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The de Haas-van Alphen effect in the magnetic susceptibility of graphite has been interpreted by applying
the susceptibility formula for general bands of Lifschitz and Kosevich to the band model of Slonczewski.
The majority electrons and holes are responsible for the two periods of oscillation of the susceptibility. The
analysis yields information concerning the band structure: (1) the total band overlap is about 0.03 ev, (2) the
energy difference between the two doubly degenerate bands at the corner of the Brillouin zone is about 0.025
ev, (3) vo must be larger than about 1.2 ev, and (4) the relation v; =0.04v,? holes approximately (where both
v’s are in ev and correspond to Wallace’s notation). Calculated carrier densities are 2.4X 1075 per atom for
electrons and 1.8X1075 per atom for holes, in rough agreement with estimates made from galvanomagnetic
data. Rough agreement with electron specific-heat data is also obtained.

1. INTRODUCTION

HE current carriers in graphite occupy a very
small fraction of the Brillouin zone. Because of
this, and because of the large anisotropy of the crystal
lattice, it is possible to write formulas for the energy as
a function of wave number which involve six unknown
constants. The band model is described in Sec. 2. Some
of the band parameters are determined in Sec. 3 by
using information gained from de Haas-van Alphen
experiments. The results are consistent with the gal-
vanomagnetic data and the low-temperature specific
heat.

The crystal structure of graphite is depicted in Fig. 1.
The atoms are arranged in hexagonal layer planes, the
spacing between nearest neighbors in the planes being
1.42 A. The planes are stacked in abad order, 3.37 A
apart. The a0 and ¢, distances are 2.46 A and 6.74 A,
respectively. Note that, of the four atoms in a unit
cell, A and A’ have neighbors directly above and below
in adjacent planes and that B and B’ do not. (For
convenience, we always imagine a Cartesian axis system
embedded in the crystal, with the z axis vertical and
parallel to the ¢, axis of the crystal.) The Brillouin zone
is a thin hexagonal pillbox, shown in Fig. 2. Because of

F1c. 1. The graphite crystal lattice.

* A Division of Union Carbide Corporation.

the large anisotropy in the crystal structure, it is a
useful starting approximation to discuss the properties
of a single layer. This was first done by Wallace,! who

found that the highest occupied band and the lowest

unoccupied band (which we shall call the valence and
conduction bands, respectively) are degenerate in en-
ergy at the six zone corners (the Brillouin zone for a
single layer being simply a two-dimensional hexagon).
Later calculations of the single-layer band structure by
Coulson and Taylor,? Lomer,? and Corbato* agree that
the valence and conduction bands are degenerate at
the zone corners. Furthermore, there are no other
bands with energies near the degeneracy energy, so
that the only part of the band structure important for
transport phenomena is the region near the zone corners.

Interaction between layers lifts some of the de-
generacy. The splitting is small (about 0.1 ev) com-
pared to the band width (about 15 ev), but is appreci-
able compared to the kinetic energies of the carriers.
In the three-dimensional case there are two conduction
and two valence bands (not counting spin degeneracy),
two of which are required by symmetry to be degenerate
along the vertical zone edges (HH and H'H'). Wallace’s

F16. 2. The reduced Brillouin zone for graphite, showing
the coordinate system used.

1P, R. Wallace, Phys. Rev. 71, 622 (1947).

2C. A. Coulson and R. Taylor, Proc. Phys. Soc. (London)
A65, 815 (1952).

3W. M. Lomer, Proc. Roy. Soc. (London) A227, 330 (1955).

4F. J. Corbato, Quarterly Progress Report, Solid State and
Molecular Theory Group (Massachusetts Institute of Technology,
No. 21, 1956) (unpublished), p. 23.
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BAND STRUCTURE OF GRAPHITE

three-dimensional calculation, which was a tight-
binding calculation taking into account nearest-neighbor
interactions only, has one conduction band degenerate
with one valence band along the vertical zone edges,
but no band overlap. A calculation by Johnston®
which took into account more distant neighbors gave
extra degeneracies near the zone edges and a small
overlap between valence and conduction bands. A
later calculation by Johnston® reveals a larger band
overlap due to the dependence of the degeneracy energy
on k, (along HH and H'H’). The possibility of overlap
of this kind has been pointed out by Slonczewski’ and
also found by Horton and Tauber.?

In the face of the increasing complexity of the band
structure, it is natural to turn to group theory to estab-
lish which types of structure are possible. Group-
theoretical studies have been made for the single-layer
Brillouin zone by Lomer? and Slonczewski,” and for
the three-dimensional zone by Carter.® Slonczewski’
and Slonczewski and Weiss!® (henceforth called SW)
have combined group theory and perturbation theory
in a calculation which will be described in the next
section.

2. BAND STRUCTURE MODEL

The basic idea of the Slonczewski-Weiss model can
be stated very simply: previous calculations show that
the interesting part of the Brillouin zone is quite near
the vertical zone edges (no further from the zone edge
than about one percent of the distance from the zone
edge to zone center); thus, it is sensible to make a
Taylor expansion of the Hamiltonian in terms of .
and «, (distances from the zone edge in the x and ¥y
directions). However, in the z direction, a Fourier
expansion of the Hamiltonian is made as the layer
planes are widely separated and the series is rapidly
convergent (a case of ideal tight-binding). From a
study of the symmetry of the lattice, they find it
possible to write the eigenfunctions corresponding to
any point on a zone edge in terms of Bloch sums of
single-layer eigenfunctions. For points not on the edge
they use the method of Bouckaert, Smoluchowski, and
Wigner! in which the change in the Hamiltonian is
given to first order by %x-p/m. In the above, x is the
shortest vector from the zone edge to the point in
question, and p is the momentum matrix for the states
on the zone edge (at k—x). The method can be ex-

tended to second order in x by use of Van Vleck per-

5D. F. Johnston, Proc. Roy. Soc. (London) A227, 349 (1955).
8 D. F. Johnston, Proc. Roy. Soc. (London) A237, 48 (1956).
7J. C. Slonczewski, Ph.D. thesis, Rutgers University, 1955
(University Microfilms, Ann Arbor, Michigan, 1956, Mic 56-2314).
8 G. K. Horton and G. E. Tauber (unpublished).
9J. L. Carter, Ph.D. thesis, Cornell University, 1953 (un-
published).
( 1o ].) C. Slonczewski and P. R. Weiss, Phys. Rev. 99, 636(A)
1955).
( 11 Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58
1936).
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turbation theory® as Shockley did for cubic lattices.®
The same “k-p” method has been recently used with
considerable success in the study of the valence bands
of several semiconductors.!* Thus, the form of the
momentum matrix is the key to the type of band struc-
ture, and it has been a major concern in the work of
Slonczewski and Weiss.

The labeling of the states on the zone edge which we
adopt is based on that of SW and is explained below:
Band 1 corresponds to the sum of Bloch waves made
up from 2p, orbitals based on 4 and 4’ atoms and is
generally the highest in energy; Band 2 corresponds to
the difference of the same Bloch waves based on 4 and
A’ atoms and is generally the lowest in energy. Bands 1
and 2 are degenerate on the zone corners (H and H').
Bands 31 and 32 correspond to Bloch waves made up
of 2p, orbitals based on B’ and B atoms, respectively.
Bands 31 and 32 are degenerate everywhere on the
zone edge.

In writing the Hamiltonian we shall use a set of
dimensionless variables, a=tan(—«./k,), oc=31V3ao| x|,
£=Fk,co. In these variables, Wallace’s .S can be written
near the zone corner as S=o exp(ie). To give an idea
of relative magnitudes, the o value for the zone center
is 3.6, and height of the zone in the same units is
V3mao/co=1.99. The number of carriers of both spins
contained in two cylinders of radius 20/V3a, and height
2m/co (there are two such complete cylinders in a zone)
is 0.092¢% per atom or 1.05X10%¢% per cm?. In pure
graphite, we shall see that maximum o values for
carriers are of the order of 0.03 and carrier concentra-
tions are of the order of 1075 per atom.

In the notation established, the Hamiltonian is

E, 0 Hy Hmz

A=\ He mmn | @19
Hyy —Hy Hyp*  Es

where the order of rows and columns is 1, 2, 31, 32, and
E,=yI'+A4, (2.1b)
Ey=—~yT+A, (2.1¢)
E3=7v2(14cos§) =322, (2.1d)
Hi3=2"—yo+vd)o exp(ia), (2.1e)
Hyy=2"(yo+vd)o exp(ia), (2.19)
Hi3=13T0 exp(ia). (2.1g)

In the above, we have put I'=2 cos(3£). The Hamil-
tonian is taken from SW with the approximation that
only the first nonvanishing %.-dependent term is kept in
each matrix element. As written, it applies to the zone
edge HH ; the complex conjugate applies to H'H'. SW

12 T, H. Van Vleck, Phys. Rev. 33, 467 (1929).

18 W. Shockley, Phys. Rev. 78, 173 (1950).

14 See, for example, Dresselhaus, Kip, and Kittel, Phys. Rev.
98, 368 (1955) or E. O. Kane, J. Phys. Chem. Solids 1, 82 (1956).
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worked out the Hamiltonian to first order in ¢. The
form of the second-order Hamiltonian is given by
simply squaring the first-order Hamiltonian, and does
not produce any qualitatively different structure. The
magnitude of a typical second-order term can be in-
ferred from Johnston’s work to be about equal to the
free-electron value of 0.5¢2 ev, which is about 5X10~*
ev for a o value of 0.03. This is to be compared with
Yoo or vyes?/v1, each of which is about 0.1 ev at the
same ¢ value. Spin-orbit coupling is ignored as SW
estimate the splitting so produced as about 10~ ev.
The same band model has been used by Noziéres in
discussing cyclotron resonance in graphite.!®

There are six constants in Egs. (2.1) which we shall
discuss individually. The quantity vy, which we have
defined to be the same as Wallace’s vy, is the most
important in determining the dependence of energy on
o. It is also the only parameter in the single-layer case.
Wallace quotes an estimate for yo by Coulson (based on
chemical evidence) of 0.9 ev. Lomer and Johnston esti-
mate 3 ev. SW calculated the momentum matrix ele-
ment and arrived at 2.3 ev. Corbato’s calculation yields
a value of 3.2 ev. Finally, an estimate based on the
magnitude of the magnetic susceptibility gives 2.6 ev.16

The parameter vy; represents the chief splitting of
bands caused by the interlayer interaction. Wallace
estimated 0.1 ev and Johnston’s work yields 0.35 ev.
The quantity A reflects the fact that the 4 and B atom
sites are different. It was pointed out by Carter and
Krumhans]'? that it is not required by symmetry that
all four bands be degenerate at H and H’. They esti-
mated that A is about 0.01 ev. The parameter v, is
responsible for most of the band overlap. Johnston
obtains a value of —0.007 ev from the mixing of 2p,
orbitals with other types, due to the interlayer inter-
action. However, Horton and Tauber estimate 0.001
ev from next-nearest-plane overlap effects. As the two
effects compete, the sign is in doubt. The quantity s
gives rise to the anisotropy in the xy plane and the
extra degeneracies near the zone edge found by John-
ston. Johnston’s work yields an estimate of 0.13 ev
for vs. The term is present in Wallace’s Hamiltonian as
v/ but was ignored in computing the energy. The
parameter v, does not have a qualitative effect on the
band structure but could have an appreciable quanti-
tative effect. It would be equal to v; if the orbitals on
A and B atoms were identical; as the differences are
probably slight, it is very nearly equal to ys. This term
was also included as a vy, term in Wallace’s Hamiltonian.

In discussing the energy spectrum of (2.1), we first
ignore s and 4. Then the energy is independent of «
and is worked out by SW to be

E=3(E\+Es) [ (Ei— Es)* v},  (2.2a)
E=%3(EstE3)x[:(Es— E3)*+vo%e? 2. (2.2b)

15 P, P. Nozieres, Bull. Am. Phys. Soc. Ser. II, 1, 321 (1956).

16 J, W. McClure, Phys. Rev. 104, 666 (1956).
( 1 %) L. Carter and J. A. Krumhansl, J. Chem. Phys. 21, 2238
1953).
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The dependence of E on ¢ is called “hyperbolic” by
SW, in contrast to the more familiar “parabolic” de-
pendence. Note that the two formulas (2.2a) and (2.2b)
differ only by the sign of cos(3£). Thus, for easy visual-
ization we may plot one of the formulas in a double-
height Brillouin zone. Figure 3 shows a three-dimen-
sional plot of E versus o and £ for formula (2.2b). The
case shown is for positive values of all the parameters;
it is seen that for pure graphite, holes would be located
along the central part of HH and electrons would be
located near the points H.

Inclusion of 4 would produce only additional warping
of the energy surface depicted in Fig. 3. However, intro-
duction of 3 produces additional structure. The secular
equation derived from (2.1) then no longer factors into
two quadratic equations for all k. At present it is un-
instructive to examine the solution to the quartic
equation, so we look instead at two special cases. For
certain planes in % space (given by a=3#r) the secular
equation still factors and we obtain Johnston’s solution.

E= %(Ez‘*‘Ea—‘ 'Y;:,Pa' COS3a)
+[2(E;— Es+v3l'o cos3e)?+ (yotv)2%r]E (2.3)
The above equation gives all four roots when we let £
run over the double zone.
In the case that E,; and E, are well separated from
E;, we can solve (2.1) by perturbation theory and find

the explicit angular dependence of the two bands de-
rived from 31 and 32. We find

E= E3+ Ac®+[ B%*+2Bo%y;T cos3atoys T2 3, (2.4a)

where
(yotva)?

Es—E,

1[(70—741’)2

E;—E,

; ] (2.4b)

(2.4c)

B 1[ (votva)? (‘Yo—‘YJ‘)zJ
B E—FE; |

E;—E,

F16. 3. The energy versus wave vector for the four-parameter
model, using the double-zone convention. The energy is plotted
vertically and the wave-vector coordinates are as shown in Fig. 2.
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In the foregoing, ¢ is restricted to the first zone (if £
is allowed in the second zone the same two bands are
reproduced). It is seen that for a=3nm, (2.4a) gives two
overlapping parabolas, and for other o’s the extra
crossing of bands disappears. Note that there are three
satellite minima (or maxima) in addition to the central
one. With the estimates of parameter values given
previously, the scale of the energy variation due to v;
is about 0.001 ev, and the variation is important for o
values of about 0.001.

We are now in a position to construct a picture of
the Fermi surface in pure graphite, which is shown in
Fig. 4. In constructing the figure, we have used the
Fermi surfaces given by Fig. 3 (with the electron sur-
faces translated back into the central zone) and applied
the trigonal warping due to y;. We conclude this sec-
tion by noting that the group theory-perturbation
theory treatment did not uncover any qualitative type
of behavior not already reported. It does, of course,
include all previous calculations as special cases. Its
greatest value is that it provides fairly simple, general
formulas and contains the minimum number of ad-
justable parameters.

3. DE HAAS-VAN ALPHEN EFFECT

The low-temperature oscillatory behavior of the
magnetic susceptibility of graphite has been studied by
Shoenberg!® and by Berlincourt and Steele,® with sub-
stantial agreement. Shoenberg analyzed his data on the
basis of constant tensor mass theory. Recently Lifshitz
and Kosevich® have presented a theory which is valid
for general band structures. The dependence of the
susceptibility on temperature and magnetic field
strength is the same in both theories, so that Shoen-
berg’s analysis can be utilized by constructing a transla-
tion key for the parameters involved in the two theories.
In the general theory, the oscillatory susceptibility is
determined by the properties of the band structure in
the region where the cross section of the Fermi surface
perpendicular to the magnetic field has its maximum (or
minimum) value. The period of oscillation in inverse
magnetic field is given by

P=2me/Anthic— B/, (3.1)

where 4,, is the maximum cross section (measured in
rationalized wave numbers squared), 8 is the double
effective Bohr magneton and ¢ is the Fermi energy.
The equality holds for the general case and the arrow
indicates the value taken for the case of constant tensor
mass. The dependence of amplitude on field strength
and temperature is specified by the ratio of the magnetic
energy-level spacing to the thermal energy. The energy

18 D, Shoenberg, Phil. Trans. Roy. Soc. (London) 245, 1 (1952).

19 T, G. Berlincourt and M. C. Steele, Phys. Rev. 98,956 (1955).

2 T. M. Lifshitz and A. M. Kosevich, J. Exptl. Theoret. Phys.
(U.S.S.R.) 29, 730 (1955) [translation: Soviet Phys. JETP 2,
636 (1956)].

615

~
A

ELECTRONS

Fi16. 4. The Fermi sur-
face for pure graphite.
The central surface con-
tains holes and the outer 27/Ce
surfaces contain elec-
trons. The length-to-
width ratio of each sur-
face is about 13. The
trigonal anisotropyis ex-
aggerated for clarity.

HOLES

ELECTRONS

level spacing is given by
AE= (2me3C/tic)dE/dA — ehiC/mic, 3.2)

where the derivative is evaluated at the maximum
cross section of the Fermi surface, m, is the effective
mass perpendicular to the ¢o axis (we are treating here
only the case with the magnetic field parallel to the ¢,
axis), and 3C is the magnetic field strength. The mag-
nitude of the amplitude of oscillation depends upon a
quantity

|62A/6k22l - m|,/m121r, (3.3)

where this derivative is also evaluated at the maximum
cross section, and e, is the effective mass parallel to
the ¢o axis. In principal, information can be gained
from the phases of the oscillations, however, these
quantities were not determined precisely in Shoenberg’s
experiment and will not be discussed here.

Shoenberg finds two distinct contributions to the
de Haas-van Alpen effect, the two transverse masses
being 0.036m0 and 0.07m,. We identify these two con-
tributions as those of electrons and holes respectively
on the basis of the cyclotron resonance data of Galt
et al.,”* which has been analyzed by Lax and Zeiger?

2 Galt, Yager, and Dail, Phys. Rev. 103, 1586 (1956).
% B. Lax and H. J. Zeiger, Phys. Rev. 105, 1466 (1957).
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TasLE I. Calculated band parameters for graphite. The values of the band parameters chosen to fit the de Haas-van Alphen data
are given for assumed values of yo. Note that the upper half of the table refers to positive v, and the lower half refers to negative vya.
The cos3£ column refers to the position of the maximum cross section of the Fermi surface (for electrons in the upper half, and for holes
in the lower). The calculated “‘de Haas-van Alphen” mass anisotropies and carrier densities for electrons (#,) and holes (ns) are also

given.

Yo (ev) 1 (ev) vz (ev) A (ev) ¢ (ev) cosiém (miy/mr)e  (mi/mpn (ato’r::s‘l) (atofrlx:'s'l)
1.17 0.041 0.033 0.075 0.055 0.62 105 80 2.1 1.4
1.50 0.085 0.019 0.035 0.028 0.50 125 120 2.3 1.7
2.00 0.162 0.017 0.018 0.024 0.48 130 130 2.3 1.8
3.00 0.377 0.016 0.008 0.022 0.47 130 130 2.3 1.9
4.00 0.679 0.016 —0.012 0.022 0.47 130 130 2.3 1.9
1.17 0.057 —0.021 0.073 —0.012 —0.15 190 100 1.5 3.3
2.00 0.196 —0.014 0.225 —0.012 —0.22 210 120 1.6 3.8
4.00 0.811 —0.013 0.938 —0.012 —0.23 215 120 1.7 3.8

and by Noziéres.!® The former analysis yields electrons
of mass 0.05m¢ and holes of mass 0.07m,, while the
latter yields electrons of mass less than 0.05#, and
holes of mass between 0.06m¢ and 0.07m,. Further
evidence for the simultaneous presence of electrons and
holes is the fact that the Hall coefficient changes sign
asa function of magnetic field strength.?® As the char-
acter of the de Haas-van Alphen effect is determined
by the properties of the band structure near the maxi-
mum cross section of the Fermi surface, we may neglect
the fine structure associated with the parameter v; (at
least in the orientation here considered, in which the
magnetic field is parallel to the ¢y axis). We also neglect
the parameter v, as it causes no qualitative change in
the band structure. Neglect of v4 may cause a 109,
error in the other quantities and it should be taken
into account in later, more accurate treatments. With
these approximations, we are left with a four-parameter
band model. In discussing a particular experiment we
must add another unknown, the Fermi energy, as we
cannot be sure that the sample is absolutely pure. In
principle we could get six pieces of information from
the experiment (the three quantities discussed above
for each type of carrier), which would then determine
the five unknowns and provide one test relation. In
practice the longitudinal-to-transverse mass ratios turn
out to be of little use in determining parameters, but
do provide a consistency check. Thus, we are left with
four relations among five unknowns, and we shall
proceed by assuming values for vo and solving for the
other parameters.

The easiest way to work out the important quantities
for graphite is to use the relation vyo%o*=(E—E;)
X (E— E;), which is actually the secular equation for
the four-parameter band structure. We use the con-
vention of letting £ run over a double zone as discussed
in Sec. 2. We shall write f; and f. for the quantities
¢{—E; and {— E; evaluated at the maximum cross sec-
tion of the Fermi surface for electrons. The analogous
quantities for holes are written as f; and f,. It is con-
venient to calculate ¢® from A by the rule o2

2 D. E. Soule, Bull. Am. Phys. Soc. Ser. IT, 1, 255 (1956).

=3a¢*4 m/4m=3as®/ (2P%c). Shoenberg’s periods of 2.20
X105 and 1.65X 105 gauss™ for electrons and holes,
respectively, then give

f1fa=06.3X10"4y¢?; (3.42)
f3fa=84X 104y, (3.4b)

For the transverse mass we have m,/mo= (24%/3moas?)
Xd0%/0E=0.83990%/0E. Thus, we find that

f1+f2= 4.3%X 10_2’)’02;
Sat+fa=—8.3X10"2y

In writing formulas (3.5), we have used the choice of
Shoenberg’s masses quoted above, and explicitly written
the hole mass as negative. Even without specifying the
form of E; and E;, we can immediately solve Egs. (3.4)
and (3.5) for the f’s in terms of v¢. It turns out that
there is no solution possible for a v, less than 1.17 ev.

We must distinguish two cases, depending upon the
sign of .. For positive v,, the maximum ¢? for holes
comes at £=27 and the maximum o2 for electrons is
given by cos(3&m)=71f2/2v2f1. Using these expressions
for & Egs. (2.1) for E, and Ej, and the values of the
f’s found from above, we obtain five equation in five
unknowns (counting &, for electrons) for each value
of «vo. The set of equations can be simplified and easily
solved, the results being given in Table I. For negative
values of v,, the maximum o? for electrons is at £=0,
and that for holes is given by cos(3&x)=7v1fs/2v:fs.
The method of solution is the same as before and the
results are also given in Table 1.

Several qualitative features of the results can be
understood easily. In the case of positive vz and for v
a little larger than the minimum value, all the holes
are in a region where E versus o looks parabolic. In this
case the “Fermi energy” for holes (2y,—¢) is completely
determined by #, and o2, both of which are given by
experiment. Thus, 2y,—¢ is independent of v, and equal
to Shoenberg’s value of 0.010 ev. The same sort of
result holds for electrons, but as the maximum is
near the crossing of E; and E; (where E is linear in o)
the convergence is slower, and the asymptotic ¢ is not

for electrons,

for holes,

(3.5a)
(3.5b)

for electrons,

for holes,
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equal to Shoenberg’s value of 0.014 ev. The important
quantity 2y, which is the total band overlap, varies
little and thus is well determined by the present analy-
sis. Near o=0 the curvature of E versus o is propor-
tional to v¢*/v:. Thus, it is principally this quantity
which is determined by experiment, and its value is
approximately equal to 25 throughout the range of v,.
The value of A found for negative v, is much larger
than expected from theoretical considerations, there-
fore, we choose the positive sign of vs.

The mass ratios as a function of v, can easily be
calculated from the formula

2m|0°A/9k | =3 (co/ a0)*| %°/0]
=5.O[620'2/6£2| —*ml/m“, (3.6)

and are included in Table I. It is seen that the ratios
vary little with v, and therefore, cannot be used to
determine v,. However, we use the calculation as a
consistency check. Before making comparison it is
necessary to modify Shoenberg’s mass ratios. Shoenberg
analyzed the susceptibility on the basis of one ellipsoid
for each of the oscillating contributions (he did include
spin degeneracy, of course). For a positive v, we have
two complete hole surfaces (one for an HH edge and
another of an H'H’ edge) and four complete electron
surfaces. As the susceptibility is proportional to
(mn/my)}, we should divide Shoenberg’s m,,/m, ratio by
4 for holes and by 16 for electrons. The factors are in-
terchanged for negative .. Shoenberg’s mass ratios are
5500 for electrons and between 350 and 10 000 for holes.
Thus, for positive v, the experimental mass ratios are
350 for electrons and between 90 and 2500 for holes. It
is seen that the theoretical mass ratio for holes falls in
the allowed range, but for electrons the theoretical value
is a factor 2.5 too low. For negative v, the theoretical
ratio for holes is also in the allowed range (23 to 600),
but the theoretical value for electrons is a factor 7 lower
than the experimental value (1400). The better agree-
ment in the first case is further evidence for the positive
sign of v.,.

The calculated carrier concentrations are also in-
cluded in the table. The exact density of states is
worked out below, but we may give a quick estimate
here. The number of holes per.atom is approximately
2(0.0920,,2) (A¢/27), where Af is the height of the
Fermi surface. The quantity ¢, is fixed by experiment,
and A¢ is very nearly fixed by the geometry of the zone
to be equal to wr. Our rough estimate then gives 2.5X 10~5
holes per atom. Since the major dimensions of the
Fermi surface do not vary much with v,, neither do the
carrier concentrations. For comparison, Shoenberg’s
carrier concentrations estimated from the ellipsoid
model are 3.4X 1075 electrons per atom and between
1.4 and 7X 1075 holes per atom. Note that for positive
v there are excess electrons, but for negative -y, there
are excess holes. Hall-effect data (on a different crystal
than Shoenberg’s but one which exhibited nearly the
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same de Haas-van Alphen periods) indicate that there
are excess electrons in graphite at these temperatures.?
This fact is stronger evidence for the choice of a positive
v2. The carrier densities estimated from the galvano-
magnetic data are about a factor 4 lower than those
calculated here, being 0.54X 1075 electrons per atom
and 0.51X1075 holes per atom.”* Taking into account
the uncertainties in the de Haas-van Alphen data and
in the analysis of the galvanomagnetic effects, the dis-
crepancies are not considered to be serious.f

The exact density of states for the four-parameter
model is easily calculated. The total number of carriers
per atom inside a given energy surface is

£@
n=(0.092/2x) dta?,
D)

where o®= (E—E,)(E—E;)/ve® and £(1) and £(2) are
the vertical limits of the constant-energy surface, which
can be found using Egs. (2.1). The double-zone con-
vention is used and spin and site degeneracy are in-
cluded, so that (3.7) is evaluated along one vertical
edge in the double zone. The density of states per atom
per energy for each branch of the energy surface on
the vertical edge is

(3.7

0.092

N(E)=

2wy
X |[(2E—A—72)E—2 sinf+4y: sind£ eyt @ . (3.8)
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FiG. 5. The density of electronic states in graphite, calculated
under the assumption that yo=2 ev. The heavy line is the total
density of states, and the partial densities of states for holes and
electrons are indicated. The dashed line gives the density of
states for the two-dimensional model. The right-hand scale gives
the predicted value of the low-temperature specific-heat constant
v, the arrow indicating the measured value.

24 J. W. McClure, Bull. Am. Phys. Soc. Ser. II, 1, 255 (1956).

t Note added in proof.—An improved analysis of the galvano-
magnetic data now gives carrier densities within 209, of those
found in this paper.
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When E is greater than 2y;4A or less than —2vy;+A
the two-dimensional density of states holds:

N(E)=4(0.092/v¢) | E=4(y2+4)|.  (3.9)

Note that 3(y2+A) is the average energy of the four
bands on the vertical zone edge. The density of states
for vo=2 ev and positive v, is shown in Fig. 5. The
dashed line represents the two-dimensional density of
states for the same v, and average energy. The Wallace
three-dimensional density of states with the same vq
and v; is so nearly equal to the exact density of states
that it cannot be shown clearly in the same figure. The
coefficient () of the linear term in the low-temperature
specific heat is proportional to the density of states at
the Fermi level. The scale of v is given on the right-hand
side of Fig. 5 and the arrow represents the measured
value.?® As the specific-heat constant is obtained by
extrapolation, it is possible that the uncertainty in it is
of the order of the disagreement with the theory.

4. DISCUSSION

The band parameters derived from the de Haas-
van Alphen data (with a positive v2) are, for the most
part, of the order of magnitude of the theoretical esti-
mates discussed in Sec. 2. The one which is most out of
line is v, itself. However, it is the most difficult to
calculate from first principles, as it depends on higher
order effects. The fact that our calculated longitudinal-
to-transverse electron mass ratio is a factor 2.5 too low
implies that our calculated amplitude of oscillation of
the susceptibility would be a factor 1.6 too low. How-
ever, the experimental mass ratio is derived by a diffi-
cult process of curve fitting, so that there is a good deal
of uncertainty in the experimental value. It is gratifying
that the band model constructed to fit the de Haas-
van Alphen data gives rough agreement with the carrier
densities estimated from galvanomagnetic data, and
with the electronic specific heat. Preliminary results of
Soule?® on analysis of the oscillations in the galvano-
magnetic properties indicate that the best values of
the band parameters may be as much as 209, different
from those adopted here.

The determination of all the band parameters from

25 P, H. Keesom and N. Pearlman, Phys. Rev. 99, 1119 (1955),
Warren deSorbo (unpublished).
26 D, E. Soule, Bull. Am. Phys. Soc. Ser. II, 2, 140 (1957).

W. McCLURE

experiment is a problem with seven degrees of freedom
(six band parameters plus the Fermi energy). Applica-
tion of the de Haas-van Alphen effect reduces the
number of degrees of freedom to three. This is a stroke
of good luck as most other experiments would be very
difficult to analyze with seven degrees of freedom. It is
interesting to speculate on the remaining parameters.
For instance, the fine structure caused by 73 is most
likely the source of the abundant structure in the
cyclotron resonance experiment. The minority carriers
identified by Lax and Zieger could be the carriers in
the projections on the Fermi surface (see Fig. 4).
Noziéres’ interpretation of the cyclotron resonance
structure differs from Lax and Zieger’s, but he also
uses the SW model and relies on the existence of vs.
Thus, we may anticipate that correct analysis of cyclo-
tron resonance will provide a value of v;. Once v; is
obtained, it will furnish a good idea of the value of v,.
The case for yo may be more difficult. Firstly, for most
of the carriers in pure graphite, the energy formulas
contain v, only in the combination y¢*/v:. Thus, any
property which depends roughly equally on all carriers
will be insensitive to vy,. One way to obtain 7, is to
observe effects due to states further away from the
zone edge (but not so far that terms in o2 are important),
either by doping, radiation damage, or by applying
an extremely strong magnetic field. Another course is
to compute the magnitude of the diamagnetic sus-
ceptibility. It has been demonstrated that a large
susceptibility can result from interband transitions near
a degeneracy point.!'® Thus, the largest contribution to
the susceptibility may come from near the crossing of
E; and Ej;, where the energy depends on v, explicitly.
It should be pointed out that a preliminary investiga-
tion of the susceptibility calculation seems to imply
that a value of v; as large as accepted here quenches
the large susceptibility calculated on the two-dimen-
sional model. This has led Hearing and Wallace* to
make an entirely different interpretation of the de Haas-
van Alphen effect.
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