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The cross section for the scattering of electrons by hydrogen atoms at zero energy has been calculated
by using a variational principle of the Hulthen-Kohn type. For singlet scattering we have used a three-
parameter trial function which reduces to an H wave function at small electron separations and which
has the correct asymptotic form. To calculate triplet scattering we use an antisymmetrized version of the
same trial function. The effective range for singlet scattering is determined from the scattering length
already calculated and the known value of the electron attachment energy for H . For triplet scattering
we use an energy-dependent trial function to determine the effective range. Using the calculated values
of the above parameters, we find the cross section as a function of energy for the range 0—0.02 volt.

l. INTRODUCTION we know something about the polarization of the atom
by the incoming electron, namely, that a negative
hydrogen ion exists with an attachment energy of 4 of
an electron volt. This experimental fact has two con-
sequences. The 6rst is that this bound state so close to
zero energy will dominate the zero-energy scattering
cross section. The second conclusion is that the wave
function of H should be a good description of the
system of two electrons plus a proton when all three
particles are close together. Such a wave function should
be particularly useful in a variational principle.

In Sec. 2 we discuss the problem we are going to
solve and the variational principle we shall use. In Sec.
3 we shall give the results for singlet and triplet scat-
tering at zero energy using two different trial functions.
In Sec. 4 we discuss the way in which the known results
of the singlet and triplet scattering lengths and the
attachment energy of H enable us to extend our results
to higher energies. In the final section we compare our
work with the previous literature.

HE problem of the scattering of electrons by
hydrogen atoms has a certain intrinsic interest

because of the high hydrogen concentration in stellar
atmospheres. Just as important is the fact that this
problem serves as a sort of model for the general
problem of the scattering of electrons by atomic
systems. Any approximation methods one devises for
the more dificult problems of the scattering by heavier
atoms can be tried out with hydrogen, and the results
can be compared either with experimental data or with
more accurate calculations that can be made for this
three-body system.

Some experiments have been done on the elastic scat-
tering of electrons by atomic hydrogen, ' ' and numerous
calculations have also been tried. ' Unhappily„ the exper-
iments do not go down to energies below 1.5 electron
volts, and none of the calculations attempted has been
specifically designed to take advantage of the known
properties of the proton plus two-electron system where
the total energy of the system is approximately equal
to the binding energy of the hydrogen atom.

The difhculty in dealing with the low-energy scat-
tering of electrons by hydrogen atoms is that none of
the interactions can be considered small; thus, no per-
turbation procedure is possible. In addition, it is dif-
ficult to take into account the polarization of the
hydrogen atom by the incoming electron. The central
idea of this paper is to take advantage of the fact that

2. VARIATIONAL PRINCIPLE

In order to solve the problem of the scattering of
electrons by hydrogen atoms, we must solve the di8er-
ential equation,

M (rr, rs) =0,

subject to the boundary condition that as rl or I'2 goes
to infinity, the solution should consist of an incident
plane wave in one particle times a bound state function
of the other, plus an outgoing spherical wave in the
coordinates of one of the electrons times a bound state
wave function in the coordinates of the other. The
operator L is

(2)
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In (3), where E, represents the normalized angular wave
function of relative motion, X; is a normalization
constant so chosen that ~n;s~' represents the prob-
ability flux of the incoming electron, and p; is a bound
state hydrogenic wave function. The superscript p,

represents a possible mode of collision. In our case,
there are two possible modes of collision, one in which
electron 1 is incident, and the other in which electron
2 is incident.

In the particular problem we are considering, namely,
the scattering of electrons by hydrogen atoms near
zero energy, the index i runs over 1 and 2. Only the
zero angular momentum wave function need be con-
sidered. The coefFicients o,l' and n2' are equal to zero;
the coefficient Pt' is connected with the amplitude for
direct scattering and Ps' is connected with the amplitude
for exchange scattering. The S matrix is defined as the
matrix connecting n;i' and P,&, as follows:

In the representation we have used, the S matrix is not
diagonal. From the symmetry of our problem, we know
that Sll=522 and that Sl2 ——52l. In order to diagonalize

S, we must transform it with the matrix

1 (1 1i
v2 (1 —1)

This means that the basis for the diagonal repre-
sentation of S is

1 (0u&+@&'&y

v2 4+&'& —+&s&)

These are the same linear combinations which are
required to satisfy the Pauli principle. We now intro-
duce the proper phases as the diagonal elements of 5,
such that

~2i81 5 —~ i5211 7 22 (7)

These considerations are relevant to our problem in the
following way: in order to introduce phases for the

' W. Kohn, Phys. Rev. 74, 1763 (1948).

is equal to rl —r2. The mass of the proton is taken to
be infinite.

Since we shaB be interested in the scattering at zero
energy, we need concern ourselves only with the s phase
shift. However, the potential in (1) is not spherically
symmetric hence there is some difficulty about intro-
ducing a phase shift. The method for doing this has
been discussed by Kohn4 and we shall repeat the
relevant portions of his paper as applied to the problem
at hand.

The asymptotic form of the wave function can be
written as —isirie

es=P E;P,y;~ n,'

scattering problem, two s phases are required, one
representing the phase shift for singlet scattering, and
the other for triplet scattering. The former is charac-
terized by a symmetric wave function in coordinate
space, the latter by an antisymmetric one.

The variational principle used here is one that has
previously been derived by Kohn4 or can be derived by
a simple generalization of the method used by Kato. '
It states that if we define

X—=k COtb= k COtb' — 0 'L4'd7. ldr2, (8)

where 8' is the trial phase shift, then X is stationary
with respect to the variations of trial functions 4'
subject to the condition that their asymptotic form is

—[coskrs+k cot6' sinkrs j4 o(rr); (10)
(8~)-'* r,

the plus or minus sign obtains, depending on whether
we are considering singlet or triplet scattering. There
are two separate stationary expressions of the form of
Eq. (8) which have to be separately calculated with
symmetric and antisymmetric trial functions, respec-
tively.

3. RESULTS FOR ZERO-ENERGY SCATTERING

As we have explained in the introduction, the trial
function used in the stationary expression (8) for
singlet scattering should reduce to an H wave function
when the electrons are close to one another, and to the
correct asymptotic form (9) and (10) when they are
separated. We first concentrated on zero-energy singlet
scattering and used a wave function of the form

'O'=A(e ~"'e e"')

(1—ev~s)'

+ g (1 e 7r&)+ e—rl-
(8s-) l r2 - 7r'

(1—e
—

vari) s

B(1 er'i)+ ——e ".
(8~) l rl

The n and P that we chose are the best ones for H and
have been determined by Chandrasekhar' to be
a=1.03925 and P=0.28309. It probably would have
been better to have left the rr and P as free parameters,
but this would have made the calculation very cumber-
some. By taking the limit of (9) as k—&0, we can see

' S. Chandrasekhar, Astrophys. J. 100, 176 (1944).

1 1—[coskri+k cot8' sinkrt)gs(rs), (9)"i-" (8~)-: r,

Qs(r) being the ground state wave function for hydro-
gen. Its asymptotic form, where r2 goes to infinity, is
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Singlet
Triplet

X0

—0.1226—0.4251
0.12
0.46

0.0414
0.00557

—0.1282—0.4256

TAsLE I. Results for singlet and triplet scattering. the results. Besides, the triplet cross section seemed to
be quite small at zero energy.

The limit as k~p of k cot8 equals —1/a, where a is
the scattering length. The singlet and triplet cross
sections in terms of the scattering lengths are

that B represents limi s(k cot8'). A, B, and y were the
parameters which were varied. The actual procedure
we used was to substitute (11) into (8), and then to
carry out the integrations. When this was done, k cot5
was expressed as a function of A, 8, and y. Ke then
eliminated A and 8 by the relations

c) (k cot6)/r)A =0= r)Xp/r)A,

c) (k cotb)/r)B =0= r)Xs/r)B,
(12)

where Xs is the stationary value of lim& s(k cotb).
Having eliminated two of the parameters algebraically
we plotted Xo as a function of p and determined the
stationary point from the plot. The numerical calcu-
lations are quite involved and were carried out with the
aid of Burroughs E-101 computer.

For triplet scattering we have no guide, as we do in
the singlet case, as to what would be an intelligent
choice of trial function, but since we do not expect that
the triplet scattering will contribute much, we have
merely taken the antisymmetric combination of the
same one-electron wave functions that has been used
in (11).The results of the calculation are summarized
in Table I.

Our next attempt was to improve the singlet cross
section calculation by taking a more complicated H
wave function, one that depends explicitly on r». Our
trial function to be used in the stationary expression (8)
1s

The results obtained for singlet scattering by using this
trial function are summarized in Table II.

We did not attempt to complicate the calculation
for triplet scattering since we have no reason to believe
that the more complicated trial function would improve

TABLE II. Results obtained for singlet scattering by
using r 12-dependent trial functions.

@'=g(]+eris)$e ~"e ~~2+.e ~~~e ~~~j
1 (1—e

—&"&)' 1
+ B(1 e~"')+ — —e 'i

(8s)' 7l

1 (1—e r"')'11
B(1—e ~~i)+ —e ~s. (13)

(8~)-: f] ji

c=0.31214, rr=1.07478, P=0.47758.

Q, =4ir a,', Q, =4ir aP.

The total cross section is given by

Q=sQ +~Qi. (15)

The results for the total cross section are given in
Table III.

Thus it is seen that the triplet cross section contri-
butes only about 20% of the total at zero energy, and
that the inclusion of an explicit r» dependence in
singlet trial function lowers of the cross section by
about 10%.

TABLE III. Total cross sections at zero energy.

Using trial function Eq. {11} 66.54 7i-ap2

Using trial function Eq. (13) 60.00 ma02

3g

16.61 7I ap' 83.15 71-ap'

16.61 71 ap2 76.61 m'ap2

eGective range formula holds for each of the phase shifts,

k cotbi, ,= — +sroi, o,&s,

G(, g

triplet
t

1

effective range.
singlet

(16)

Again, by arguments similar to those used in the one-
body problem, it is possible to show that in the event
that a negative ion exists, there is a relation between
the attachment energy, the scattering length and the
effective range given by

e= (1/u)+arse', e=attachment energy. (17)

Having now calculated the scattering length, we
could calculate the effective range if we knew the
attachment energy for H . The best value is one which
Hylleraas and Midtdal' have found, as corrected by
Branscomb, ' to give 0.756 electron volts. In our units
this is &=0.236. Substituting this and the previously
calculated value of a, into (17), we find the values for
ro, as given in Table IV.

4. RESULTS NEAR ZERO ENERGY

By a slight generalization of the argument used in
potential scattering, ' it is easy to show that in the
three-body problem which we are considering, the

Singlet —0.1291 0.07 0.0308 —0.1472

6 J. Blatt and V. W. Weisskopf, Theoret~ca/ Nuclear I'hys~cs
(John Wiley and Sons, Inc. , New York, 1952), pp. 57 ff.

7 E. A. Hylleraas and J. Midtdal, Phys. Rev. 103, 829 {1956).
L. Branscomb (private communication}.
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TABLE IV. Singlet effective ranges. 0 in unity of
2roo

Trial function Eq. (11)

4.04ap

Trial function Eq. (13)

3.85ap

Since the only bound state of H is a singlet state,
we have no similar argument which would enable us to
determine the triplet scattering length. What we have
done in this paper is to use an energy-dependent trail
function of the form

76—

75—

~"&e e"&+e e"&e 7"&7

1
+ —Lcoskr~(1 —e

—&"')'
(g-)-:

1
+k cot5' sjnkr&(1 —e ~'~)7—e '2

74—

O.OI
I 0.02I 0.03l

k

0.04I

1 1
+ —

I coskrp(1 —e—&"&)'

(Ss.)l rp

+k cot5' sinkrp(1 —e &'')7—e ' (18)

BX/Bk' =+-,'r p. (20)

We then expand the result in powers of k', and obtain

X=k cot8= f(A,B,y)+g(A, B,y)k'. (19)

From (16), we note that

FIG. 1. Total cross section es wave number.

obtain the results for ro as given in Table V. We see
that this gives a value of the eRective range in the
case of singlet scattering which is about 30% smaller
than the more accurate calculation using the known
attachment energy. It is to be expected that the latter
method of calculating the eRective range is not quite
as accurate since the trial function we use becomes
worse as we proceed away from zero energy. As we
have said before, since the triplet scattering is rela-
tively unimportant, we feel that the error incurred is

If we now take the derivative of (19) with respect to k'
and take the limit as k' approaches zero, we have

where the subscript 0 indicates that the value of the
functions is to be taken when k'=0. But the extremal
nature of Xo means that we have evaluated it at the
points where

(~f/~A) o= (~f/~B) o= (~f/~v) o=o (22)

Comparing (20), (21), and (22), we see that

(BX/Bk') p g(A, B,y) p ',rp—— ———(23)

Thus, using an energy-dependent trial function we

TABLE V. Singlet and triplet effective ranges.

I + I

(gf q tgA) tgf q

EBk') p EBA) p (Bk') p EBB) p EBk') p

(Bf) (By $+ I

—
I I I +g(A, B,~)o, (21)

48' p E.Bk'
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FzG. 2. Comparison of calculated and experimental results for the
scattering of electrons by hydrogen atoms.
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small. We have used the value of rp =3.85 and rp&

=0.808. The results are plotted in Fig. 1.
We have plotted the results only up to 4=0.04,

since we feel that the validity of the effective-range
formula can be guaranteed only in regions where
k'« I/r, '.

S. COMPARISON WITH OTHER RESULTS
AND CONCLUSIONS

There are no experimental results for the scattering
of electrons by hydrogen atoms in the vicinity of zero
energy; Bederson, Hammer, and Malamud' have
obtained a cross section of 65m at 1.5 electron volts. The
relationship of their results to ours is shown in Fig. 2.

Of the calculations that have been made, the one by
Massey and Moiseiwitsch' is closest to the one reported
here. However, the authors do not emphasize the scat-
tering at zero energy, nor do they report any results in
the neighborhood of zero energy. It is dificult to
estimate how to extrapolate their results. However, the
values of k cot6 calculated by them fall on a straight
line both for the singlet and for the triplet case. If one
extends this straight line to zero energy, one obtains a
value of 64.6m, in contrast to our value of 76.6m. The

higher value that we have obtained seems more in
accord with the experimental results.

One other observation should be made. The results
of McDougall, ' Chandrasekhar and Breen' and Kato'
for the scattering of an electron by the Hartree field of
the hydrogen atom give a value of the zero-energy cross
section of about 350m, which has always seemed too
large. Since these authors do not include an exchange
interaction in the Hartree-Fock sense, it is reasonable
to suppose that their calculation is an approximation
to the singlet cross section. This means that their
value must be weighted with the statistical weight of 4. .
The triplet cross section, as we have seen, is very small
at zero energy and therefore the value obtained by
considering the scattering by the Hartree held at the
atom seems surprisingly good.
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By using the statistical methods originally due to Bethe, the predictions for the densities of nuclear
energy levels at excitation energies around 8 Mev are examined for two different versions of the shell model.
A crude method is used to take into account the effects of shell structure. The assumed form of the theoretical
expression for the density of nuclear energy levels is employed to analyze the data from slow-neutron
resonance experiments and from fast (n,p) cross sections. In contrast to earlier results, for the necessary
potential radius, it is found that either the static diffuse potential with a radius of ~1.2&10 "gA& cm,
or the diffuse velocity-dependent potential based on the Johnson-Teller model with a radius of ~1.4)&10
XA& cm, leads to fair agreement with the above experiments. In each case the values of the thickness of the
surface layer on the nuclear potential and the magnitude of the spin-orbit coupling are taken to be those
previously found to give close agreement with the experimental shell-model level sequences.

The level-density expressions used here lead to an energy dependence which is in even stronger disagree-
ment with those derived from various excitation function and inelastic scattering experiments than the
empirical formula of Blatt and Weisskopf. It is argued that this anomaly may cast more light on the use of the
statistical theory of nuclear reactions than on the validity of the expression for nuclear level densities.

I. INTRODUCTION
' "

QO and Wegner, ' and others, ' have pointed out that
- ~ there exists an anomaly in the various measure-
ments of nuclear level densities: different nuclear-
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reaction experiments give evidence about the energy
dependence and the dependence on mass number A.

which seems contradictory. However, the statistical
theory of nuclear reactions' is employed to analyze
these experiments so that it is far from certain which
of the many assumptions involved is breaking down.
Besides the steadily increasing evidence for "direct
interactions'" 4 or noncompound-nucleus processes,

' J. M. Blatt and V. F. Weisskopf, Theoretica/ Nuclear Physics
(John Wiley and Sons, Inc. , New York, 1952).
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