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present results on phosphorescence so that it may well
represent the true situation.

The examination of anisotropic phosphorescence indi-
cates that there is certainly a center other than the V&

center present in KCl x-rayed at 77'K which has an
axis of symmetry along L011j. Moreover, this center
can absorb light at 3650A and can be bleached ani-
sotropically. Its absorption properties are therefore
anisotropic even though this could not be observed
directly in x-rayed KCl but is implied by the phos-
phorescent behavior. Further, the anisotropic phospho-
rescence disappears in the same temperature region as
the V1 center so that the center responsible for the
phosphorescence may also disappear in this region.
Thus, this center would have thermal-bleaching proper-
ties very similar to the V1 center.

The results on electron-bombarded crystals are in
agreement with the above findings. The same ani-
sotropic phosphorescence is found and in this case the
small induced dichroism indicated the presence of an
anisotropic center. The fact that dichroism could be
observed directly in electron-bombarded crystals is

probably due to the higher coloration obtained which
makes the experimental observation simpler.

The results of KC1(Tl) are rather suggestive. It was
noted that for KC1(T1)s one observes an x-ray induced
resonance signal quite like that reported by Kanzig.
It is much more intense than in pure KCl for the same
amount of x-raying. Our results show that one can
easily find induced dichroism and anisotropic phos-
phorescence in this case. Thus, it is possible that the
center in KC1(Tl) which shows noncubic symmetry in
resonance is also manifested in the observed dichroism
and anisotropic phosphorescence. It should be noted
that phosphorescence in KCl(Tl) is shifted in wave-
length from that found in pure KCl. This indicates
that the centers involved are not identical.
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The magnetic dipolar energy is computed for ordering of the
second kind with the four antiferromagnetic sublattices of a face-
centered cube making arbitrary spin directions with respect to
one another, and this energy is shown to be of the same form in
the sublattice direction cosines as is the calculated powder neutron-
diffraction pattern. (The dipolar energy is also calculated for
ordering of the third kind and shown to lead to a spin arrangement
in disagreement with powder neutron-diffraction results on P MnS. )
The observed neutron patterns in MnO and o. MnS agree with
minimum dipolar energy, but many spin arrangements can satisfy
this and the spins are constrained only to certain regions. Other
sources of anisotropy in Mn++ salts are shown to be much weaker.
A model is introduced in which the spins are constrained by dipolar

and exchange forces to point parallel to (111) planes and con-
strained by the weaker anisotropy to a threefold set of easy axes
within these planes. Nagamiya's small-field approximation for the
field dependence of the powder susceptibility of a uniaxial anti-
ferromagnet is extended to all values of the applied field, and a
similar calculation is made for the powder susceptibility of our
MnO model. Comparison with experimental data indicates that
the weak within-plane anisotropy is ~3X10' ergs/cm' which is
to be contrasted with the theoretical out-of-plane dipolar aniso-
tropy of 107 ergs/cm'. A rough theory of antiferromagnetic reso-
nance for our model seems to explain the partial paramagnetic-like
absorption observed below the Xeel point.

I. INTRODUCTION

HE problem of the arrangement of spins in anti-
ferromagnetic MnO, and in the similar crystals

n MnS and n MnSe, is not simple, and it will most
likely remain somewhat unsettled until good single
crystals are available for experimental study.

Neutron diRraction experiments give unquestioned
evidence that the ordering in MnO is of the second kind,

* Work was done in the Sarah Mellon Scaife Radiation Labora-
tory and research was supported by the U. S, Air Force, through
the Air Force Office of Scientific Research of the Air Research
g,nQ Deve].opmen& Qommgnd,

that is, coordination of next-nearest neighbors. ' ' How-
ever, the problem of the direction in which the spins
point (or multidirections, since the system can be
divided into many sublattices) remains entirely open.
The original neutron evidence' suggested an arrange-
ment in which all spins pointed along $100] directions.
Subsequently Kaplan' showed that in ordering of the

' Shull, Strauser, and Wollan, Phys. Rev. S3, 333 (1951).' For an excellent review of antiferromagnetism, which we shall
quote throughout this paper, see Nagamiya, Yosida, and Kubo,
in Adoonces in Physics (Taylor and Francis, Ltd. , London, 1955),
Vol. 4, p. 1.' J. I, Kaplan, J. Chem. Phys. 22, 1t09 (1954).
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second kind the magnetic dipolar interactions should in
theory align the spins parallel to (111)planes.

In MnO, in which the ionic configuration Mn++0
should at least predominate, the Mn ions are for the
most part in S states, and it is dificult to 6nd any
source of anisotropy that can compete with the
magnetic dipolar interactions. Fortunately some recent
Brookhaven neutron diGraction experiments on MnO,
Nio, and n MnS suggest a (111)-plane arrangement,
although Roth has pointed out that multi-spin axes will
also fit the powder data and are perhaps to be preferred
for the single-crystal data available only in Ni0.4'

Kaplan showed that the dipolar energy constraining
spins to (111) planes (for his single spin-axis model)
should be of the order of 107 ergs/cm'. This large anisot-
ropy disagrees with a much smaller anisotropy ( 10'
ergs/cm') estimated by Nagamiya' from the field
dependence of the powder susceptibility of MnO, as
observed by Bizette, Squire, and Tsai. '

In this paper we reconcile Nagamiya's calculation
and the large dipolar anisotropy by introducing a model
in which, in addition to Kaplan s (111)-plane constraint,
a much weaker anisotropy selects preferred directions
in those planes.

But first we derive the dipolar anisotropy for a multi-
spin axis arrangement in both ordering of the second
kind and ordering of the third kind. We then estimate
the magnitude of other sources of anisotropy from
rather general considerations. After a discussion of the
relation of the powder neutron-diffraction problem to
the dipolar problems, we introduce our model in some
detail. In the last two sections we apply this model to
calculations of the powder susceptibility and antiferro-
magnetic resonance.

II. DIPOLAR ANISOTROPY FOR FACE-
CENTERED CUBE

A. Ordering of the Second Kind

We compute the dipolar anisotropy for the general
case of ordering of the second kind when the four cubic
sublattices are allowed to take arbitrary directions with
respect to each other. Let the direction of the ith sub-
lattice be given by the direction cosines rr;, P;, 7;.
Following Luttinger and Tisza, ' we may denote each
sublattice by

n;Xs+p;Ys+7;Zs,

where, for example, Zs means a cubic antiferromagnetic
array aligned in the s direction. It proves convenient
to take as origins of the arrays the four points

(0, 0, 1) (-,', —',, 0), (0, —,', —',), (-'„0, —',).
4 Corliss, Elliott, and Hastings, Phys. Rev. 104, 924 (1956).' W. L. Roth, Bull. Am. Phys. Soc. Ser. II, 2, 119 (1957).' T. Nagamiya, Progr. Theoret. Phys. Japan 4, 342 (1951).
~Bizette, Squire, and Tsai, Compt. rend. 207, 449 {1938).

Their data is reproduced as Fig. 7 of reference 2. The units for the
susceptibility, omitted in the 6gure, are g' J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946); 72,
257(E) (1947).

Luttinger and Tisza have shown that the field at our
second array resulting from our first array is given by

4EI4—( ni—Y8 pi—X8)h,4)

where ~~X is the number of dipoles per unit volume on
an array, p is the moment of each dipole, and

h4= 14.461.

Hence the interaction energy between arrays 1 and 2
will be given by

U12 (4') (421Y8+P1X8) (422X8+P2Y8+72Z8)

=( &4m) (2np i+2Pi 4)2h24

Similarly
Uis= (4&I )'(P173+7A)h4,
U14 (4&~)' (42174+7lr24) h4,

Uss= (4&u) 2 (42278+7242 3)h4,

U. =(V')'(P. 7+ 7~)h,
U34 ——(4'Ep) 2 (rrsp4+ psrr 4)h4,

U;;=0, i=1, 2, 3, 4.

The total dipolar interaction energy will be the sum
of the above energies, which may be written as

U =
2 (~4&I4)'h4$(421+ p2+74)'+ (~2+P l+73)'

+ (rrs+P4+72)'+ (424+ps+71)' 4j (—2).
This energy is obviously a minimum if

rsi+P2+74 =0,

as+P i+73=0,
rrs+P4+72 =0,

r24+Ps+71 =0,

and the minimum energy is given by

U; =—2h4(141Vp)2

= —1.807 (Xp) '

(3)

(4)

We note that in the special case that all four arrays
are in the same direction, Eq. (2) reduces to

U' =3.615(XP)2(nP+P7+7n). (5)

This result was first obtained by Kaplan, ' his
numerical constant being 3.588. In this special case, as
noted by Kaplan, the minimum condition on direction
1s

~'+P'+7'=0,
and hence all dipoles point parallel to (111)planes.

We have so chosen our origins of the four arrays that
for the above case the dipoles in any (111) plane all
point in the same sense, an arrangement which Li' calls
ordering of the second kind, type A. It is possible to
have all dipoles parallel without having a unique sense
on any set of (111)planes, or what Li calls ordering of

' Y-Y Li, Phys. Rev. 100, 627 (1955).
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the second kind, type B. In this case

(X2=A3 =&4= A])

P2=P2=P4= P—i,
72 73 74 71)

and Eq. (2) gives U=O, regardless of direction. This
complete absence of dipolar anisotropy for type-8
ordering has been noted by Li.

If the arrays are allowed to take various directions
with respect to each other, there are many possible
solutions to Eq. (3) besides the conditions represented
by Eq. (6).

We note that Eq. (3) defines only a general region of
minimum anisotropy, not a single direction. Thus,
under dipolar anisotropy alone, the spins will always
have considerable freedom of movement. In the next
section we discuss possible restrictions on this freedom
which may arise from other sources of anisotropy.

B. Ordering of the Third Kind

In ordering of the third kind, or "improved ordering
of the first kind, "each of the four basic arrays building
the face-centered cube has alternate planes (which we
take as ys planes) of up and down dipoles. The arrays
may not take arbitrary directions with respect to each
other, however, as each site of the face-centered cube
must be surrounded by 8 antiparallel and 4 parallel
dipoles (nearest-neighbor correlation). In the Luttinger
and Tisza notation, the arrays are of the form

~g2+P;Y,+V,Z„
with

(~i,pi, Vi)= —(~ P 2V 2), 2

(~2,P2,V2) = (~4,P4,V—4)

We have taken origin points as in Sec. II A, above.
Using the Luttinger-Tisza field factors, we find

U12 (c+P) (2l21&3 PlP2 7172)722)

U24 (-',&~)' (2el2el4 P2P4 'f 274)—h2)

U12 U14 U34 0)

U"= —-'(-'&~)'Lf2+~" (f2—f2) j, 2=1, 2, 3, 4,

where

(7)

62=7.992; f,= —9.687; f2 4 844 ——(8.).
The total dipolar interaction energy is the sum of the

above, and on invoking Eq. (7) we find

U= (2~%A)2L6.296—9.445(ni2+n22)) (9)

This is a minimum when n1 =Q2 = 1, or when all dipoles
are parallel to the x axis.

Corliss, Klliott and Hastings' have studied the order-
ing of P MnS (zinc-blende structure) by using neutron
diGraction. They find ordering of the third kind with,
however, spins perpe22dieular to the x axis. We do not
understand the source of an anisotropy large enough to

overcome the energy represented by Eq. (9). Spin-orbit
coupling effects should be small in MnS. However, since
the antiferromagnetic pattern has a unique direction in
ordering of the third kind, it is possible that the super-
exchange mechanism itself may lead to nonisotropic
terms.

III. OTHER SOURCES OF ANISOTROPY

A. Bipolar Anisotropy from Lattice Distortion

It is known that the face-centered cubic antiferro-
magnetic manganese salts distort along a L111j direc-
tion below the Neel point, that is, they undergo struc-
tural transitions to rhombohedral symmetry. ' This
distortion, which is of the order of magnitude of a
fraction of 1%, will perturb the dipolar anisotropy.

It is generally assumed that for ordering of type 3
the distortion is perpendicular to that set of (111)
planes characterizing the order. " In this case the per-
turbed anisotropy energy must be of the form

constant(eP+Py+yn) .

This is because dipole-dipole interactions can lead at
most to an energy expression quadratic in the direction
cosines (unless, as we discuss below, higher-order
quantum-mechanical effects are considered), and the
dipole array has threefold symmetry about the axis of
distortion and symmetry for inversion of all dipoles. We
have verified this by a rather lengthy perturbation
calculation and find that Eq. (5) becomes

U'= $3 615+8 8.8 $ (Xp).2(nP+Py+yn), (10)

where 6 is the fractional increase in cube diagonal. We
have assumed an accompanying decrease in dimensions
perpendicular to this diagonal such that the density is
unchanged.

B. Speculations on the Cause of
Lattice Distortions

Smart and Greenwald" have argued that antiferro-
magnets with ordering of the second kind, type A, will
distort perpendicular to the ordered (111)planes so as
to minimize the exchange energy. It is claimed that
such a distortion, since it uniformly changes the distance
between sheets of up-spins and neighbor sheets of down-
spins, will sufficiently lower the exchange energy to
make type-A order distinctly preferable to type 8,
where no such alternate sheets of up and down spins
exist.

Li,' on the other hand, has argued that the distortion
is probably due to anisotropic forces. We wish to point
out that there are good theoretical reasons for doubting
if anything other than exchange forces could cause a
distortion approaching the magnitude of that observed.
The change to rhombohedral symmetry may be thought

"N. C. Tombs and H. P. Rooksby, Nature 165, 442 (1950)."J.S. Smart and S. Greenwald, Phys. Rev. S2, 113 (1951).
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of as a shear through an angle of a few thousandths of a
radian. The energy involved, per cm', will be of the
order of this angle multiplied by the shear modulus.
Taking as a conservative estimate a modulus of 10"
dynes/cm', we arrive at an energy of 10' to 10' ergs/cm'.
In the absence of large spin-orbit coupling only the
exchange energy can decrease, under a small distortion,
by this order of magnitude.

C. Remainder of the Anisotropy

In a discussion of the problem of MnF2, we have
listed some other sources of anisotropy in antiferro-
magnets with predominately S-like magnetic ions."The
principle mechanism invoked for MnF2 involved the
interaction between excited states of Mn++ and the
tetragonal crystalline field, and led to an anistropy
energy of the order of 5)&10' ergs/cm' (about 1/10 of
the magnetic dipolar anisotropy).

Since the crystalline field in MnO, apart from the
small effect of the distortion, has cubic symmetry, the
anisotropic interaction with excited states of Mn~ will

be a higher order perturbation than in MnF2, and will

lead to an anisotropy energy considerably smaller in
magnitude.

On the other hand, MnO is not as ionic as MnF2, and
a consider'able anisotropy may arise from spin-orbit
coupling in the nonionic configurations. This sort of
interaction would also affect the g factor, and since both
susceptibility and microwave resonance measurements
indicate a value of g very close to 2, we estimate that
the anisotropy energy is 10' ergs/cm' or less. This
rough estimate is based on the Kittel-Van Vleck ap-
proximation of anisotropic exchange coupling of order
of magnitude (g—2)' times the exchange energy. "

The nonclassical part of the dipolar interaction will

be a further source of anisotropy. " This yields an
energy of order 0.05(Ã')i'/S) or 10' ergs/cm', and it
has a very complicated directional dependence. "

All of the above anisotropies will have terms of the
form of Eq. (10). In addition, they will have terms of
higher order in the direction cosines which should pin
down the spins to certain preferred orientations within
the (111)planes.

IV. POWDER NEUTRON-DIFFRACTION PATTERN

We calculate the powder neutron-diffraction pattern
to be expected from ordering of the second kind with
arbitrary orientation of the four dipolar arrays with

respect to each other.
The structure factor for scattering from an (kkl)

plane is"
Skki=gi gi exp[2mi(ksii+k()i+lw()],

I~ F. KeRer, Phys. Rev. 87, 608 (1952).
J. H. Van Vleck, J. phys. radium 12, 262 (1951).

r4 J. Tessman, Phys. Rev. 96, 1192 (1934l."M. H. Cohen and F. Keffer, Phys. Rev. 99, 1135 (1955).The
calculation in this paper is for ferromagnetism, but antiferromag-
netism should be very similar.

"O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939).

where at, is the magnetic scattering amplitude from a
dipole at (ski, (&,w, ) and is given by

u~=e x~e s—x~ s. (12)

Here e is a unit vector perpendicular to the scattering
plane, x& is a unit vector in the spin direction of the tth
dipole, and s is the spin of the neutron.

The sum in Eq. (11) is over all dipoles of the unit
magnetic cell. We have four basic arrays of the Lut-
tinger-Tisza type Zs (see Sec. IIA). The common part
of the structure factor of all four arrays is

(1 erik) (1 em ik) (1 gwi i)

which equals 8 if h.,k, t are all odd, zero otherwise. Thus,

Skk i
—g[gre'ri i+ gsesmi (5+k)+ gksewi (k+i)+ gie1w i(k+l) ]j7

[k, k, i all odd] (13)

where a~ . a4 are scattering amplitudes characteristic
of the origin points of the four basic arrays. (We choose
origins as in Sec. IIA.)

For unpolarized neutrons we may average
~
Skk)

~

'
over all directions of s. We use the relation

V. PROPOSED SPIN MODEL

We have noted that various arrangements satisfy
both minimum dipolar anisotropy and the powder
neutron-diffraction pattern. However, only the arrange-
ment of all spins parallel (type A) seems to explain the
distortion below the Neel point. This distortion should

"%e vanish to thank Dr. %.I.Roth for a most informative dis-
cussion of the neutron diffraction problem.

A further average is then taken over &h, &0, &l and
over permutations of h, k, l as is appropriate for a
powder pattern. After a few algebraic manipulations, we

obtain

( ~
Skkl/8

~ )A s+ [((i)+ps+74) + ((is+Pl+78)
+ (o(s+P4+ V s)'+ (~i+Ps+ Vr)' 4]I'kk i, —

[kl) k, i all odd] (14)
where

Pkk i
——(i"+khk+ ik+ 'hi+i "+'kl) /[12 (k'+ k'+ P)]

We note with astonishment that the expression in

square brackets in (14) is identical to that in (2). If we

assume any of the arrangements, given by Eq. (3),
which lead to minimum dipolar anisotropy, we have a
powder pattern independent of the precise nature of the
multi-spin axis orientations.

Roth has shown that the observed powder pattern
seems to be consistent with a value of —4 for the
bracket in Eq. (14); and we note that this value corre-

sponds to minimum dipolar anisotropy. Further infor-

mation on the spin orientations awaits single-crystal
diffraction measurements, although even here the
analysis may be obscured by possible domain effects."
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couple the four arrays to one another, inasmuch as it
upsets the zero balance of nearest-neighbor exchange
forces. And the coupling should compel all four arrays
to point in the same direction. Therefore we shall
assume a single spin axis and hence all spins constrained
by the dipolar energy to be parallel to (111)planes.

We consider two types of anisotropy: (1) the large
dipolar energy given by Eq. (10), and (2) a much
smaller energy coming from sources discussed in Sec.
III. This latter anisotropy will select special minimum
directions within the (111) planes, and because of the
threefold symmetry (and in addition the twofold up-
down symmetry of antiferromagnetism) its leading
term will be of the form

FIG. 1.Definition of angles used
in Kq. (19).

U"= ——,'X, cos6&, (15)

Ei ——3.615(Ep) ' (17)

For MnO, p=5P=4.64X10 " erg/oersted, X=4.59
X10"Mn atoms/cm', and

Ei——1.64X 10' ergs/cm',

a result first obtained by Kaplan. ' This applies, of
course, only to a sample at O'K, and E& should drop
with the square of the sublattice magnetization as the
temperature rises.

We expect E& to be very much smaller, of the order
of 104 to 10' ergs/cm'.

Arrangements other than all dipoles parallel to (111)
planes, but which satisfy minimum dipolar anisotropy,
will also be expected to have a large energy constraining
the spins to certain regions, and a much smaller energy
picking out certain directions. Therefore, although such
arrangements would modify the details of the calcu-
lations in the next sections, they should not aGect the
general nature of the results.

VI. FIELD DEPENDENCE OF POWDER
SUSCEPTIBILITY: UNIAXIAL

SYMMETRY

The problem of the field dependence of the powder
susceptibility of an antiferromagnetic material with
uniaxial symmetry has been solved for small applied
fields by Nagamiya. ' Before considering our complex
spin model of Mno, we wish to generalize his calculation
to all field values. This is necessary since we assume E2
to be so small that Nagamiya's approximations will no
longer apply.

In the two-sublattice molecular-held approximation

where g is the planar angle between the actual spin
direction and a preferred direction. In addition this
latter anisotropy will add a small correction to the
numerical constant in Eq. (10), and we may write the
out-of-plane anisotropy in the form

U' =Ki (nP+Py+ yn) (16)

Except for small corrections,

I

the free energy of the system of spins is very nearly

F=—2iH2(X„cos'/+Xi sin'P)
—-,'E cosL2 (1t —8~)j+const. (19)

Here the notation is that of reference 2. The angles are
defined by Fig. 1, and we assume p very small. This
amounts to the usual assumption that the molecular
field is very much larger than either the applied field
H or the anisotropy "field" E/M.

We introduce the well-known "critical field"

H.=L2K/(x. —x )l', (20)

h= H/H, .
The minimum condition on F with respect to f is

(21)

h'=sint 2(P—8~))/sin 2P. (22)

The component of induced magnetization along the
direction of the applied field is

MII ——x„H+ (x,—x„)H sing, (23)

and the powder susceptibility is given by a spherical
average of Mll/H:

x,= +(x.— )( V)"
From (22) we have

sin'P=-', +-', (h' —cos28~)/(1 —2h' cos28H+h4)&, (24)

which must be averaged over all values of HII. The result
is

'i h' —1
xn=x»+(x. —xi') -+

2 Sh'

(h'+1)(3h' —1) ~ 2h i
sin '

~
. (25)

16h' &h'+1)

which is the value of the field H which, applied parallel
to the preferred spin direction, causes the spins suddenly
to Qop to a position orthogonal to H. For convenience
we measure H in units of II, :
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FIG. 2. Powder susceptibility as a function of applied field.
Curve (1) for the case of uniaxial symmetry, Eq. (25), with H,
defined by Eq. (20). Curve (2) for the case of magnetization
constrained to a plane of threefold symmetry, Eq. (31) numeri-
cally integrated, with H, defined by Eq. (32).

Nagamiya's result follows from (25) with the assump-
tion that h'&&1:

xp=x + (x.—x») Cs+(4/15) h'] Ch'«1] (26a)

In addition we have

x,=x,+(x.-x )Cl+( /g)], C&'=1], (26b)..=., +(x.-x )[1-(2/»~)], C~»1]. (26)
The general expression (25) is plotted as curve (1)

in Fig. 2. The curve has an inflection point at h'=1,
which is the powder-susceptibility analog of the single-
crystal Qop.

VII. FIELD DEPENDENCE OF POWDER
SUSCEPTIBILITY: MAGNETIZATION

CONSTRAINED TO A PI,ANE

A. General Case

We now consider the case of a very large anisotropy
constraining the magnetization to a plane of ns-fold

symmetry, and a much smaller anisotropy within the
plane. (This is our model of MnO with m 3.)

%e assume that the applied field H is small compared
to the anisotropy "field" El/M for motion out of the
plane, but not small compared to the within-plane
"field" Es/M. Under this condition the sublattice mag-
netization vectors will swing about within the plane.
Let H make the angle 8~ with the normal to the plane,
and let the projection II sine~ make the angle 02 with
respect to the preferred axis. Then the free energy for
motion within the plane will be given by

F=—
AH Sin'8l(X„COSQ+X, Sin'P)

——',Es cos[2m(g —8,)]+const. (27)

II' sin'8~

[2nzEs/(X, —
X„)]

sin 2m (P—8s)

sin2$
(3o)

and the powder susceptibility will be the following
spherical average:

X„=((X«cosg+Xi sin+) sin'8l+X i cos'8i)A„

sX & l+ sX i+ (Xi Xl 1 ) (Sin+ Sill 81)Av

Before performing this spherical average one must of
course solve Eq. (30) for sing as a function of 8l and 8s.
For values of m&1 the expression is very complicated
and x„is most easily obtained by numerical integration.

For cases nz&1 hysteresis effects should appear if
the applied 6eld ever exceeds the critical 6eld. That is,
above EI, the magnetization direction snaps to easy
axes more nearly perpendicular to H (and such axes
will exist for m)1); and therefore on lowering H a
powder susceptibility should be observed that is much
closer to x & than is that of a randomly oriented sample.

3. Application to Our Model (m=3)

For our proposed (111)-plane constraint the value of
m is 3, and Eq. (30) is cubic in cos (2lf). Examination
of the values of II and 0~ for which the discriminant of
this equation changes sign discloses that the smallest
value of critical field for a Qop is obtained at 02=30'
and for H sinai equal to

H, = [2~E,/(X, —X„)]-:. [~=3;8,=30']. (32)

To see this, note that for 8s ——30', m=3, Eq. (30)
becomes

EP sin'8~

[2~Es/(xi —x~ ~)]

sin (2P) [4 sins (2f) —3]
(33)

sin2$

The solution to this equation which for H=O starts at
sin'(2$) = s~ disappears abruptly when the critical field

(32) is reached, and only the solution sin2$=0 remains.
The critical field (32) is smaller by a factor V3 than

the critical field (29) for 8s=Q. This has its origin in the
fact that at 82=30' the magnetization snaps to a per-
pendicular axis which is an easy axis, whereas at 02=0

The critical 6eld for the case 02=0 can be found by
expanding (27) about e= (lf —0):
F ——,'EP sin'8~

+[ED'—-', Hs Sin'8i(X &
—

X& ~)]e'+COnSt. (28)

It is seen that the magnetization vectors will Qop when
H sinter~ reaches

H,'= [2ePEs/(x, —x„)]&. [8s——0]. (29)

However, we show below that for other values of 02 the
critical field for a Qop may be smaller than (29).

The minimum within-plane direction will be given by
the following analog of Eq. (22):
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it snaps to a hard axis. (In either case it goes over an
anisotropy hill and hysteresis eRects should be ob-
servable. )

We now define 7t as H/H„using the smaller value,
given by Eq. (32), for H, .

The results of numerical integration are plotted as
curve (2) in Fig. 2. It is apparent that the curve has an
inAection point somewhere between h=1 and k=3,
that is, between the two critical fields (32) and (29).
Limiting solutions of the problem are

X.=X +(x.—x )L(2/3)+(1/45)h'], [h'«1] (34 )

x„=x„+(x —y„)(1—0.36k 4), [h'&)1], (34b)

which are to be compared with (26a) and (26c).
In attempting to apply curve (2), Fig. 2, to the case

of MnO or n MnS we must be very careful. In the erst
place, our model may not be correct, and multi-spin
axes may be present. This will aRect the numerical
results, but not seriously, since we believe that in any
reasonable model the spins will be constrained by the
dipolar anisotropy only to a region, and not a single
direction.

In the second place, as H gets larger the spins can
begin to move out of the constrained pane. Nagamiya"
has considered the powder susceptibility for the ortho-
rhombic case, with diRerent anisotropies in two per-
pendicular directions. This case somewhat resembles
ours, in that we also have E~ and E2 for movement of
the spins perpendicular to and parallel to the plane. In
terms of q= E2/Ei, Nagamiya finds

Xo=YX.+8Xi [(2/15) (1+q)h' —(2/35)qlt'

+ (4/315) (1+q') Its+ ]. [h'«1]. (35)

%e cannot use this formula for all values of h, and
furthermore the symmetry conditions are diRerent in
Nagamiya's case and in our model. Nevertheless, we
can see from Eq. (35) the general effect of two anisot-
ropies. Since we expect q=10 ', the correction to our
results should be negligible until B begins to approach
the very large critical field for a Qop out of the plane,
given by Eq. (46) in Sec. IX.

VIII. ESTIMATE OF K2 IN MnO FROM POWDER
SUSCEPTIBILITY DATA

Bizette, Squire, and Tsai have measured y„of MnO
down to 14'K and in fields of 5000 and 24 000 oersteds. '
We find that our curve (2) of Fig. 2 gives a reasonable
fit to their data, extrapolated to O'K, with

H.=2.1X104oe. (O'K) (36)

Here Eq. (32) is used to define H, . The critical field will
increase with increasing temperature.

(It shouM be mentioned that in order to fit both the
5000-oe and the 24000-oe data with the same value of

"T. Nagamiya, Physica 22, 249 (1956).

H, it was found necessary to use a value of x&=0.87
X10 '

g
' at O'K, which is 3% larger than the value

at the Neel point. This is in line with the spin-wave-
theory prediction that p& should rise slightly as tem-
perature drops. )

From Eqs. (32) and (36) we now find

Es= 6.4X10' ergs/g
=3.2X10' ergs/cm'. (O'K) (37)

The values (36) and (37) are to be compared with
estimates made by Nagamiya, "using a uniaxial model
and the approximation (26a):

H. (Nag. ) =3.6X 104 oe,

E(Nag. ) =5.7X104 ergs/g.

It is seen that our model leads to a smaller anisotropy.
This is because it is more difFicult to swing the spins
around in a powder sample when they are con6ned to
planes, and hence a smaller E is required to 6t the
same set of data.

The value of E~ is reasonable, as has been discussed
in Sec. III C.

At the end of Sec.VII A we pointed out that hysteresis
eRects should be observed whenever H&H, . However,
the full eRect should not be felt until II exceeds the
larger H„defined by Eq. (29), for 82 ——0. This field, for
MnO, we estimate as =3.6&104 oe. The largest field
used by Bizette, Squire, and Tsai, 2.4X10' oe, fell too
short of this larger II,—although it slightly exceeded
(36)—to produce much hysteresis. It would be inter-
esting to apply a field of, say, 4X10' oe (or a larger
field at higher temperature) to a powder sample of
MnO. If the powder remained unshaken on removal of
the 6eld, the susceptibility in small fields should sub-
sequently be dependent on direction. A sintered sample
should show the same eRect.

NeeP' has discussed the effect that domain walls, if
they exist, might have on the 6eld dependence of
powder susceptibility; and he has proposed a model
which could explain the MnO data. Precise measure-
ments of hysteresis effects might enable one to dis-
tinguish between his mechanism and ours.

IX. ANTIFERROMAGNETIC RESONANCE

The problem of antiferromagnetic resonance in MnO
is complicated by the presence of four pairs of up and
down sublattices. Next-nearest-neighbor exchange forces
couple the members of each pair to each other and
nearest-neighbor exchange forces cross-couple the
various pairs. The latter coupling is further complicated
by the distortion, which increases the exchange between
spina of neighbor (111)sheets. All of these interactions,

' See reference 2, p. 40. The units for the value of X are incor-
rectly stated in this reference as ergs/cIn3.

OL. Noel, in Proceedings of the International Conference on
Theoretical Physics, Tokyo asttt Kyoto, 1954 (Science Council of
Japan, Tokyo, 1954).
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Ulll E PPI (42)

The total anisotropy energy is now of a form given

by Eq. (39) of Keffer and KitteP' for the orthorhombic
case:

f~ = 2Ei'(v'+v")+kE2'(P'+P")+E3'vv'+E4'PP'
(43)

where we now identify

Ei' = ,'Ei, E2' =9E2, —E3' —,'Ei, E4'= E——,. —(44)

The antiferromagnetic resonance frequencies are dis-

cussed in Keffer and Kittel. There are in general two
different modes, which now correspond to motion out
of the plane and motion within the plane.

(1) Motion oil of eke payee Here, in t.
—he absence of

an applied field, the resonance frequency at O'K is

2' F. Ke8er and C. Kittel, Phys. Rev. 85, 329 (1952).

taken together with a complicated anisotropy, will lead
to a very involved equation of motion which will have
a great number of normal-mode solutions. Without a
detailed understanding of all the energies we cannot
hope to set up, much less to solve, such an equation.

However, we can get a good picture of the general
nature of the resonance from a simpler model. We will

assume a single exchange energy coupling a single up
sublattice to its down partner. Kaplan' has shown that
under this assumption the magnetic dipolar energy is

given by

U'= '.E [-1+—l (v'+v")+«'+PP' 2vv—'] (3.8)

Here x and y axes are taken in the (111) plane, s axis
normal to the plane, and the primed and unprimed
direction cosines refer to the two sublattices. The
constant Ei is the same as that of Eq. (17).

We may subtract from (38) an isotropic term in
«'+pp'+pp', since this only adds a small amount to
the exchange-energy Hamiltonian. We are left with

U'= const+ 4Ei[—', (y'+y") —yy']. (39)

To this we add a within-plane anisotropy energy of
the form of Eq. (15), which for two sublattices may be
written as

U"=const+-', E2(sin'3q+sin'3q'). (40)

For small displacements from the preferred axis, which

we take as the x axis, Eq. (40) may be written as

U"=const+ (9/2) E2(P'+P"). (41)

We further add, for generality, an anisotropy of a form
not considered in Sec. VII:

H,"=5)&10'oe. (46)

This held is so very much larger than the critical field
(36) for motion within the plane, and also so much
larger than the fields used in powder susceptibility
experiments, that we feel justified in our assumption
of the previous sections that the magnetization vectors
are actually constrained to the plane.

The resonance frequency (45) corresponds to wave-
lengths of the order of 0.2 mm.

(Z) 3fotion within the place H.—ere, in the absence of
an applied field, the resonance frequency at O'K is
given by

%1 C02 pHg'=y[(18E2 —2E3)/x, ]'. (47)

In the absence of E3 the critical field is identical to that
of Eq. (29). Presumably some effects of E& were in-
cluded in deducing the size of H, ' from experiment. Our
estimate of 3.6)&104 oe corresponds to wavelengths of
the order of 3 mm.

It should be pointed out that although the critical
field increases with temperature, the resonance fre-
quency will in general decrease. This is shown in Keffer
and Kittel, and it has been experimentally verified"
for MnF&. Since E& is probably even more strongly
temperature dependent than the dipolar-type anisot-
ropy of MnF2, it may well be that for a long way
below the Keel point the in-plane resonance frequency
is in the centimeter range. If so, this may account for
the continuation of paramagnetic absorption seen below
the Weel point in thin disk polycrystalline samples of
MnO, MnS and MnSe, " and for the small residual
absorptionxseen in powdered samples of MnO and
MnS. '4

We wish to caution the reader that not only have
we made here the drastic two-sublattice simplification
discussed above, but also in the discussion of within-
plane motion we have restricted ourselves to the small-
angle approximation of Eq. (41). For applied fields of
the order of H.' the resonance frequencies will be much
more complicated.

2' F. M. Johnson and A. H. Nethercot, Jr., Phys. Rev. 104, 847
(1956).

230kamura, Torizuka, and Kojima, Phys. Rev. 82, 285 (1951).
24 1.R. Maxwell and T. R. McGuire, Revs. Modern Phys. 25,

279 (j.953).

given by
&03= M4= rHg ='r[6Elxl] y (45)

where we have replaced the exchange field Hz by its
equivalent )3f=x& 'M. It is seen that H," is the
critical field for a flop out of the plane. Using (18) for
an estimate of Ei we find


