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The possibility of stable pear-shaped deformations of nuclei is treated by a perturbation theory starting
from the nucleon wave functions of a spheroidal harmonic-oscillator potential, without spin-orbit coupling.
The mixing of states of opposite parity tends to stabilize the deformation, and is opposed by the cohesiveness
of nuclear matter that favors a spherical shape. The former is calculated explicitly for a number of cases
and the latter is estimated by imposing a constant-volume condition in a simple manner closely analogous
to a more familiar treatment of spheroidal deformations. In this approximation the mixing of the states is
not quite enough to overcome the competing effect, so it merely "softens" the nucleus and does not stabilize
a pear-shaped deformation. The most direct effect of spin-orbit coupling is to bring states of opposite
parity closer together, tending to increase the mixing and make pear-shaped nuclei stable.

HE discovery by Stephens, Asaro, and Perlman' of
levels which appear to be odd rotational states of

even nuclei, in the neighborhood of radium, raises the
question whether and to what extent nuclei have pear-
shaped deformations superposed on the more familiar
spheroidal distortions. The original shell model en-
visaged nucleons moving in a spherical collective po-
tential, and important advances were made when it
was realized that many nuclei could attain lower
energies by taking advantage of the additional collective
degrees of freedom represented by ellipsoidal distortion. '

Even though it is not yet practicable to compute
nuclear binding energies with any accuracy from
assumed two-nucleon interactions, it is possible to
discuss the energy differences involved in spheroidal
deformation in an apparently meaningful way in terms
of nucleon energies in a three-dimensional harmonic-
oscillator potential, a 6ctitious or zero-order potential
intended to represent the average interaction of any
one nucleon with all the others. The spheroidal devia-
tion from the spherically symmetric case is accomplished

by making the frequency of the oscillation in the
s direction different from the other two, orl=cv2/co3.

. The specific question, whether a spheroidal deformation
is stable, can be discussed appropriately and simply by
omitting spin-orbit coupling. In this case, one 6lls
shells at the "false magic numbers" 8, 20, 40, 70, 112,
etc. The quantitative details, including settling the
rather close competition between prolate and oblate
shapes, may be expected to depend on inclusion of
spin-orbit coupling, as has been nicely done by Nilsson. 4

In either case, the distortion becomes large when
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several open-shell nucleons occupy states with wave
functions oriented so as to favor the same distortion,
especially when the number that can be favorably
oriented is increased by crossover of the levels between
the open shell and the next higher unhlled shell.

It is our purpose here to discuss the stability of
pear-shaped deformations in as simple a manner as
possible, without taking spin-orbit coupling into ac-
count, and in close analogy with the simpler explanation
of the ellipsoidal deformations. A pear-shaped defor-
mation of an originally spheroidal nucleus mixes single-
nucleon states of opposite parity, and this mixture
tends to stabilize the deformation, as has recently been
discussed by Strutinsky. The spin-orbit coupling which
we neglect has important eGects on the energy sepa-
ration of nucleon states of opposite parity. In making
the simplified analysis, we are thus asking whether a
pear shape would be stable in some nuclei without this
regrouping of the states caused by spin-orbit coupling.

I. PERTURBATION PROCEDURE

We make use of the simplicity of the separability of
harmonic-oscillator wave functions in Cartesian coordi-
nates. In these coordinates a simple modihcation of the
ellipsoidal harmonic-oscillator potential is made by
adding a term of the form

H'= Lkt(x'+y')+Ass'js, (&)

the ratio of the two constants being chosen in a simple
way to avoid shifting the center of mass. The Gctitious
potential, intended to represent the average interaction
of one nucleon with all the others, is then written

~= l&&L(x'+y')/&'j(& —gs)+Ls'ia'j(&+sgs)). (2)

The parameter g is a measure of the pear-shaped
.deformation of the potential, and its coefficients are so
chosen that the moment (about the x—y plane) of the
volume inside an equipotential surface remains zero,
That is, if the cylindrical radius (x'+y') is determined
as a function of s, to first order in g, by Eq. (2) with a

' V. M. Strutinsky, J.Atomic Energy (U.S.S.R.) 4, 150 (1956).
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constant V, then

(x'+y') zCh =0, (3)

the limits of integration being the values of s where
(x'+y')=0. For the spherical case a=b, the g-term
then varies with angle as Fa(cos8).

The 6ctitious potential gives us our wave functions,
and we hope in shell-model calculations that it also
gives nucleon energies whose diGerences are signi6cant
in calculating the total energies of the system, even
though we cannot go so far as to average over inter-
actions with these as trial functions and prove con-
sistency. With the added complication of a pear-shaped
deformation, we employ perturbation theory to obtain
the crude shell-model result for the energy that the
system of nucleons would have in the 6ctitious potential
(2). With g=0 the energy in this approximation is
simply the sum of the oscillator energies, and we treat
the term in g as the perturbation

single-nucleon energy in a way that amounts to "squeez-
ing" the closed shells.

In the case of the simpler ellipsoidal deformation,
a similar eGect occurs. There we may put cv&=or2

=co(1+8)&, a&i=id(1+8) ' so as to keep cogo~l=co'
constant and thus the volume within an equipotential
surface constant. The energy of a closed shell is then
proportional to ldi+l02+a&3=3co(1+Sb2+ ). Thus in
second order in 6 the squeezing in two dimensions is
not compensated in the energy by the greater relaxation
in the third, and this term in 82 provides a restoring
force to prevent the ellipsoidal deformations from
going too far.

With a fixed elliptical deformation, that is, with
co&/~& or a/b of Eq. (2) fixed, the introduction of the
term in g has a similar eQ'ect which comes in through
readjustment of E. We write E=(1+f)K', with E'
constant. For the sake of simplicity we again adopt
the constancy of the volume within an equipotential as
the criterion for constant over-all density of nuclear
matter, and obtain the volume inside an equipotential
of constant V by integrating:

(x'+y")
H(» —2Eg Q sl

nucleons g2 g&2

(4) I= (vol)a'/s—b'= (x'+y')ds (6)

This has the e6ect of mixing those unperturbed single-
nucleon wave functions of opposite parity which obey
the selection rules Ae=&1 and either Al=0, &2 with
Am= 0 or vice versa, or the selection rule n= &3 with
no change in I or m. Here E, m and e are the harmonic-
oscillator quantum numbers in the x, y, and s directions.

Having no diagonal elements, this term contributes
to the energy only in second order, through the familiar
formulas

(lmNI II(» Il m I )()=
l'm™ (+lmn ~l'm'n')

E Z lmm E'lmn

(5)

The erst summation extends over all states obeying the
selection rules and the second sum over all states insofar
as they are populated by nucleons in a given nucleus.
A term connecting two 6lled levels enters twice, pushing
the upper state upward and the lower state downward

by the same amount, so as to cancel in the Gnal double
summation. The net result is that the levels not too far
below the highest nucleon energy are depressed by
interaction with the un61led levels and this leads to a
net lowering of the energy.

Thus the mixing of states of the spheroidal nucleus
induced by the collective pear-shaped deformation
provides a tendency toward stabilizing such a defor-
mation. If this were the only eGect, such perturbation
would be expected to grow in any nucleus. It is, of
course, opposed by the cohesiveness of nuclear matter
and its tendency to maintain constant density. This
competing effect of the deformation raises the average

After expanding the denominator of Eq. (7), inte-
grating, and keeping terms in g', one obtains an expres-
sion for I which remains constant to this order if

f= (1/9)g%'/(1+/) = (2/9) («'/E') g' (9)

f here being treated as a small quantity of order g'.
This correction term f is different for each equipotential
and is thus a function of position,

f=f(xy)s) = (g'/9)L(a'/b') (x'+y')+s'7. (10)

The perturbation term in the Hamiltonian, the diGer-
ence between V and V with g=0, is then

-'s' (x'+y')

b2

3H'=-'E' g
6

(a) 2-(xa+y2) s2 -2

+g'I —
I +— =&&» +&&2) (11)

&3J b' a'

Here H(~)' is proportional to g and enters in second
order to give an eGect proportional to g', according to
Eqs. (4) and (5) but with E replaced by E'. Hl2)' is
proportional to g' and because it enters in 6rst order

with (x'+y') a function of s, from Eq. (2):
(x'+y') = (b'/a') LZO' —s'(1+Bgs)7/(1 —gs), (7)

where Zo~ ——2Va'/E', the limits of integration Z2 and Z,
being similar to those for Eq. (3), i.e.,

Z2 i——wZO(1~-', gZO).
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makes comparable contributions which, in fact, compete
with those of H~&~ in determining the stability of the
year-shaped deformation.

Repeated application of the recursion formula for
the normalized Hermite polynomials,

II. SPHEROIDAL DEFORMATION

As in a previous paper, ' we put

Z= g E( „——hl 2(u2 P(m+-', )+(a3 P(n+-', )7, (19)
nucleons

gives

2'W. (()= (.+1)-:& .(f)+.—:&.(t-), (12) and, on keeping volume constant by the condition
A&2'co3= constant, And the energy minimized when

(nl|-2ln) =-,'(2n+1),
( li"I.)=!L(+1)'+ 'j

(nl( In+1) =2-»(n+ 1)»,

(nil ln —1)=2-»n»,

(nil sin+1) =3-»I (n+1)/2g»,

(nlrb-3In —1)=3(n/2)»,

(nl('In+3) =2 *("+3)'("+2)'("+1)
(nil'ln —3)=2»(n —2)»(n —1)»n».

(13)

Products of these one-dimensional matrix elements
provide the three-dimensional matrix elements needed,
such as

(lmn I
Pg~

I lmn) = 4 (2l+1) (2m+1),

for the evaluation of H~2~' and

(14)

(lmnl Pf'll —2, m, n —1)=2»(l—1)'*l»n» (15)

used in evaluating H~&~'.

Combining three terms of the form f and three like
Eq. (14), we have

(lmn
I
H(2)'

I
lmn)

p=~2/~3=K(n+-')/z(m+2) (20)

The individual-nucleon levels E~ „are plotted as
functions of p for prolate deformations in Fig. 1. The
numbers along the left edge represent 1tt=l+m+n.
The numbers along the right edge are values of n. On
the lowest line, having X=I=1, for example, there is
a circle marked 8. This represents the equilibrium
deformation of a nucleus having 2=8, obtained by
putting four nucleons (two neutrons and two protons)
in the s-shell, E=0, and four in this level E=e= 1.
Equilibrium deformations are similarly indicated for
heavier nuclei having the values as A shown, always
with equal numbers of neutrons and protons. These
deformations indicated by circles assume the normal
order of populating the states, as for small deformations,
not taking advantage of any crossing-over of the levels.
The usual tendency is apparent for the deformations
to be largest in the vicinity of half-filled shells. lt will

A C03g

(p'$3 (l2+m')+4lm+5 (l+m)+4)
. 36 '

+2p(i+m+1) (2n+1)+3(n'+n)+23}. (16)

Similarly. , combining twelve terms of the sum in Kq.
(5) from terms of the form Pf and four from terms
involving f', one obtains

I

4

Here

Thus

g
I

9x 9—p' — +36(i+m+1)'
36)(8P2 lmn I 2p+1 2p —1

+72p(i+m+1) (2n+1) —120(n'+n) —44 . (17)

p=cD2/Mg n= p', p= (KM/A')'I,
X= (P+m')+ (1+m) (4n+3)+4(n+1),
~= (l2+m') —L(l+m) (4n+1)+4n j.

I I I

I.S R.O

0
2

dE= (a'&egg'/36P') (11p (i+m+ 1)(2n+ 1)
p'$1 5(P+m')+—Slm+. 4(l+m)+-,'

+(9/8)~/(2p+ 1)—(9/8) ~/(2p —1)3
—12 (n'+n) —40}. (18)

Fn. 1. Levels and deformations in spheroidal nucleus. The
numbers along the left edge represent E=/+m+n. The numbers
along the right edge are values of n. The numbers adjacent to
the open circles represent A.

'D. R. Inglis, Phys. Rev. 103, 1786 (1956).
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TABLE I. Contributions to the energy induced by a pear-shaped deformation.

180
184

188

192

264
268

272

284
292

Last level
in orig. shell

l. m, n

302
221
3 1 1

033
222
132

222
231

No. of
nucleons

in it

4
4

Crossover
level

l, m, m

0 0 6

0 1 5
006
006
015
105

007
007
222

0 0 7
0 1 6

No. of
nucleons

in it

4

4
4

Z(lmm j H(2)'[Lme)
(in units

of houg'P ')

465.0
466.7
522.8
473.6

573.9
479.4

615.3

844.4
857.5
924.2
867.5

935.6
922.8
932.5

1115.0

Q(2)
(in units

of hcag2P~)

—388.9—390.3—468.3—394.6
—518.6
—396.7

—570.0

—769.4—775.0—885.3—773.9
—885.6
—791.7—798.3

—1042.8

(in units
of heugIP 2)

+76.1
+76.4
+54.5
+79.4

+55.3

+82.7

+45.3

+ /5. 0
+82.5
+38.9
+93.6
+50.0

+131.1
+134.2

+72.2

be noted, however, that under the population condition
here imposed, the larger shells are less easily deformed
because of the greater number of filled shells involved.

The large deformations of certain heavy nuclei are,
of course, known4' to be the result of repopulation of
the states to best energetic advantage made possible
by the crossover of the levels from diferent originally
degenerate groups. Transferring a nucleon from a level
sloping upward (toward the right) in Fig. 1, to a level

sloping downward, provides a force tending to distort
the nucleus further. Deformations obtained, for some
sample values of atomic number A, after repopulation,
are indicated by crosses ( x) in Fig. 1. All levels below
the level on which the (&) is drawn are considered
6lled, and enough nucleons are in the level indicated
to make up A (proton and neutron numbers being
again equal). It is seen that one does indeed obtain
considerably larger deformations in this way, and these
examples provide cases in which to examine the
stability of a further pear-shaped deformation.

III. PERTURBATION PROCEDURE APPLIED
TO SPECIFIC CASES

Application of the perturbation procedure described
above to various examples of nuclei in their equilibrium
spheroidal deformations shows that they are stable
against a further pear-shaped deformation. The positive
contribution to the energy from H(2)' is in each case
greater in magnitude than the negative contribution
from H(~)', as shown in Table I.

IV. INTERPRETATIONS OF ODD ROTATIONAL
STATES OF EVEN NUCLEI

Odd rotational states could occur at low energy in
even nuclei either because a pear-shaped deformation is
stable or because the nucleus is "soft" to pear-shaped

~ S. Gallone and C. Salvetti, Nuovo cimento 10, 145 (1953).

the rotation function P„' depending on the angles e
giving the direction of the positive s-axis, and the shape
factor depending on the spheroidal parameter p and
the pear-shape parameter g. The sign of g determines
which end of the pear is toward the positive s-axis.
The wave function is invariant to simultaneous rotation
through x and reaction in the x—y plane. Thus even
rotational states go with shape functions even in g,
odd with odd.

The existence of even and odd functions f,h, ',=f,(g)
is very similar to the familiar situation in the hydrogen
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FIG. 2. Rotational levels with stable or unstable asymmetry.

deformation about a stable spheroidal shape, making
possible a low-energy surface vibration of this sym-
metry.

If the pear shape is stable, the situation is similar to
one in the molecular spectroscopy of methane, for
example. An inversion of the ends of the pear is possible
by passage through a potential barrier represented by
the higher energy of the spheroidal shape. This is
illustrated by the potential curve on the left side of
Fig. 2. Ke assume, as usual, that the wave function
is factorable:
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molecule ion wherein the electron may, in a Heitler-
London perturbation treatment, have an initial wave
function concentrated on either ion, the two combining
into odd and even functions. Kith fixed-axis, a nucleus
so stably pear-shaped as to have a high potential
barrier at the symmetric shape may have a solution

f, (g) with "the':fat "endaof the pear either along the
positive or the negative s-axis, as suggested in Fig. 2.
With an easily penetrable barrier, these combine to
make the two functions similar to "molecular orbitals, "
one even and one odd in g. As usual, the odd function
has the higher energy, the energy difference being
proportional to the frequency of oscillation between the
two positions by penetration of the barrier.

In this picture, one expects a ladder of even rotational
states, J=O, 2, 4 ., and another ladder of odd states
J=1, 3, . not in their normal positions between
even states, but displaced upward by an amount that
becomes small only if the pear shape is made quite
stable by a rather high potential barrier. Presumably,
then, the pear shape becomes most stable in the
neighborhood of radium, where the displacement is
observed to be least.

The alternative interpretation is based on the nucleus
being merely "soft" to pear-shaped deformation, as
represented on the right side of Fig. 2. The potential
function is of course symmetric in g, and initially
parabolic for small g. The strength of the restoring
force helps determine the frequency of oscillation, and
the displacement between successive vibrational levels,
which are of course alternately even and odd in g.
The frequency also depends on the inertial behavior of
the nucleons in readjusting to the change of shape'

' D. L. Hill and J. A. Wheeler, Phys. Rev. S9, 1102 (1953);
D R. Ingli. s, Phys. Rev. 97, '101 (1955); A. Bohr and B. R.
Mottelson, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
30, No. 1 (1956); S. Moskowski, Phys. Rev. 103, 1328 (1956).

which makes quantitative comparison with experiment
dificult. On the zero-vibrational level is built a band
J=O, 2, 4, ~ and on the erst vibrational level the
odd band J= j., 3, - -, just as in the previous discussion,
but now there is also an even band built on the second
vibrational level, etc., providing the possibility of
experimentally distinguishing between the two inter-
pretations. The present experimental situation does not
appear to be decisive. The mechanism by which the
moment of inertia appears diferent for the odd and
even bands is not clear in either picture.

V. CONCLUSION

The result of our second-order perturbation treatment
is thus to be interpreted as providing merely a softening
of the nucleus to pear-shaped deformation, which,
however, might still account for the existence of the
fairly low odd bands observed.

Because this calculation avoids the complexity of
spin-orbit coupling, it provides what may be considered
a lower limit to the amount the total energy is depressed
in second order by the mixing of the states. Spin-orbit
coupling brings single nucleon states of opposite parity
closer together (thus establishing the "magic numbers").
This decreases some of the relevant energy denomi-
nators and increases the amount of depression of the
total energy. We have shown that the depression
calculated without spin-orbit coupling is not quite
equal to the competing positive contribution to the
energy, but in some cases almost. It is thus entirely
possible that a more complete calculation would show
that certain nuclei have a stable pear-shaped deforma-
tion, and that the odd rotational states of even nuclei
are to be interpreted accordingly. This also leaves it
not implausible that fission should proceed by asym-
metric passage of the "saddle. "


