' under the
exchange of 1 and 2. It should be emphasized that
Eq. (A5), since it represents an exact solution to the
total Hamiltonian, contains the exchange solution just
obtained, but in a somewhat obscure form, as well as
other terms which are not of present concern.

The symmetry of the total Hamiltonian with respect
to the exchange of 1 and 2 must now be taken into
account. The 6nal form of the solution is

T(1,2) =4'(1,2) —%(2,1). (A10)

We have assumed that the functions 4 contain the
appropriate spin functions for 1 and 2. Thus Y is totally
antisymmetric for the exchange of 1 and 2.

For reasons which will be apparent shortly, (AS) is
the most convenient form to use for %(1,2) and (A6)
is the best choice for air(2, 1)'. If the 4"s are normalized

APPENDIX 3
To illustrate the behavior of a Green's function in

the vicinity of a scattering resonance, we consider a
simple example. We restrict ourselves to the 5 state
only. The Green's function equation is:

(d'/dr2+k' U)G(r r' ' k') =5(r r')—. (18)—
There is a corresponding equation for the wave function.

The boundary conditions on the Green's function are

lim G(r, r') =0, lim exp( —ikr~)G(r, r') = f(r&), (28)
r&~p ) )~oo

where r& is the smaller value, and r& the larger value,
of r, r'. The second of Eqs. (28) corresponds to the
outgoing-wave condition at infinity.

We define the function f(k, r) to be the solution of
the Schrodinger equation corresponding to (18) with
the properties8:

f(r k) ~ c—ikr (38)

R. Jost and W. Kohn, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 27, No. 9 (1953).

Tp fh+ pr —(——5'/2M) (ki)' —2ki) kN+2kN'))

X(fi, (2) I», (2))—I 6+pD —(&'/2~)
X (kD'+2ki) kN+ 2kN ))(f(2), 1I21, (2))

Since the spins are still contained in the wave
functions, the diGerential cross section for a specific
problem is obtained by averaging over the initial spin
states and summing over the final spin states.
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f(r,k) =f*(r, —k),

and de6ne the function f(k) by

f(k)=f(o,k). (48)

A function p, which vanishes at the origin and the
derivative of which is unity there, can be written in
terms of f in the form

p(r, k') = (1/2ik)Lf(k) f(r, —k) —f(—k) f(r,k)). (58)

The Green's function in terms of p and the f's is

G(" "'i k') =
I f( k)) '4'(r( k')f(r), k) (68)

As a specific illustration of the explicit form of G for
a given example, consider the square barrier:

0, 0&r&~
U(r)=' Up, u~&r~&u+b

.0, a+b &&r.

If we define

and define —,'F to be

4k/ )dEq
-'r =

i I exp( —2Uo'b)
Upa ~dk~ p

(138)

Under these conditions, f( k) can—be approximated by

f(—k) {Up~a(2kp) ' exp(Up'*+ikp)b)

&&(E—E y-'ir&, (148)

and the functions p(r, k') and f( k, r)—become

More precisely, we can take the condition for the
resonance energy Eo to be

sinkpa+ (ap~ 'kp coskpucoth~ap~b= 0 (118)

We limit outselves to the vicinity of the resonance,
i.e., to energies for which

(dE) 4kp

, exp( —2Uo'b), (»8)
Edk) Up~a

and

K= (O' —Up)&, A (k) = (co'szb ia k s—in~b), (88)
y(r, kp')

ko ' sinkor,

0,

0~& r~& u

u~& r,
(158)

8(k) =ifcosab —kk ' sin~b),

the solution f(r, —k) is of the form f(r, —kp)

—-,'U ' E(Uo'*+ 'ko)b)4(, k '),

0~& r~& a
e'"( +') LA (k) cosk (r—a)
+B(k) sink(r —a)), 0& r& a

f(r —k) =' e'"&~+P)[cosa(r —a—b)
+4 'k sine(r —a—b)), a&~r&&a+b

r)~a+b.

and
0&k'&&U„k,u—-n~,

).]
= (U,—kP)-:=Up~.

(108)

Consider now a resonant scattering state in the vicinity
of Eo=ko'. The conditions satisfied by a low-lying
resonant state are

.0,

If,we de6ne p(r, kpp) to be the normalized bound state
wave function in the limit as the barrier height goes to
infinity, then

P(r,kp') = (2/u)&sinkpr, 0&r&a

0,

P (r,kp') P*(r',kp')
G(r r': k')

E—Ep+-,'ir
(178)

The Green's function can be approximately written in
the form


