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The energies of levels at 1.34, 1.46, and 1.55 Mev
are in excellent agreement with the values recently
reported from measurement of y radiation. ' If proton
groups (A) and (8) do not correspond to states in

fluorine, the upper limit of the cross section for excita-
tion of other possible states is 0.1 mb/sterad.

DISCUSSION

Confirmation has been obtained for states at 6.06,
6.14, 6.93, 7.13, and 8.88 Mev of excitation in 0".
These include three of the four states usually used to
set up the n-particle model. An extensive discussion of
the 8.88-Mev state and its implications in relation to
the o,-particle model has been given by Wilkinson et al.'
Excited states at 1.34, 1.46, and 1.55 Mev in F" have

been confirmed by inelastic proton scattering. No con-
clusive results were obtained regarding a state in F"at
2.22 Mev, and no evidence was seen for a state at 0.9
Mev."The results presented here are in good agreement
with those obtained for 0" and F" by Squires et al."
The state at 1.98 Mev in 0"has been observed by in-
elastic proton scattering, but no evidence was seen for a
state at 2.45 Mev. These results might be interpreted
as meaning the isotopic spin of this state is not the same
as that of the ground state. However, the contradictory
results of this and the other recent experiment" of
Ors+d scattering leave the isotopic spin of the 1.98-Mev
state in 0" in question.

"Squires, Bockelman, and Buechner, Phys. Rev. 104, 413
(1956).
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The impulse approximation expansion is applied to stripping processes. We find that the first term of the
impulse expansion for the stripping problem is identical with the first term of the Born expansion. It is
suggested that the impulse approximation argument may provide a better justification for the usual
treatment of stripping and pickup reactions than does the Born approximation argument.

1. INTRODUCTION

HEORETICAL analyses developed to describe
deuteron stripping and pickup reactions' have

had a large measure of success. These treatments all

contain two central assumptions. It is first of all

assumed that the interactions giving rise to the stripping
and pickup reactions all take place in the surface or
outside region of the target nucleus. This is called the
cutoff assumption. Secondly, it is assumed that these
interactions can be treated by Born approximation.
It is the second of these two assumptions which we

wish to discuss.
It is, at first sight, surprising that the kind of inter-

actions involved in stripping reactions can be satis-
factorily treated by Born approximation. It is well

known that when these same interactions are involved

in elastic scattering processes they cannot be treated by
Born approximation. We shall show that the Born

* Supported in part by the U. S. Atomic Energy Commission.

t Now at the Department oi Physics, The Rice Institute,
Houston, Texas.

' G. F. Chew and M. L. Goldberger, Phys. Rev. 77, 470 (1950);
S. T. Butler, Proc. Roy. Soc. (London) A208, 559 (1951);A. B.
Bhatia et at. , Phil Mag. 43, 485 (1952); P. B. Daitch and J. B.
French, Phys. Rev. 87, 900 (1952); E. Gerjuoy, Phys. Rev.
91, 645 (1953); W. Tobocman, Phys. Rev. 94, 1655 (1954);
R. G. Thomas, Phys. Rev. 100, 25 (1955).

approximation expression for the transition amplitude
can be derived by means of an impulse approximation. '
The impulse approximation would appear to be better
justified for the stripping problem than the Born
approximation, but for neither case has any quantita-
tive estimate been made.

II. BORN APPROXIMATION TO STRIPPING

Consider a system consisting of three particles which
we denote by ts (a neutron), p (a proton), and 1V (a
nucleus). Let rt interact with p by means of potential
V „, and let V~„represent the interaction between E
and p. For simplicity assume there is no interaction
between E and e. Let T= T„+T~+Trr be the kinetic
energy operator. The Schrodinger equation for this
system is then

(&o—T Vtvr Var)go= 0——

To discuss the solutions of the above equation we

introduce the solutions of the Schrodinger equations for

2 G. Breit, Phys. Rev. 71, 215 (1947); Q. F. Chew, Phys. Rev.
80, 196 (1950); G. F. Chew and G. C. Wick, Phys. Rev. 85,
636 (1952);J. Ashkin and G. C. Wick, Phys. Rev. 85, 686 (1952);
S. Epstein, Phys. Rev. 86, 836 (1952); G. F. Chew and M. L.
Goldberger, Phys. Rev. 87, 778 (1952).
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(E, T —Vi—v„)(p =0,

(E, T —V—~)x =0,

(E, T)0 —=0,

and the corresponding Green's functions,

(2)

(3)

(4)

G.= lim (E. T —V~„+—ie) ',
6~0

g.= lim (E, T V„—+—ie) ',
e-+0

the system in the absence of one or more of the inter-
actions,

III. IMPULSE APPROXIMATION TO STRIPPING

We shall construct an integral equation for iso having
the impulse approximation wave function for the
inhomogeneity. Iteration of this equation yields the
impulse approximation expansion. We start by intro-
ducing the integral equation associated with Eq. (3),

7t =8,+g V „X„(scattering states), (12)

x =g V ~y, (bound states). ' (13)

We next introduce the operator

g, = lim (E, T+ie)—'
e~o

The transition amplitude for scattering into the
state q o (elastic scattering, inelastic scattering, or
stripping) is given, by

To evaluate A for stripping, the cutoff assumption
requires that we limit the integration over r„, the
separation of p and E, to the range R(r„(~, where
E. is the range of V~„. In addition we make the Born
approximation of replacing po by 7to, the wave function
for the incident deuteron beam. If we want to do a
little better we can use the distorted wave Born
approximation by replacing yo and go with the wave
functions go and xo, respectively. These wave functions
are defined by

(Eo T VNy Vipn) po (9)

(Eo—T V, VorD)X—o'= o, — (1o)

where the potentials Vp„and V~D are chosen so as to
give the right elastic scattering. Vp is taken to be a
function of the separation of the neutron from the
center of mass of 1V and P while VsrD dePends on the
separation of E from the center of mass of e and p.

In. order to estimate the difference between Po and

go we make a perturbation expansion. of fo in which

xo is the leading term. This expansion comes from
interating an integral equation for iso in which i3o is
the inhomogeneous term.

fo Xo+No(Vivy VivD)4'oy (11)
=Xo+No(Vsi„VivD)Xo+—

where

No ——lim (Eo—T V„„—V~D+ie) '—

We see that xo will be a good approximation to Po if
we can And a V~D which essentially cancels V~„.
This is possible only if V~„ is slowly varying over
distances of the order of the average separation of the
neutron and proton in the deuteron. This condition is
not fulfilled for the stripping of deuterons by nuclei.

whose Hermitian conjugate will play an important
role in the impulse approximation expansion. We use
the subscript u to denote the quantum numbers of
the scattering eigenstates of T+ V „while the subscript
n is used to denote the quantum numbers of the bound
eigenstates. Comparison of Eq. (14) with Eq. (13)
leads to the result

Consequently, the Hermitian conjugate to Q~ is just

I'= [Q,Qt)= [0,{gV„„}j. (19)

We shall be concerned with two cases. The 6rst
case will be that arising when a neutron is incident on
a bound state of the nucleus and proton. The wave
function describing this situation will satisfy the follow-
ing integral equations':

Po= v o+GoV,fo, (20A)

$0 JOVE @o No(Viv VND)fo (20~)

Here yo is the wave function for the incident beam.
The second case that interests us will be that which
results when a deuteron is incident on a nucleus.

' B. A. Lippman and J. Schwinger, Phys. Rev. 79, 469 (1950);
M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398 (1953);
S. Sunakawa, Progr. Theoret. Phys. Japan 14, 175 (1955).

4 The wave function g, as well as 8, q, and p, depends on the
coordinates of all three particles. The adjective "bound" and
"scattering" applied to x refers to the dependence of g on the
separation of the neutron from the proton.

e B. A. Lippmann, Phys. Rev. 102, 264 (1956); L. L. Foldy
and W. Tobocman, Phys. Rev. 105, 1099 (1957).

0 is thus the wave matrix for T+U„~. Since the 0
form a complete set while the y do not, we have

QtQ=Q —{gV „}0=1,
and

QQt=Q —0{gv„„}=1—p I7t )(x I=—1 I'. (18)—
I', the projection operator on to the bound state eigen-
states of T+ V„„,satisfies the relation
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The integral equations for this case are

$0 XO+QOV&y$0 Xo+$0(Vxy V»)$0y (21A)

Po= GoV,fo, (21B)

@=I'A+Q(GsV r (gV p)N'o. —(24)

Here Pfs asymptotically represents the incident
deuteron beam plus the elastically scattered deuterons
plus the inelastically scattered deuterons. Since the
inelastically scattered deuterons are relatively un-

important, we can replace I'ps by Xs, the wave function
for the incident and elastically scattered deuterons,
without making much of an error. Thus

fo=Xo+Q(GoV y (gV n))Xe+ ' (25)

Just as in the previous case Qpo was the impulse
approximation to pe, here we regard Xe as the impulse
approximation to fe.

where xo is the wave function describing a plane wave
of deuterons and nuclei.

Note that one integral equation does not uniquely
determine the wave function of a three-body system.
We can add any solution of Kqs. (21) to a solution of
Eqs. (20) to get a second solution of Eq. (20A) . Iteration
of any one particular integral equation, if the resulting
series converges, will give a particular solution of
the equation.

For the moment consider the case where we have
neutrons incident on bound protons. We can combine
Kqs. (18) and (20A) to get

(1—E+Q(gV „))Ps=Q(ye+&oV»fe),

go=&4o+Qvo+Q(GsV y (gV p))—A. (22)

From the definition of 0 we see that Qq 0 is the expression
which results from making a Fourier analysis of qo
and replacing each plane wave in the separation of e
and p by an exact scattering wave function for e
and p. Thus Qpe is the impulse approximation to Ps
for this case. I'fe is the part of fe which asymptotically
represents deuterons formed by pickup. P1t e is negligible
compared to 0go so we have, to a good approximation,

Po=Qyo+Q(GoV~„{gV~~))Qy—e+ . (23)

Thus we have before us the structure of the higher
order corrections to the impulse approximation.

The above case was considered for purposes of
illustration. Our primary interest is the case where we
have deuterons incident on nuclei. Combining Eqs.
(18) and (218) gives

(1—E+Q(gV „))fo=QGoV„Po,
or

The terms which we have neglected on the right
sides of Kqs. (23) and (25) can be written I'So(VN~—V»)fe. These are not neglected simply on the claim
that V~„—V~~ is small as in the Born approximation,
but also because of the presence of the projection
operator I'. We have pointed out that

+$0(VNy VND)$0

represents the inelastically scattered deuterons and is
thus negligible in comparison to the incident and
elastically scattered deuterons. However, this interpre-
tation has meaning only in the asymptotic region,
that is to say, in the region where Vz„—V&z&=0.
However, as a consequence of the cutoG assumption
alluded to in the introduction, we use only the asymp-
totic part of Ps, the part where r„)R Thus .the cutoff
assumption plays a role in justifying the impulse ap-
proximation for stripping.

IV. DISCUSSION

We have demonstrated that the distorted wave Born
approximation and the impulse approximation applied
to the stripping reaction give the same result. But the
conditions for the validity of these two approximations
are quite diGerent. In both instances it is necessary that
V~~ be slowly varying, but in the Born approximation
the rate of variation of V~„ is compared to the ratio
of the binding energy of the deuteron to the average
radius of the deuteron while in the impulse approxima-
tion we must compare the rate of variation of V~„
to that of V „.

The nuclear potential V~„varies by about 50 Mev
in a distance of 10 "cm while the V„„interaction is
usually represented by a potential having a range of
about 10 "cm and a depth of several thousand Mev.
Clearly the condition for validity of the impulse
approximation has a better chance of being satis6ed
than that for the Born approximation.

The validity of the impulse approximation for elastic
scattering of low-energy neutrons incident on protons
bound in molecules has been veri6ed in direct numerical
calculations by Breit and Zilsel' and by Lippmann. '
The situation for intermediate incident energies and
nuclear binding has not been investigated.
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