
PHYSI CAL REVIEW VOLUM E 108, NUM 8 ER 3 NOVEM B ER 11, 1957

Band Structurure of Graphite and de He aas-van Alphen Effec

Nutzortul Carbon Res
J. W. McCLURE

on esearch Laborutorzes Nut
'

u zonal Carbon Company, * Clevelu

(R dJ I 3, 1957

The de Haas-van Al hen effp ene ectin the ma net' p tyo
Lifschitz and

~ ~

or general ban
grap itehasb

h l

y app ying

T """" '"" 'for th't 'p""d' f

ev 3

ming the band structure: (1) th vner a
y. he

y egenerate bands at the
r an a out 1.2 ev and 4

e corner of the Brillouin
( ) the relation y& ——0.04

o allace's notation). Calc l

data.

n o a
' . a cu ated carrier densit'

o es, in rough agreement h
n wi electron specific-hen

'
eci c- eat data is also obtained

I. INTRODUCTION

E cucurrent carriers in g h

the larrge anisotropy in the cr stal st
fl t ti

~ of a single layer This was fir

pyof the crystal found that th h h

e o write formulas for

e ig est occupied ba
unoccupied band ( h

num er which invol

n w ich we shall callca the valence and

Sec. 2. Somen mo e is described in

an s, respectivel arey re degenerate in en-

' ~

arne ers are determined

ix zone corners (the Br'

using information ' f'
n gained from de H

3 b single layer beeing simply a two-d'

e results are consistent w'
u a ions of the single-la er

on

Co l o dT l 'L

heat.
a an the low-tern er the valence d

ayor, Lomer'and
an conduction bands are

o grap ite is de ict

urt ermore the
egenerate at

s a

that the only part of h brrange in hexagonal la er l

energies near the de enera

14
ares neighbors in the la

ar o t e band structur

apart. The ao and d
are stac ed in abub I t io b

omenaist ere ionne

co istances are 2

e ween la ers l

o e t at, of the four atom

e sp itting is small ab

e neig ors directl abo
a oms in a unit

y a ove and below able comPared to th
an wi th (about 15 e

onvenience, we alwa s
'

I th th -di
'

1

o t e kinetic ener ies

ways imagine a Cartesian

- imensional case there ar

embedded in the cr st l

'
n axis system and two valence b d (

are two conduction

vertical andrys a, with the 2' axis v

ce an s not countin s
'

g spin degeneracy)

is a thin hexagonal pillbox
xis o t e crystal. ) The Br'

~ rillouin zone along the vertical zon d
re required by symmetre ry to be degenerate

)

pi ox, s own in Fig. 2. Because of

ica zone edges (PH and H'H'). WaHace's

CG/2
I

Fio. 1. Thhe graphite crystal lattice.

~ ~ ~

A ivision of Union Carb'dar i e Corporation.

Fxa. 2. The reduced Srillo
'

the coordinate sy t
ri ouin zone for gra hite

e sys em used.
p i e, showing

'P, R.. Wallace, Phys. Rev. 71 622 1 47}.

465, 815 (1952).

rogress Report, Sohd State d
p setts Institute of T h ology,

612



BAN D STRUCTURE OF GRAPH I TE

three-dimensional calculation, ' which was a tight-
binding calculation taking into account nearest-neighbor
interactions only, has one conduction band degenerate
with one valence band along the vertical zone edges,
but no band overlap. A calculation by Johnston'
which took into account more distant neighbors gave
extra degeneracies near the zone edges and a small
overlap between valence and conduction bands. A
later calculation by Johnston' reveals a larger band
overlap due to the dependence of the degeneracy energy
on k, (along HH and P'H'). The possibility of overlap
of this kind has been pointed out by Slonczewski' and
also found by Horton and Tauber. '

In the face of the increasing complexity of the band
structure, it is natural to turn to group theory to estab-
lish which types of structure are possible. Group-
theoretical studies have been made for the single-layer
Brillouin zone by Lomer' and Slonczewski, ' and for
the three-dimensional zone by Carter. ' Slonczewski'
and Slonczewski and Weiss' (henceforth called SW)
have combined group theory and perturbation theory
in a calculation which will be described in the next
section.

2. BAND STRUCTURE MODEL

The basic idea of the Slonczewski-Weiss model can
be stated very simply: previous calculations show that
the interesting part of the Brillouin zone is quite near
the vertical zone edges (no further from the zone edge
than about one percent of the distance from the zone
edge to zone center); thus, it is sensible to make a
Taylor expansion of the Hamiltonian in terms of ~,
and Ir„(distances from the zone edge in the x and y
directions). However, in the s direction, a Fourier
expansion of the Hamiltonian is made as the layer
planes are widely separated and the series is rapidly
convergent (a case of ideal tight-binding). From a
study of the symmetry of the lattice, they find it
possible to write the eigenfunctions corresponding to
any point on a zone edge in terms of Bloch sums of
single-layer eigenfunctions. For points not on the edge
they use the method of Bouckaert, Smoluchowski, and
Wigner" in which the change in the Hamiltonian is
given to erst order by fi, tp y/m. In the above, x is the
shortest vector from the zone edge to the point in
question, and p is the momentum matrix for the states
on the zone edge (at k —x). The method can be ex-

tended to second order in x by use of Van Vleck per-

5 D. F. Johnston, Proc. Roy. Soc. (London) A227, 349 (1955).' D. F. Johnston, Proc. Roy. Soc. (London) A237, 48 (1956).
7 J. C. Slonczewski, Ph.D. thesis, Rutgers University, 1955

(University Microfilms, Ann Arbor, Michigan, 1956, Mic 56-2314).
P G. K. Horton and G. E. Tauber (unpublIshed).' J. L. Carter, Ph.D. thesis, Cornell University, 1953 (un-

published) .
'0 J. C. Slonczewski and P. R. Weiss, Phys. Rev. 99, 636(A)

(1955).
~ Souckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58

(1936).

turbation theory" as Shockley did for cubic lattices '3

The same "k y" method has been recently used with
considerable success in the study of the valence bands
of several semiconductors. " Thus, the form of the
momentum matrix is the key to the type of band struc-
ture, and it has been a major concern in the work of
Slonczewski and Weiss.

The labeling of the states on the zone edge which we
adopt is based on that of SW and is explained below:
Band 1 corresponds to the sum of Bloch waves made
up from 2P, orbitals based on A and A' atoms and is
generally the highest in energy; Band 2 corresponds to
the difference of the same Bloch waves based on 2 and
2' atoms and is generally the lowest in energy. Bands 1
and 2 are degenerate on the zone corners (H and H').
Bands 31 and 32 correspond to Bloch waves made up
of 2p, orbitals based on IJ' and J3 atoms, respectively.
Bands 31 and 32 are degenerate everywhere on the
zone edge.

In writing the Hamiltonian we shall use a set of
dimensionless variables, cr= tan '(—«,/~„), o =-',V3ap

~
~ ~,

(=k,cp. In these variables, Wallace's S can be written
near the zone corner as 8= o. exp(io. ). To give an idea
of relative magnitudes, the 0. value for the zone center
is 3.6, and height of the zone in t.he same units is
%3prap/cp=1. 99. The number of carriers of both spins
contained in two cylinders of radius 2a/43ap and height
2pr/cp (there are two such complete cylinders in a zone)
is 0.092o' per atom or 1.05&10220' per cm'. In pure
graphite, we shall see that maximum 0. values for
carriers are of the order of 0.03 and carrier concentra-
t.ions are of the order of 10 ~ per atom.

In the notation established, the Hamiltonian is

0H=

Hg3

0
E2

—B23

H$3
H23
E3

H$3

H33
E3 .

(2.1a)

Hpp ypI'o exp(io.). —— (2.1g)

In the above, we have put I'=2 cos(—',$). The Hamil-
tonian is taken from SW with the approximation that
only the first nonvanishing k;dependent term is kept in
each matrix element. As written, it applies to the zone
edge HH; the complex conjugate applies to H'H'. SW

» J. H. Van Vleck, Phys. Rev. 33, 467 (1929).
"W. Shockley, Phys. Rev. 78, 173 (1950).
~ See, for example, Dresselhaus, Kip, and Kittel, Phys. Rev.

98, 368 (1955) or E. O. Kane, J. Phys. Chem. Solids 1, 82 (1956).

where the order of rows and columns is 1, 2, 31, 32, and

(2.1b)

(2.1c)

(2.1d)

Hrp=2 '(—yp+y4I')o exp(iver), (2.1e)

Esp=2 l(yp+y41')o. exp(in), (2.1f)
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In the foregoing, $ is restricted to the 6rst zone (if P

is allowed in the second zone the same two bands are
reproduced). It is seen that for cr= aran~, (2.4a) gives two
overlapping parabolas, and for other n's the extra
crossing of bands disappears. Note that there are three
satellite minima (or maxima) in addition to the central
one. With the estimates of parameter values given
previously, the scale of the energy variation due to p3
is about 0.001 ev, and the variation is important for 0.

values of about 0.001.
We are now in a position to construct a picture of

the Fermi surface in pure graphite, which is shown in
Fig. 4. In constructing the figure, we have used the
Fermi surfaces given by Fig. 3 (with the electron sur-
faces translated back into the central zone) and applied
the trigonal warping due to y3. We conclude this sec-
tion by noting that the group theory-perturbation
theory treatment did not uncover any qualitative type
of behavior not already reported. It does, of course,
include all previous calculations as special cases. Its
greatest value is that it provides fairly simple, general
formulas and contains the minimum number of ad-
justable parameters.

3. DE HAAS-VAN ALPHEN EFFECT

FIG. 4. The Fermi sur-
face for pure graphite.
The central surface con-
tains holes and the outer ~~/Co
surfaces contain elec-
trons. The length-to-
width ratio of each sur-
face is about 13. The
trigonal anisotropy is ex-
aggerated for clarity.

ELEGTRONS

HOLES

ELECTRONS

The low-temperature oscillatory behavior of the
magnetic susceptibility of graphite has been studied by
Shoenberg" and by Berlincourt and Steele, "with sub-
stantial agreement. Shoenberg analyzed his data on the
basis of constant tensor mass theory. Recently Lifshitz
and Kosevich2P have presented a theory which is valid
for general band structures. The dependence of the
susceptibility on temperature and magnetic field
strength is the same in both theories, so that Shoen-
berg's analysis can be utilized by constructing a transla-
tion key for the parameters involved in the two theories.
In the general theory, the oscillatory susceptibility is
determined by the properties of the band structure in
the region where the cross section of the Fermi surface
perpendicular to the magnetic field has its maximum (or
minimum) value. The period of oscillation in inverse
magnetic field is given by

P= 2a e/A„kc + P/l, (3.1)

where A is the maximum cross section (measured in
rationalized wave numbers squared), P is the double
effective Bohr magneton and t' is the Fermi energy.
The equality holds for the general case and the arrow
indicates the value taken for the case of constant tensor
mass. The dependence of amplitude on field strength
and temperature is specified by the ratio of the magnetic
energy-level spacing to the thermal energy. The energy

' D. Shoenberg, Phil. Trans. Roy. Soc. (London) 245, 1 (1952)-.' T. G. Berlincourt and M. C. Steele, Phys. Rev. 98, 956 (1955).
20 I. M. Lifshitz and A. M. Kosevich, J. Exptl. Theoret. Phys.

(U.S.S.R.) 29, 730 (1955) Ltranslation: Soviet Phys. JETP 2,
636 (1956)1.

)s/Akc, )') -+ m„/m, 2s., (3.3)

where this derivative is also evaluated at the maximum
cross section, and mlt is the effective mass parallel to
the cp axis. In principal, information can be gained
from the phases of the oscillations, however, these
quantities were not determined precisely in Shoenberg's
experiment and will not be discussed here.

Shoenberg finds two distinct contributions to the
de Haas-van Alpen effect, the two transverse masses
being 0.036mp and 0.07mp. We identify these two con-
tributions as those of electrons and holes respectively
on the basis of the cyclotron resonance data of Gait
et al. ,"which has been analyzed by Lax and Zeiger"
"Gait, Yager, and Dail, Phys. Rev. 103, 1586 (1956).
'2 B.Lax and H. J. Zeiger, Phys. Rev. 105, 1466 (1957).

level spacing is given by

AE= (27reX/hc)r)E/r)A ~ eAK/m, c, (3.2)

where the derivative is evaluated at the maximum
cross section of the Fermi surface, m& is the effective
mass perpendicular to the cs axis (we are treating here
only the case with the magnetic field parallel to the cp

axis), and K is the magnetic field strength. The mag-
nitude of the amplitude of oscillation depends upon a
quantity
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TAsr.z I. Calculated band parameters for graphite. The values of the band parameters chosen to 6t the de Haas-van Alphen data
are given for assumed values of y0. Note that the upper half of the table refers to positive 72, and the lower half refers to negative y2.
The cos~g column refers to the position of the maximum cross section of the Fermi surface (for electrons in the upper half, and for holes
in the lower). The calculated "de Haas-van Alphen" mass anisotropies and carrier densities for electrons (a.) and holes (Ni) are also
given.

vo (ev) yi (ev) y2 (ev) 6 (ev) g (ev)
SQ

(mal/mL)» (mf}/mg)I (atoms ') (atoms 1)

1.17
1.50
2.00
3.00
4.00

1.17
2.00
4.00

0.041
0.085
0.162
0.377
0.679

0.057
0.196
0.811

0.033
0.019
0.017
0.016
0.016

—0.021—0.014—0.013

0.075
0.035
0.018
0.008—0.012

0.073
0.225
0.938

0.055
0.028
0.024
0.022
0.022

—0.012—0.012—0.012

0.62
0.50
0.48
0.47
0.47

—0.15—0.22—0.23

105
125
130
130
130

190
210
215

80
120
130
130
130

100
120
120

2.1
2.3
2.3
2.3
2.3

1.5
1.6
1.7

1.7
1.8
1.9
1.9

3.3
3.8
3.8

and by Xozieres. '~ The former analysis yields electrons
of mass 0.05mo and holes of mass 0.07mo, while the
latter yields electrons of mass less than 0.05mo and
holes of mass between 0.06mo and 0.07mo. Further
evidence for the simultaneous presence of electrons and
holes is the fact that the Hall coeScient changes sign
as a function of magnetic Geld strength. "As the char-
acter of the de Haas-van Alphen e8ect is determined
by the properties of the band structure near the maxi-
mum cross section of the Fermi surface, we may neglect
the fine structure associated with the parameter ys (at
least in the orientation here considered, in which the
magnetic Geld is parallel to the cp axis). We also neglect
the parameter y4 as it causes no qualitative change in
the band structure. Neglect of y4 may cause a 10%%u~

error in the other quantities and it should be taken
into account in later, more accurate treatments. With
these approximations, we are lef t with a four-parameter
band model. In discussing a particular experiment we
must add another unknown, the Fermi energy, as we
cannot be sure that the sample is absolutely pure. In
principle we could get six pieces of information from
the experiment (the three quantities discussed above
for each type of carrier), which would then determine
the five unknowns and provide one test relation. In
practice the longitudinal-to-transverse mass ratios turn
out to be of little use in determining parameters, but
do provide a consistency check. Thus, we are left with
four relations among five unknowns, and we shall
proceed by assuming values for yo and solving for the
other parameters.

The easiest way to work out the important quantities
for graphite is to use the relation apso'=(E —E,)
X(E—Es), which is actually the secular equation for
the four-parameter band structure. We use the con-
vention of letting g run over a double zone as discussed
in Sec. 2. We shall write fi and fs for the quantities

Es and t Es evaluated —at —the maximum cross sec-
tion of the Fermi surface for electrons. The analogous
quantities for holes are written as f, and f4. It ls coli-
venient to calculate o' from A by the rule o- 2

~ D. E. Soule, Bull. Am. Phys. Soc. Ser. II, 1, 255 (1956}.

for holes, fsfr=8.4X 10-4yp'. (3.4b)

For the transverse mass we have nz, /ygp ——(2'/3mpag)
XBo/BE=0 8.398o /BE. Thus, we. find that

for electrons, fi+fs 4.3X 1——0—'yp';

for holes, fs+f4= —8.3X10 'yps.

(3.5a)

(3.5b)

In writing formulas (3.5), we have used the choice of
Shoenberg's masses quoted above, and explicitly written
the hole mass as negative. Even without specifying the
form of Es and Es, we can immediately solve Eqs. (3.4)
and (3.5) for the f's in terms of yp. It turns out that
there is no solution possible for a yg less than 1.17 ev.

We must distinguish two cases, depending upon the
sign of y2. For positive y2, the maximum o' for holes
comes at $=2n. and the maximum o' for electrons is
given by cos(-', P-) =Vrfs/2ys fi. Using these expressions
for g, Eqs. (2.1) for Es and Es, and the values of the
f's found from above, we obtain five equation in five
unknowns (counting g for electrons) for each value
of yo. The set of equations can be simplified and easily
solved, the results being given in Table I. For negative
values of ys, the maximum o' for electrons is at )=0,
and that for holes is given by cos(s$ ) =yrf4/27sf, .
The method of solution is the same as before and the
results are also given in Table I.

Several qualitative features of the results can be
understood easily. In the case of positive y2 and for yo
a little larger than the minimum value, all the holes
are in a region where E versus o- looks parabolic. In this
case the "Fermi energy" for holes (2ys f) is comp—letely
determined by m~ and o-', both of which are given by
experiment. Thus, 27s—f is independent of yp and equal
to Shoenberg's value of 0.010 ev. The same sort of
result holds for electrons, but as the maximum is
near the crossing of Es and Es (where E is linear in o.)
the convergence is slower, and the asymptotic |is not

=3ap'A /4n =3aP/(2Pkc). Shoenberg's periods of 2.20
X10 ' and 1.65&10 ' gauss ' for electrons and holes,
respectively, then give

for electrons, frfs=6.3X 10 pp', (3.4a)
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equal to Shoenberg's value of 0.014 ev. The important
quantity 2y2 which is the total band overlap, varies
little and thus is well determined by the present analy-
sis. Near 0-=0 the curvature of E versus 0- is propor-
tional to yp/7i. Thus, it is principally this quantity
which is determined by experiment, and its value is
approximately equal to 25 throughout the range of pp.
The value of 6 found for negative y2 is much larger
than expected from theoretical considerations, there-
fore, we choose the positive sign of y2.

The mass ratios as a function of po can easily be
calculated from the formula

2orlasw/rlk 'l =ss(cs/as)sly'o /Bpl
=S Ola'a'/~PI ~mi/m„, (3.6)

and are included in Table I. It is seen that the ratios
vary little with yo and therefore, cannot be used to
determine yo. However, we use the calculation as a
consistency check. Before making comparison it is
necessary to modify Shoenberg's mass ratios. Shoenberg
analyzed the susceptibility on the basis of one ellipsoid
for each of the oscillating contributions (he did include
spin degeneracy, of course). For a positive ys we have
two complete hole surfaces (one for an HH edge and
another of an H'H' edge) and four complete electron
surfaces. As the susceptibility is proportional to
(m«/nt&) l, we should divide Shoenberg's nt„/rtt, ratio by
4 for holes and by 16 for electrons. The factors are in-
terchanged for negative y~. Shoenberg's mass ratios are
5500 for electrons and between 350 and 10 000 for holes.
Thus, for positive y2 the experimental mass ratios are
350 for electrons and between 90 and 2500 for holes. It
is seen that the theoretical mass ratio for holes falls in
the allowed range, but for electrons the theoretical value
is a factor 2.5 too low. For negative y2 the theoretical
ratio for holes is also in the allowed range (23 to 600),
but the theoretical value for electrons is a factor 7 lower
than the experimental value (1400). The better agree-
ment in the first case is further evidence for the positive
sign of p2.

The calculated carrier concentrations are also in-
cluded in the table. The exact density of states is
worked out below, but we may give a quick estimate
here. The number of holes per atom is approximately
-', (O.O92o ')(&$/2s. ), where A$ is the height of the
Fermi surface. The quantity 0- ' is Axed by experiment,
and A$ is very nearly fixed by the geometry of the zone
to be equa1 to x. Our rough estimate then gives 2.5)& 10 5

holes per atom. Since the major dimensions of the
Fermi surface do not vary much with yo, neither do the
carrier concentrations. For comparison, Shoenberg's
carrier concentrations estimated from the ellipsoid
model are 3.4)&10 ~ electrons per atom and between
1.4 and 7&10 ~ holes per atom. Note that for positive

y2 there are excess electrons, but for negative y2 there
are excess holes. Hall-effect data (on a different crystal
than Shoenberg's but one which exhibited nearly the

same de Haas-van Alphen periods) indicate that there
are excess electrons in graphite at these temperatures. 3

This fact is stronger evidence for the choice of a positive
y2. The carrier densities estimated from the galvano-
magnetic data are about a factor 4 lower than those
calculated here, being 0.54&(10 5 electrons per atom
and 0.51X10 ' holes per atom."Taking into account
the uncertainties in the de Haas-van Alphen data and
in the analysis of the galvanornagnetic eGects, the dis-
crepancies are not considered to be serious. f

The exact density of states for the four-parameter
model is easily calculated. The total number of carriers
per atom inside a given energy surface is

4(2)

d$os,rt= (0.092/2s) ) 0(&&

(3.7)

where o'= (E—Es)(E—Es)/ys' and $(1) and $(2) are
the vertical limits of the constant-energy surface, which
can be found using Eqs. (2.1). The double-zone con-
vention is used and spin and site degeneracy are in-
cluded, so that (3.7) is evaluated along one vertical
edge in the double zone. The density of states per atom
per energy for each branch of the energy surface on
the vertical edge is
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FIG. 5. The density of electronic states in graphite, calculated
under the assumption that F0=2 ev. The heavy line is the total
density of states, and the partial densities of states for holes and
electrons are indicated. The dashed line gives the density of
states for the two-dimensional model. The right-hand scale gives
the predicted value of the low-temperature specific-heat constant
7, the arrow indicating the measured value.

s4 J.W. Mcclure, Bull. Am. Phys. Soc. Ser. II, I, 255 (1956).
I' Note added in proof. An improved analysis o—f the galvano-

magnetic data now gives carrier densities within 20% of those
found in this paper.

0.092
X(E)=

2' p

)& l l (2E—a—y,)(—y, sinp+4y, sin-,'Ql(, l«'i l. (3.8)
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When E is greater than 2yt+6 or less than —2yi+6
the two-dimensional density of states holds:

Note that s(ps+6) is the average energy of the four
bands on the vertical zone edge. The density of states
for F0=2 ev and positive y2 is shown in Fig. 5. The
dashed line represents the two-dimensional density of
states for the same yo and average energy. The Wallace
three-dimensional density of states with the same yo
and p& is so nearly equal to the exact density of states
that it cannot be shown clearly in the same figure. The
coefficient (y) of the linear term in the low-temperature
specific heat is proportional to the density of states at
the Fermi level. The scale of y is given on the right-hand
side of Fig. 5 and the arrow represents the measured
value. "As the specific-heat constant is obtained by
extrapolation, it is possible that the uncertainty in it is
of the order of the disagreement with the theory.

4. DISCUSSION

The band parameters derived from the de Haas-
van Alphen data (with a positive ys) are, for the most
part, of the order of magnitude of the theoretical esti-
mates discussed in Sec. 2. The one which is most out of
line is y2 itself. However, it is the most difFicult to
calculate from first principles, as it depends on higher
order eGects. The fact that our calculated longitudinal-
to-transverse electron mass ratio is a factor 2.5 too low
implies that our calculated amplitude of oscillation of
the susceptibility would be a factor 1.6 too low. How-
ever, the experimental mass ratio is derived by a difIi-
cult process of curve fitting, so that there is a good deal
of uncertainty in the experimental value. It is gratifying
that the band model constructed to fit the de Haas-
van Alphen data gives rough agreement with the carrier
densities estimated from galvanomagnetic data, and
with the electronic specific heat. Preliminary results of
Soule" on analysis of the oscillations in the galvano-
magnetic properties indicate that the best values of
the band parameters may be as much as 20% different
from those adopted here.

The determination of all the band parameters from

ss P. H. Keesom and N. Pearlman, Phys. Rev. 99, 1119 (1955),
Warren deSorbo (unpublished).

"D.E. Soule, Bull. Am. Phys. Soc. Ser. II, 2, 140 (1957).

experiment is a problem with seven degrees of freedom
(six band parameters plus the Fermi energy). Applica-
tion of the de Haas-van Alphen e6'ect reduces the
number of degrees of freedom to three. This is a stroke
of good luck as most other experiments would be very
difficult to analyze with seven degrees of freedom. It is
interesting to speculate on the remaining parameters.
For instance, the fine structure caused by y3 is most
likely the source of the abundant structure in the
cyclotron resonance experiment. The minority carriers
identified by Lax and Zieger could be the carriers in
the projections on the Fermi surface (see Fig. 4).
Nozieres' interpretation of the cyclotron resonance
structure diGers from Lax and Zieger's, but he also
uses the SW model and relies on the existence of y3.
Thus, we may anticipate that correct analysis of cyclo-
tron resonance will provide a value of y3. Once 73 is
obtained, it will furnish a good idea of the value of y4.
The case for yo may be more dificult. Firstly, for most
of the carriers in pure graphite, the energy formulas
contain ys only in the combination yes/yi. Thus, any
property which depends roughly equally on all carriers
will be insensitive to yo. One way to obtain yo is to
observe eGects due to states further away from the
zone edge (but not so far that terms in o' are important),
either by doping, radiation damage, or by applying
an extremely strong magnetic field. Another course is
to compute the magnitude of the diamagnetic sus-
ceptibility. It, has been demonstrated that a large
susceptibility can result from interband transitions near
a degeneracy point. "Thus, the largest contribution to
the susceptibility may come from near the crossing of
E2 and E3, where the energy depends on yo explicitly.
It should be pointed out that a preliminary investiga-
tion of the susceptibility calculation seems to imply
that a value of p& as large as accepted here quenches
the large susceptibility calculated on the two-dimen-
sional model. This has led Hearing and Wallace" to
make an entirely different interpretation of the de Haas-
van Alphen eGect.
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