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The usual theories of electrical conductivity suffer from a number of weaknesses. This paper attempts,
on the basis of a simple model, to put the theory on as rigorous a basis as possible. A technique is developed
which gives the entire density matrix of the system of charge carriers in the steady state. Our model consists
of noninteracting free (or Bloch) electrons being scattered by "random" rigid impurity centers. The density
matrix is developed in ascending powers of the strength of the scattering potential. The familiar Boltzmann
transport equation represents an approximation valid in the limiting cases of very weak or very dilute scat-
terers. Higher order corrections are given.

L INTRODUCTION
" 'N this paper we shall be concerned with the problem
~ ~ of calculating the electrical conductivity of a some-
what simplified model of a real substance, on as rigorous
a basis as possible. The problem of electrical conduc-
tivity is usually treated on the basis of a transport
eqlafion. ' This is an equation for a distribution function

f, which describes the probability of a particle being in
any given state. The equation is determined by the
requirement that in the steady state the total rate of
change of the distribution function must vanish. This is
in turn a sum of the change due to the acceleration by
the electric Geld, and a term due to collisions, which
limit this acceleration. Thus the usual transport equa-
tion has the form

(~fl~t) field+ (~fir)t) coilisions

Equation (1) is incomplete in several respects. First,
it is well known that in quantum mechanics if we wish
to find the average of a physical quantity we need in
general not only the probabilities of diferent states
being occupied, but the entire density matrix (see
below). Now the occupation probabilities of some com-

plete set of states are just the diagonal elements of
the density matrix in this representation. Therefore for
(1) to contain all necessary information we have to
assume that we can And a "natural representation" for
our system, and that for this representation the density
matrix may be considered as diagonal at all times. This
so-called "random phase" assumption must also be
made in the derivation of (1), and is a serious weakness
of the derivation. Further, it is not always clear just
what "natural representation" should be chosen, and

one can obtain diferent answers by making diferent
choices. 2

Recently considerable progress in the question of
removing this random-phase assumption has been made
by Van Hove, ' who studied the question of the approach
to equilibrium rather than the steady state in the pres-
ence of an external electric Geld. He was able to show
that the random-phase assumption could be replaced
by certain properties of the interaction causing colli-
sions, and that these properties could be verified in
particular problems. The method we shall use to avoid
the random-phase assumption is formally rather dif-
ferent from that of Van Hove but rests, very likely, on
similar properties of the interaction.

Another weakness of Eq. (1) in its usual form is that
it treats the collision interaction by the lowest order of
perturbation theory. The question of what exactly
occurs in higher order seems never to have been in-
vestigated carefully. We shall extend the theory in
this direction also, and show that in the higher orders
terms of the usual form appear but, in addition, there
are some characteristic deviations from the standard
transport equation. Some of these new terms would
seem to play a role in the theory of the Hall eGect in
ferromagnetic substances. '

The general technique is the following. We shall
imagine a closed system in the presence of an external
electric field which is gradually being turned on. The
sample is taken to be cubical in shape and periodic
boundary conditions are imposed. These boundary
conditions allow the existence of a steady current and
are justified in detail in Appendix A. The density matrix
of this system then has a well-dehned equation of mo-
tion. We study this density matrix for a given electric
Geld in the limit where the rate of turning on becomes

*Diferent portions of this work were performed at Carnegie
Institute of Technology, The University of Michigan, Bell Tele-
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of California, Berkeley, California. Assistance by the OfBce of
Naval Research is gratefully acknowledged,

' See, for example, A. Sommerfeld and H. Bethe, Handbuch der
I'hyszk (Edwards Brothers, Ann Arbor, 1943), Vol. 24, Part 2,
pp. 499—554.

2 This situation arises in practice when considering the problem
of the Hall effect in ferromagnetic substances. Differing results
were obtained by R. Karplus and J. M. Luttinger LPhys. Rev. 95,
1154 (1954)g and J. Smit LPhysica 21, 1 (1955)j, with different
assumptions. In fact, the desire to settle this controversy was the
starting point of this paper. We hope to return to the application
of our results to the Hall effect question in a later publication.

s L. Van Hove, Physics 21, 517 (1955).
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very slow. The solution is obtained in the form of a
power series in a parameter t, which measures the
strength of the interaction causing collisions. To the
lowest order in X the standard transport equation is
obtained; in higher order there are deviations.

In Sec. II we shall consider a collection of electrons
so dilute that we can neglect their interaction with each
other and can also neglect the eGect of Fermi-Dirac
statistics on their behavior. Then every electron may be
treated as completely independent of all the others, and
we have essentially to deal with a single-electron prob-
lem. The collision mechanism is provided by a set of
fixed impurities distributed at "random" throughout
the volume occupied by the electrons. (The precise
meaning of "random" in this problem will be made
clear in the discussion below. ) The electrons are treated
as completely free except for their interaction with the
impurities and with the external electric field. The
impurities are allowed to be anywhere in the volume
under consideration. In this section we limit ourselves
to the lowest order effects in the strength of the inter-
action of the electrons with the impurities. In Sec. III,
the generalization to higher orders in the strength of the
interaction is considered. In Sec. IV, we generalize the
discussion to the case where there is also a periodic
potential present.

In the Appendices we deal with a number of related
questions. In treating the acceleration of electrons by
an external homogeneous electric field there are certain
well known technical difhculties, associated with the
limitation of the current by the walls of the container.
In Appendix A a ring-shaped sample is discussed in
detail leading to an unambiguous prescription for deal-
ing with these difhculties. In Appendices 8 and C some
of the details of the derivations omitted in the text are
given. In Appendix D the approach to the steady state
and the e8ect of time-dependent external fields are
considered. In the main body of the text we have
limited ourselves to effects linear in the external field;
in Appendix K we show that the quadratic e8ects give
rise to the Joule heating. Finally, Appendix F general-
izes these results to the case of Fermi-Dirac statistics.

We hope to return to the treatment of electron-
electron and electron-phonon interaction by these
techniques in a later publication.

II. MATHEMATICAL FORMULATION OF
THE PROBLEM

The total Hamiltonian, Hz, for each electron in our
problem may be written

Hr Hp+H'+HI, ——

where Ho is the Hamiltonian of the free electrons, H'
the interaction with the impurity centers and Hp the
interaction with the external electric field. We have4

Hp= p'/2m, , (3)

Hp= —eE x .

(pr) „=-P a„'(t)a„'*(t)
pi I

in the P„representation, is the density matrix. The
expectation value of any observable quantity 2 at
time t is given by

A(t) =Tr[p, (t)A]. (7)

Further, pr(t) varies with time according to

~(~prl~t) =LHr prj (8)

(Units are chosen such that A=1.)
The diagonal elements (pr)„„give the probability

of finding an electron in the state g . The sum of all
these probabilities is of course unity for a wave function
normalized to unity. If we can find p& from (8) we can
calculate the observed value of any quantity (for
example, the current) by means of (7).

We shall use (8) in the following way. Imagine that
in the very remote past (t= —~) we have a collection
of electrons in equilibrium with a heat bath at tempera-
ture T. There is no external field present. Then at this
time contact with the heat bath is broken and the
electric field is very slowly turned on. It is convenient
to turn the field on according to the formula

E =E Pe"
)

so that E is zero at t= —~ and reaches its full value

In (4), X is some dimensionless measure of the strength
of the interaction of the impurity with the electron,
p(r) is the interaction energy with a single impurity
center, and the ri are the locations of the Ã impurity
centers. In (5), e is the (algebraic) charge of the elec-
tron, the E (n= 1,2,3) are the x, y, and s components of
the external field, respectively, and the repeated index
o. implies a summation over it. We shall sometimes write

H= Ho+H—',

the total Hamiltonian in the absence of an external field.
We now consider a collection of v electrons moving

under the action of the same Hp and introduce the
density matrix p~ for this collection. We denote the
wave functions of the electrons by P'(r, t) and expand
them in a complete set of time-independent functions
0 (&):

P'(r, t) =P„a„'(t)P„(r).
Then the Hermitian matrix pr(t), with elements

' We shall not indicate explicitly the vector character of k or r.
Thus e'~'" means e'"' and k/k' means

krak'

throughout.
~ See, for example, R. C. Tolman, Principles of Statistical

Mechanics (Oxford University Press, New York, 1930},pp. 327 G.
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E ' at t=0. We shall see later that the results do not
depend on s as long as it is chosen "reasonably. " [See
discussion following Eq. (47).$ The collection of elec-
trons is now described by a single-particle density
matrix pr, whose time development is given by (8).
We shall be interested in the solution for t=0 when the
field has reached its full value.

Since the entire system is isolated, the conductivity
which we calculate in this way will be an "adiabatic"
conductivity. In general we would expect this to be
equal to the more usual isothermal. " conductivity.
We shall not, however, enter into a discussion of this
point here.

With this in mind, our problem is now to find a solu-
tion of (8), 8 given by (9), which reduces at t= —0()

to the equilibrium distribution, say p. This is just the
usual Maxwell-Boltzmann distribution

where
p=Ee &~,

P =1/kT

X—'=Tr(e e~)

(10)

pr=p+pr, (12)

We must use H (instead of Ho) here, since at t= —0()

the electrons are not free but are interacting with the
impurities.

We shall limit ourselves here to calculating py cor-
rect to terms to the first order in the electric field. This
is of course all we need if we want to compute the cur-
rent to terms linear in the field, i.e., in the ohmic region.
One might however raise the following objection to our
procedure. Since our system is closed, properly speaking
it cannot reach a steady state since the Joule heat keeps
its energy steadily increasing. However, the Joule heat
is quadratic in the external electric field. Therefore,
there exists a time of action of the electric field such
that the Joule heating is negligible but after which the
steady state has set in. The conductivity we calculate
in this way will then correspond to the original tempera-
ture. By limiting ourselves to terms linear in E we
ultotmtically eliminate any such diKculty, since the
heating e8ects are of second order in E . In Appendix
F, we shall actually show that the quadratic terms in
E do give rise to exactly the Joule heating of the whole
sample.

We write the total density matrix as

tity p& must satisfy the initial condition

pr(t= —~)=0.
Now since Hp may be written as

HJ =Hze" )

H~= —eE 'x,

(14)

We also have
HO&= eiQ~, (20)

where e~o=k'/2r)t. In this representation, (17) becomes

(~((' &s)f(( =&)v+g—(f()-H'v~( H'(, ),"fq"(,), (21—)

where co),), 0=eg —ei', and C=
t p,Hi]. The commutator

C is a known matrix in principle, since p and H~ are.
The matrix elements of H' are easily obtained:

1
H i& =—j' e '( ')' P (I)(r r;)dr—

QQ g

Q e
—i(k—i') rf

'

i e i (k k') ~ r(—t)(r)—dr
Q s 4a

For simplicity we take P to be a potential of finite
range so that we can extend the r integration over all
space. Then

Eqs. (13) and (14) can be satisfied with the Ansatz

pg= fe",
where f is independent of time. The quantity f is the
correction to the density matrix at t=—0, which is what
we want. Inserting (15) and (16) into (13), we obtain

(17)

To solve (17)—which is valid for any representation-
we shall choose the representation for which Ho is
diagonal, i.e., plane waves with periodic boundary
conditions. The normalized eigenfunctions are

e~k r/Qft

where 0 is the volume of the container. The allowed k
are given by

k = (2m/L)rt,
where

g 0 +f +2 0 ~ 0 +QQ
and

where pp is linear in E . Since the density matrix would
stay equal to the equilibrium one if the E were zero,
the p in (12) is simply the equilibrium value given by
(10). Inserting this into (8), we get

where

kk'
H~~~, — Q e

—i(k—k') r

0
(22)

i(Bpr/N) =t H+Hr, p+prj
=

I Hr, pl+I:H,pr), (13)

e—i (k—i') ~ ry (r)dr

The diagonal element of H' is clearly

(23)

neglecting terms of the second order in E . The quan- H') a=&q4i/&,
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and is independent of the location of the impurities.
If there is no particular order in their location then there
is no particular connection between the phases of the
1V terms in (22). In this case H'» (k/k') is in general
of order gX rather than X. Here we see the sort of
sharp distinction which the randomness in the positions
of the impurities produces between diagonal and non-
diagonal matrix elements in the k-representation. This
suggests that we split (21) into diagonal and non-
diagonal parts. Ke may write

(oi««' is—)f««

=C««+(f« —f«)H'««+ f««(H'«« —H'««)

+ P (f««H'«"« H'»~ f—«"«),
k" (k"Qk, k')

for k/k', and

isf« —C«+ ——P (f««H'«« H'» f—««) (25).
k' (k'Qk)

Here f«—=f««and C«=—C««. The function f« is just 'the
usual distribution function dealt with in transport
theory. In (24) we have separated out the individual
terms in the k" sum where k" is equal to k or O'. The
only reason that these terms give contributions com-
parable to the entire sum is that, as we shall see later,
they are of larger order of magnitude in E owing to the
randomness of the impurity positions. We can deal at
once with the third term on the right-hand side of
(24). Defining o« o«'+H'««a——nd or«« = o«—o«', we re-
write (24) as

(~«« —is)f«« =C««+ (f« —f«)H'««

+ P (f««"H'«"« —H'««"f«"«). (26)
k" (k"gk, k')

That is, the only eRect the diagonal elements of H'
have is to shift the unperturbed energies ekp by H'».
Since we want there to be a finite density of impurities
present, X/0 will be finite, and this energy correction
will stay finite for an infinite sample. Actually, by (23),
B» is independent of k, so that this energy shift is the
same for all k. By resetting the zero of energy we may
remove this constant (which is the same as choosing
H'««=0, throughout the calculation), and we shall for
simplicity imagine that this has been done.

So far everything is quite general. We shall now try
to obtain a solution of (26) in a power series in X. To
do this we must first get some idea of how we can expect
the different terms in (26) to depend on X for small X.

We begin with the commutator

C«« = eE o[p(Ho+H'), —x j««. (2'l)

Now +e may expand p in powers of H' (taking into
account its noncommutativity with Hp) and this gives
for p a power series in ). Therefore in general we will
have

Cgp =C«« "'+C» "'+C«« "+~ ~ ~

Ckk (") being proportional to ) ".We shall limit ourselves
here to the evaluation of Ckk "', the higher order terms
being left to Appendix C.

In the lowest order,

P=pp=Ep8
=Eo exp (—Pp'/2'). (29)

1 Bpo 1 Pp
(po, x )=- = Eo ——e

—~"o.
iBP i m

(30)

(For a justification of the formal use of these commuta-
tion rules, see Appendix A.) Therefore

pk
C».«& =ieE~o] — Eoe ~'«(8«« —. (31)

De6ning

we may write
Pk=EPe t'", (32)

C«««&=ieE «&(Bp«/Bk. )h««, . (33)

It is important to realize that the derivative occurring
in (33) is the formal derivative and (33) is meant to be
identical with (31), the question of whether the allowed
values of k are discrete or continuous playing no role.

Thus the diagonal terms of C begin with the zeroth
order in 'A while the oR-diagonal ones are of the first
order in X. We shall see later that f« is of order X '.
This is also the result in usual transport theory, the f«
being inversely proportional to the transition proba-
bilities. If we assume this, then it follows at once from
(26) and (33) that f««(krak') is of order X '. Thus (26)
can be solved by an iterative procedure. Let us first
obtain the lowest order result. From the orders in A.

discussed above, we see at once that on the right-hand
side of (26) the second term dominates and we obtain

(f« f«)H'««—
»r

(dkk~ —ZS
(34)

in lowest order. If we insert this in (25), again retaining
only the lowest order, we obtain

Pk—isf«=ieE &o& + Q ~H'«« ~'
k' (k'Qk)

1 1
X (f«—f')I . —

. I (35)
(cv««' ts co««'+is)

We shall-now show that (35) is just the usual transport
equation. Inserting for H'» its value from (22), we
have

)A«J'
„,~2 P e 4(r~ rg) ~o--

Q~ ~, i
(36)

where q—=k—k'Ao.

Using the commutation rules (or x =iB/Bp ), we ob-
obtain the operator relationship
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This quantity depends in general on the positions of
all the impurities. We shall now show, however, that
the summation over k' in (35) has the effect of "washing
out" these Quctuations. In fact, if there are no correla-
tions between the positions of the impurities, (35)
becomes a well-defined equation independent of these
positions. The general method of proof is the following.

Suppose we have any quantity 3f which is a function
of the positions of all the impurities. For each arrange-
ment of impurities, M will have some definite value.
Let us define the errserlble average of M, say (M), as the
average of M over all the diferent arrangements of the
impurities, without any correlation between the im-

purities. That is,

where a is some very small number independent of¹'
Therefore we consider instead of

I

H'»
I

' the quantity

1
M =— P I

H'»~
I
2. (43)

We assert that whereas (39) is not satisfied for
IH'» I', it is for M given by (43). Direct calculation
gives

(M)= (l~- I'/()')N,

t' dri dr2 dry
(M) = —— M (r riv) (37)

~g ~00 Q 0

I (M/(M)) —1I (b (38)

for 6 arbitrarily small, approaches 1. In other words,
we could take M= (M) for all but a negligible number

of arrangements. A sufhcient condition for this to be
true is that

((M—&M))')
lim = lim =0.

. (M)2 iv—xe (M)2
(39)

(In assuming that the impurities are truly independent
we are of course allowing two or more to occupy the
same position. We adopt this model for the sake of
simplicity, although it is not realistic for high impurity
concentrations. )

For a specific system the value of 3f will in general
deviate from (M), the deviation depending on the
positions of the impurities. However, it might be that
as N -+ ~ the fraction of arrangements which satisfy
the inequality

1
X N'+ N(N —1) Q— (4, t.-+82~, y, +2-) . (45)

p2 It.",k" in v

The S' term is the one we want, the rest being of lower
order in N. The 8„.2 ~ gives a contribution of N(N —1)/ p,

which is only of order X since v is. The 8» &+&" only
yields a result if the region v surrounds k, and even in
this case the contribution is at most N(N —1)/v, which
is only of order X. Therefore we see that M defined by
(43) does satisfy (39), and is a well-defined quantity
equal to its ensemble average for all but a negligible
fraction of possible arrangements of the impurities. (An
example of an exceptional arrangement where 3II can
deviate substantially from (M) is a periodic-impurity
lattice. In that case M is sometimes of order S' rather
than E. Such exceptional arrangements form a negli-
gible fraction of all possible arrangements. ) The entire
result of this discussion is therefore that without any
loss of rigor we may replace IH'I, t. I' in (35) by its
ensemble average. (The generalization of this result
to higher order terms is found in Appendix B.) This
gives

Now direct calculation shows that for IB'». I' this is . . &, p" + I(ZSJIt, =ME~
rot true. In fact, Bk. 2 &2~2) & 02 ]

(I&'- I') = (l~- I'/&')N (40) 1 1
X (f. f2 ) I

—— I. (46)
I te» —is t0» +is)

((IH'». I')') = (I@».I2/02)2(2N2+N), (41)

so that the right-hand side of (39) actually approaches
unity rather than zero.

On the other hand, since co~J, is a smooth function
of k', and the same will be shown for f2, the summation
over k' in (35) may be broken up into regions of mo-

mentum space in which c0» and f2 do not vary appre-
ciably, but

I
H'». I' may. Let the number of states in

such a region be v. In general v will be of the order 37,
l e's

(42)

The solution of (46) depends in general on the value
of s. However, there is a tremendous range of s (in-
cluding the physically interesting rates with which we
could turn on the field) for which the solution is prac-
tically independent of s. This range is given by the

' The number of states in a little region of 0 space 6 is given by
v= LQ/(22)'gn. Since N~, we may write this as

0
N (22)'

so that u is determined by the volume per impurity and the vol-
utne of k space over which e& and f& do not vary appreciably.
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Once we have done this, the condition s&(t, ' enables
us to use the well-known result

1
lim

l l
=P(1/x)+zzrb(x),'~' Ex isJ— (4g)

where P(1/x) is the principal value of 1/x and 6(x) is
the ordinary Dirac 8 function. Therefore (46) becomes

&pa &ly» l'
+2 Z —&( -)(f —f') (49)

Bk k' 0'

Now the transition probability x» (" per unit time
from a plane-wave state k' to k due to a single impurity
may be written, in lowest Born approximation, as

following conditions. First,

s((1/t„1/t,
where t„ is of the order of the relaxation time, and t
is an "atomic time. "That is, t is a time associated with
the dynamics of the electron and has nothing to do
with t„. In our problem t, would be of the order of h/e
or ro/8, where e is a typical energy of the electron, ro

the size of an impurity, and 8 a typical electron velocity.
When this condition is satisfied we may drop the left-
hand side of (46), which is of the order of st„ times the
second term on the right-hand side. Further, if s))AE/tzz
(where AE is of the order of the spacing of the transla-
tional electronic levels), the sum in (46) may be re-
placed by an integral according to

0
dk'.

The Grst term Ao is just the equilibrium value of A,
and will not interest us further here. The second term
Ap is the correction due to the presence of the electric
Geld. In the k-representation we have

(54)

(ap) & ~ [eEpb»——+i (kp kp')H'—i, i)/zm

Therefore, at t=0,
(58)

AF= Q faaA~ a
k, k'

=Q faA»+ Q f» Aa ~. (53)
k k, k' (krak')

In general, both terms of (53) will be necessary.
For calculating the current we need the average

velocity. The velocity operator is, as usual,

z P
——zLHT, xP)
=Pp/zzz.

The matrix elements of ~p are

(z p)„.= kpS». /m. (55)

Therefore, for the velocity the oG-diagonal elements of

f automatically play no role, and

ur =Qykpfp/zm. (56)

We see that for calculating the conductivity only the
diagonal elements of f play a role, and these satisfy
(to the lowest order) the ordinary transport equation.
Therefore under these circumstances the "random
phase" assumption is justiGed in this representation.

As an example of an operator for which the oG-

diagonal terms play a vital role, we consider the
acceleration. The acceleration operator is given by

ep = zT&T,~p) = (eEp+zT&', pp) )/rN, (57)

which has the matrix elements

ze» "'=2~ &(~» ).
0'

(50)
1

ap = eEp "&+i—Q (kp —kp') f» H'i. g . (59)
k, k' (krak')

If we define the total transition probability 5 kk (') as
the sum of those occurring due to each of the impurities,
then we have

~Pk
+ Q (II'i""'fi—II'ss "'f~ ), (51)

(jlk~ k' (k'Qk)

which is the customary transport equation used in the
theory of impurity conductivity. The first term is the
acceleration due to the external electric Geld, the second
is just the rate of change of the distribution function
due to collisions.

In this theory we now have a rigorous meaning for
the distribution function fz, namely as diagonal ele-
ments of the density matrix in the plane-wave repre-
sentation. The expectation value of any operator 3 is
given, by (7), as

k, k' k, k' &kk —&S

1 1
='Q kp(fg fa) la'» I'I — — I. (60)

k, k' L (d»' zs cv»'+zs)

By means of (35), with very small s, (60) becomes

i P (kp kp') f» &'i ~—
k, k'

If we dropped the off-diagonal elements of f, we would
obtain only the first term eEpio'/zrz, which is certainly
not correct. Since to terms linear in the electric field
there is a stationary state, to this order in E ' the
acceleration must vanish. However, the off-diagonal
contribution is easily evaluated. We have, to the order
we are working in,

i Q (kp —kp') f» H'~ a=i+ (kp —kp')

A =Tr(pA)+Tr(fA)
=Ao+Ar. (52)

~Pk
=eE &'~ Q kp ———eE "'8 p

—— eEp&'& (6—1).
Bk„
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(kk k ):H ssisH s»sl,

III. HIGHER APPROXIMATIONS
(kk"'k"k') =—H'ss" H's- s"H's"s, etc.

Inserting (61) in (59) we see that ati
——0, as we expected. Here we have introduced the notation

Thus for the calculation of the acceleration the oG-
diagonal elements are essential.

(67)

0=Cs&"+Cs&'&++'(fss H's s—H'ss fs s), (63)

respectively. The prime on the summation means that
the summation is taken in such a way that all index
equalities are avoided. LIn (62) this means k"Wk, k',
in (63) k'Wk. j Further, in (63) we have left out Cs&'&

since it vanished with our choice of H ss ——0 (see
Appendix C).

The lowest order solution of (62) is given by (34).
If we insert this in the last term of (63), and solve again
for fss, we get the first correction. Continuing this
process indefinitely would give fss as a power series in

), the terms increasing very rapidly in complexity for
higher powers. To terms linear in X we obtain

fss =fss "'+fss "'+fss "',

where f» io& is given by (34) and

(64)

Ke now consider the problem of 6nding the higher
approximations to the transport equation (51). To do
this we need only continue the iterative process begun
in the last section. Ke shall only push this process two
orders (in X) further, since it is there that new phe-
nornena begin to occur. Since fs begins with X ' we
need it to order X', and since fss (krak') begins with
X ' we need it to order X. To this order, (26) and (25)
become, for very small s,

(~ss is)fss =Css &"+(fs fs)H—'ss

+2'(fss-H's" s H'ss" fs—"s ), (62)

If we insert (64) in (63) we obtain, for very small s,
the "transport equation"

o = I's"'+ 7's"'+ 7'd" (68)

where Ts& & is just the right-hand side of (35) which we
have already discussed, and

2's&" = Q (fss &"H's s —c c.),
k' (O'Qk)

(fss "'H's s —c.c.)+Cs"'.
k' (O'Qk)

(69)

First let us consider (69). Regrouping the terms
somewhat, interchanging the indices k and k' here and
there and making use of the fact that (kk"k'k)*
= (kk'k"k), we obtain

7's"'=~s"'fs —Q Bss "'fs,

with

and

As "&= Q' (kk"k'k)
~

Pl Pl/ &dIa dja
—c.c. ), (72)

Bssl~ i =g (kk k k)

1 1 1

f

—c.c.
~d»" ds"s' dss' ds"s' dss' dss"

(73)
We have introduced the notation

fss~i'i =

fss "'=

Q'(kk "k')
Myel —ZS &

( fs fs" fs—" fs &-
xl . — . I (6»

Ecossl~ —zs Ms«s~ zs

(ass'+'ls

dss = = —(~s s+)*.
+Sal —&S

(74)

—zs k" k'" ~y, I,
—gsk" Qk, k'

k"' Qk, k"

It: J|:"' Is" ' Js"

xi
$ 47ssl~l —gg ~slzsssr —$$ J

(kk "k"'k')

Now once again the summation over k' and k" which
occur in (72) and (73) have the effect of replacing
(kk'k"k) by its ensemble average (see Appendix 8).
This is easily seen to be

k ',k'" Q)yllyl —ZSk" ~k,k'
k"' &k",k'

fs" fs)-
~+Css "'

~ski. si —gg J

$/I Q/ll

xi
&cps»s~~ iS—

The resulting summands in (72) and (73) are smooth
functions of k' and k" and therefore may be replaced

(66) by integrations according to (47). Now making use
of (48), (72) becomes
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Aa") ——Q' ((kk"k'k))2&ri
a', a"

(' 1 (1q
X &(o)aa )PI I+5((daa")PI,

ko&aa") (o)aa~) i

where

and

Caa~ "H'ara
2'a") (C)=Ca"'+Q

~aa

—c.c. , (81)

(82)T'a"'(f) =P'a"'(f) j'+I:2'a"'(f)j"

L2'a") (f)j'= a, a &a((kk"k'k) ) ((kk'k "k))
=2&ri P ()(o)aa~)

'

(76)
(kk"'k"k'k) (fa fa ~ —fa- —fa- )x

daa-- )
daaa', a"

again using the symmetry in k' and k". The reason for
writing Aat.") in this form will become clear when
we discuss (73). We may rewrite the coeKcient of
((kk"k'k)) in (73) as

(kk"k'"k'k) (fa" fa"— fa fa )——c.c., (83)
dappap— )

((kk"k'k) )- ((kk'k"k) )
I=2si P' (&(o)aa.) P +P wltll

a', a" aa"

ZS

daa daa" ~aa daa" daa daa" da" a

by direct algebraic transformation. All the integrals
which arise from the last term are regular, and approach
zero as s does. Therefore

a„=P((kk"k'k))
I I

—c.c.
Edaa daa .+ daa+daa"+)

I:Ta"'(f)l"= &'
a' a" daa

(kk'k"k'k) (fa fa —fa fa")—
x

da~a"

(kk"kk'k) (fa- fa f—a —fa ) —c.c. (84)
da" a' 4 da«a

((kk"k'k)) ((kk'k"k))-
= 2&ri P (&((daa~) +

at I daa ~ daa"

Making use of (75), (76), and (77), and defining

27' (o)a a I)

(77)

The division of Ta(s)(f) given in (82) comes about by
eliminating from (83) those terms where any of the
indices k, k', k", k"' are equal.

The calculation of Ta(')(C) is very straightforward,
using the results of Appendix C. Ca(2) is already given
by (C.11).The other term is

(rt&aa-rt&a-a &I&a a 4aa &t a a"4a"a)
XZI (78)

daa"daa +

we easily see that

Ta"'=i& Qa (tea a"'fa —teaa "'fa) (79)

The interpretation of this result is immediate. The
quantity m» (') is just the first correction to the Born
approximation for the scattering from plane wave
state k' to k by a single impurity. Sm» &') =—5'aa ") is
just the correction due to all X impurities. ~ Therefore
the only eRect of Ta&') is to replace the transition proba-
bilities W» ('& in (51) by Waa ('&+Waa "&, i.e., to use
the correct transition probabilities to the order in
question,

We now turn to the discussion of (70). There are
two terms, those from the commutator, say Ta(s)(C),
and those linear in fa, say 2"a(s) (f). That is, we write

2'a"'= T'a"'(&)+2'a") (f) (80)
7 See, for example, W. Heitler, Quuetgns Theory of EaChation

(Oxford University Press, New York, 1954l, third edition, pp. 168
K For the scattering on a single impurity there is of course no
question of an energy shift,

making use of (C.9). The usual argument now replaces

I
H'» I' by its ensemble average, so that (85) becomes

pa a (& e& pa —pa'
2seP..o

~

dk'P
I + I, (86)

(2&r) o)aa (gk&& 8k& ) o)aa'

where e is the number of impurities per unit volume.
Putting these results together, we have

I+

2'a(s) (C) =icy (s)

Bkc& (2~)s~

(pa pa-
x -I +Pp, I + dk'P

) (2&r)s&

~ )pa —pa
x

I + I
. (87)

o&aalu EBk~ Bk» ) o&aa'

(&aa ")&'a a —c.c. I =2ieZ. (') P'P
a ( o&aa1 —$g ) a

I+aa I ( t& t& ) pa pa'—+, I (85)
(Bka l9k» ) (oaat
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We next consider LTz&'&(f)]'. This may be written

(88)9'."'(f)3'= &~"'f~ Z—'B» "'f~

( ((kk"'k"k'k))
(89)

Ed&.„&„.' d»" g»'" j

A word may be said about the significance of the two
terms which enter into T&, &'&(C). The C&"& term is just
the correction which arises because the equilibrium dis-
tribution function is not that of the free electrons, but
that of the free electrons in the presence of impurities. with
The other term, (85), arises from the combined effects
(or interference) between the change in the distribution
function due to the electric field, and the change due to
the collisions with the impurities. and

1
((kk"k'"k'k))

~

— +
d& gl& z dyglz& g d»Pd»lr d»zls d»sPJ& lie& r g& &

rzP d»zI dyes& r dy alp )
1 1 1

+((kk'k"k"'k))
i

— — — +
~d» d»" dk&" A"& +dk&" d»" 4" & 4"&t:+A&" d» d& "& +d&" k+~

+((kk"k'k"'k))i + +
E g»1 PJQss spl I+dprI x$s+ d»~~ dkr rI jc& Pdkl kiP Ig»" g»Pdk~l I kt d»ter dkil ksrl

(9O)
A& "~ A"&" d& v" Ax" d»

where as usual the matrix elements have been replaced without any loss of rigor by their ensemble averages. By
interchanging a few summation indices, we may easily rewrite A&&') in the following form:

((kk'k "k"'k)) ((kk"'k "k'k) ) ((kk"'k'k" k) )
Ag~/&=2~i Q' 8((o») + +

p / g(, / / p / / / dI a dI a" dI I
(91)

The reduction of B», &'& is rather tedious but straightforward. Just as in (73), we can show by direct algebraic
transformation that up to terms proportional to s, which vanish in the limit, we have

((kk'k"k"'k) ) ((kk'"k "k'k) ) ((kk"'k'k"k) )
A~"&=2~f Z' &(~») + +

jg//Q/// - die deI die"+die dlr dkI"
(92)

The ensemble averages are easily seen to be given by

where

((kk'k"k"'k)) = $1V+N(N 1)4+&;,&, +&,- j, —
0'

&& &-&- =4» A & "4k-~ -p& -& ~

(93)

(94)

Now let us make the following definitions. Put

g p/g // I ///

~» "&=2~~(~»)—Z' — +
~ ~" ~"'-dII" dII- ~os" ~»a"

and

g y /// y /I //

(95)

dna" dII"

Then (T&,@&(f)j' becomes

Ã ~s u-~ -~~+a", ~+~-
I» =2~&(~&,& )

Q4 g// y
///

~1-~-~ &r+I -, u+I,-
djx" ~aj"+ ~Is" dII-

(96)

LT'&, "'(f)]'=Z1V P& '(zv& ~"&+I& &)f&
—(w» &'&+I»)f&" (97)

The interpretation of the w» & & terms is very simple. Just as in (79), w&z &'& is the second correction to the Born
approximation for the scattering of plane wave states 0 into state 0 by a single impurity. 7 Em»' )=—8'» &') is
just the correction due to all E impurities. Therefore the only effect of the w terms in (97) on the transport eclua-



QUANTUM THEORY OF ELECTRICAL TRANSPORT 599

tion is to replace the transition probabilities W» &o&+W» &'& by W» &'&+Wi&, &'&+W» &'&, i.e., to use the correct
transition probabilities to the order in question.

The I terms in (97) also have a very simple meaning. They represent the effect on the transition probability of
interferer&&e between scattering from two impurities, averaged over all possible configurations of the pair. The
fourth order (the one studied here) is the first order in which such effects occur. In higher orders of course we would
Gnd interference eGects between scattering from three impurities, etc.

As is easily seen by replacing the sums by integrals in (95), (96), and (97), the tt& terms are proportional to I
while the I terms are proportional to e', as they must be.

Finally we must consider LT&&2&(f)J".This may easily be simplified by a little algebra into the following form:

—c.c. (98)

In (98) we have once more replaced the matrix elements by their ensemble averages, as may be shown to be rigor-
ous. In addition, we have written ensemble averages like (IH». I'I He. e I') as (I H» I'&(I H& z Ie&. It is easy to
show that the difference is of the order of 1/X smaller than the matrix elements themselves.

In (98) the first two terms have a very simple physical meaning. Let us define

From (99) and (48),
(III» I )

(99)

(100)

ye= 2~ Z(I If'»- I'&&(~»"). (101)

The quantity 6& represents an energy shift for the state k, the principal value being necessary since we are in the
continuous spectrum. The quantity y& is just the total transition probability per unit time (to lowest order) from
the state k to any other state. Thus it is the reciprocal of the lifetime of a plane wave state k.

With (99) we may write for the first two terms of (98)

Z(f~ —f')— III'e& I'(f~ f&")——c.c. (102)
ZS

(I&'» I'&. .. I&'» I'(f.-f~)
(ei &'& —e&'&'&*) —c.c.=P

(d» )' &' (ei+e&, &'&) —(ei+ee &'&*) is—
to the order in question. If we combine this with (46),
we see that what these terms do is replace denominators
&&

—e& —is by

(e&+ee&'&) —(ei +e& &'&*)—is
f'y&+V&= (e„+5„)—(ei.+At. )—iI +s I. (103)

2 i
Since y& is positive, these denominators now represent
delta functions of argument (e&,+de) —(ek +d, i ) with
a "natural width, "

(y&,+y&, )/2. That is, the transitions
take place between the states of the same corrected

energy e&,+6&, but even this energy is not exactly con-
served. It is conserved up to an energy of the order
average reciprocal lifetime of the states in question. To
this order we may replace every denominator occurring
in (68) by these corrected denominators, so that if we
wish we may drop the first two terms of (98) and re-
member that the corrected denominators (103) are
always to be used.

For the last term in (98) we have not obtained a
simple and clear physical interpretation.

This completes the discussion of the transport equa-

tion up to and including terms in X'. To obtain fe to
this order, we expand the solution of (68) in powers of
X and break it off at X'. That is, we can obtain f&, from

f&,
&'& by a perturbation technique.
As far as the calculation of expectation values goes,

all the comments following (53) are still valid, and need
not be repeated here.

Finally, we should like to discuss one limiting case
of the transport equation (68). If we go to the limit
where there are very few impurities (i.e., where the
average distance between impurities is much greater
than the mean wavelength of the electrons) then we
would expect that the only physical effect entering the
transport equation would be just the scattering by a
single impurity. This is easily seen to be the case from
our explicit formulas. All terms except C~' and the
8 I, I, terms give higher order corrections in e, and
vanish in the dilute limit. ' Therefore in the Ciliate case

Note added irI, proof, —The order of magnitude of these terms
can easily be estimated in the limit where the average wavelength
of the electron is much greater than the range of the scattering
potential ro. Denoting a typical electron wave number by fc and
a mean magnitude of the scattering potential. by q, the ratio of
the terms of order e' to those of order,:e is r&(ro'/ft') (~ y/&&'&') .
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we just obtain the usual transport equation with the
usual transition probabilities computed to the order in
question. This result can be proved to arbitrary order,
but we shall not give the general proof in this apper.

p2

Hp +V, ——
2tg

(104)

where U is the periodic potential. We shall assume that
the eigenfunctions and eigenvalues of (104) are known.
l,et us write

Hog t= ~i"'P~. (105)

Here l stands for the index pair (p, k), r telling us the
band we are in, and k being a vector extending over the
6rst Brillouin zone. As is well known, the functions f«
may be written as

eik ~ r

wg(»), (106)

IV. ELECTRONS IN A PERIODIC POTENTIAL

In this section we shall generalize the results of the
previous two sections to the case where the electrons
are moving in a periodic potential as well as the ex-
ternal electric field and the field of the scattering centers.
We shall take the same type of impurity potential as
before but shall for simplicity assume that impurities
may only be found at lattice sites. The perturbation H'
is the same (4) the only difference now being that «t«(r)

represents the dige»ence between the potential pro-
duced by an impurity atom and that of the original
atom of the periodic lattice.

The interaction with the external field is of course
given again by Hp as in (5). The main change comes in
Ho. This is now given by

where

In deriving this we have used the fact that the impuri-
ties are located at lattice points. Equation (108) has
exactly the same form as (22) except that g«.~ is re-
placed by p~~ . The diagonal elements of H' are

with
H'(« (X/—0—)«t gg, (110)

I
~~ I 24'(») «

Cll =ieE &')

( 8 8
&& I + '~wi+Z(~ ""p~"i —p«"&.'"') .

&Bk Bk ')
(113)

In (113) the derivatives with respect to k and k' are
purely forrnal and just mean that these operations are
to be carried out as if k were a continuous variable. The
quantity J "' is defined by

In general the B'll will not vanish and will be some
definite function of /. Ke adopt the following conven-
tion: if H ll does not vanish, we absorb this diagonal
part of H' into Ho and take as our unperturbed energy

(112)

Therefore we imagine from now on that H' has vanish-
ing diagonal elements.

A detailed derivation of the general expression for C
is given at the end of Appendix A. The result is quite
simple, namely

where tv~(») is a function. which has the periodicity of
the lattice. The P& are normalized to unity:

(114)

)I P( *P««=8n . (10/)
where co is the volume of a unit cell.

Once again we may write

We shall use as our basic representation the repre-
sentation in which Ho is diagonal (which we shall often
call for brevity the "l-representation" ), just as we used
the k-representation previously. To carry out the dis-
cussion of the previous two sections we must investigate
the matrix elements of H' and C in this representation.
We have

H«««, ——"Pg*H«P( d»

ll'

0

G~ =G~ "'+Pi "'+G~ "'+ (115)

(116)

Cll'"' being of order A.". However, Cll "& has oG-
diagonal as well as diagonal elements in the present case.

Now everything leading to (25) and (26) may be
repeated in the /-representation. This gives rise to
equations which are formally identical with (25) and
(26) except that k is replaced everywhere by l. The
method of solution is identical, involving a split into
diagonal and off-diagonal terms in /. Since all the
algebra is identical we shall only state the results.

Berne
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Then
A( "'= (fi f—v)H« ',

(fi 5—- f)- f(—)
Ai "'=C«("+Q'H'«-H'(-«I

~(d« i—S u)"& i—S)

(117)

(118)

This gives the off-diagonal terms up till order )'. The "transport equation" up to the same order is

dt's

((C«&')Hg ) )0=C& &'&+C)&'&+C)&'&+Q'I
E.

((C« "&H( ()—C.C.
'

— —C.C.d„- )

Here

(C«" «"l' H«" Cl,"(' ) Hl l
+i Z'(~v)ft —~)( f()+&+& (119)

, l ( (l~pr {lpip J d&)i (

((ll'l"l)) ((ll"l'l)) ((ll'l"'l"l)) ((li'l'"l"l)) ((ii'"l'i"l))-
I~()=2~B(~) ~) (I«)'I')+Z + +2, + +, (»0)l" d~ps &, l l{p(p+ dp)qg d~pi

, (f~—f~)
S=Q(IH'« I') (~p&')*—e(('&) —c.c.,

({l«' )
(121)

el(2)
(IH'()- I')

7l" QI Ii i+
(122)

(IH' ~ I') (IH' -I') (f f )——C.C. (123)

7)p='b(Hr, xp) =zLHo, gpj. (124)

As is well known, the diagorial elements of ep are given
by

(ep) ) Be(/Bkp—— (125)

On the other hand, ep also has off-diagonal elements,
which are easily' seen to be

( ) = — J ""'(k)8, (lWl'). (126)

Therefore the average velocity consists of a diagonal

' Luttinger and Karplus, reference 2.

The symbol ( ) means the ensemble average
again; that is, we must average the positions of the
impurities over the lattice points. The quantity W« is
again the total transition probability to order X' of an
electron going from state l to P and includes the inter-
ference effects of the scattering from two impurities.

The detailed evaluation of these ensemble averages
and commutator terms goes very much like the simpler
plane-wave case. We shall not give these rather cumber-
some formulas here, but hope to return to them in a
later publication. One point of interest, however,
should be mentioned.

In the plane-wave case we saw that only the diagonal
elements of f contributed to average velocity or current.
This is no longer true here, and off-diagonal elements
of the density matrix make contributions to the current.
The velocity operator is again

part ~p(') and an off-diagonal part ep'~):

(~p) =~p "+~p")

Gag
&)p(~) =P f

plop

~p") =Z'f«(~p){ (;

(127)

(128)

(129)

vp( ) is the result one usually uses in transport theory,
~p(') is new, and may be transformed somewhat.

( p&'& =P f)( ~(( Jp"'"(k)SAg.

Ip v v' (vg v')
flak, v'k{dvk, v'RJp (k)

+rA:, v'k

xP ~,~„d'p"' "(k)
k v, v'(v/v') ~vA. vi~ —Zg

xP P I{'„x,„LJp"'"(k).
k v, v'(vQv')

(130)

To the lowest order (which is X '), this gives

(p (b))(0)

(f.~ —f. ~)H', ~, .~Jp"'"(k)
k v, v' (vQv')

=P fg P LH', y, ;gJp"'"(k) —Jp""'(k)H';g, .g]. (131)
L
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This sum over &' is easily evaluated, by using (113)
with p replaced by H', and gives

8 (H'n)
(&p'") "'=Z f~

Bkp
(132)

. IIp"'"(k) (»3)
Lcdn» —$$ copip $$)—

Therefore (vp&'&) &0& is zero, since we have chosen HE~

to be. If we had Not chosen H'&~ zero, then (132) would
give a contribution which is just of the form of (128),
and would be the contribution to the velocity due to
the first-order correction to the energy.

The next terms in ep "& (of order V) are

(ep'")"'=Z Z C" "~"'Ip"'"(k)
v, v'() Qv')

+P P P'(H', ~ II' ~ . )
It' v, v' (v'Qv) l"

=0, while according to our prescription t p(Hp), x j&,&,

=—(Pk /m)Eoe P'" Lsee Eq. (31)j.
Since we have obtained physically reasonable results,

many readers may not be disturbed by these doubts.
However, for those who are, we shall now give a more
careful derivation of our basic equations which we
believe to be free of the objections just mentioned.

Instead of a block of material containing the elec-
trons we consider a hollow circular cylinder. In such a
cylindrical ring a steady current can be set up. For the
following discussion we adopt cylindrical coordinates
r, 8, and s. The inner and outer radii will be denoted by
r& and r2, the mean radius, —,'(r, +r2), by r, and the re-
maining two bounding surfaces by a= 0 and s =L,. This
cylinder is situated in a spatially uniform but time-
dependent magnetic 6eld, parallel to the s-axis and
given by

K,=—(2E"&c/sr) e". (A1)

This field is chosen to give rise to an electric Geld of
magnitude

From (113), we have
E=E~O& (r/r)e", (A2)

C&g. &'& =ieE (p&
—

p& )I ""'(k)5&&, , (134)

where p~ is the Maxwell-Boltzmann distribution for Ho,
evaluated in the state /. With this the first term of
(133) is easily evaluated:

C,&,, „& &'&J'p"'"(k)
k v, v'(vQv')

= E.2 p Z LI-""'(k)I "'"(k)—I '"'(k)I-"'"(k)j

and pointing in the direction of increasing 0. For a
suKciently thin ring [(r2—r&)/r((1$, this electric Geld

is almost spatially uniform, so that if s is chosen small
enough the ratio of the circular current to E("e"will

give the desired conductivity.
The unperturbed Hamiltonian (no impurities, no

Geld) of this problem is

(BJ ' BIp')
=+leE- &»I( Bkp Bk

(13S)

APPENDIX A. DETAILED JUSTIFICATION OF
THE ACCELERATION TERM

There are two points in our discussion which may
appear somewhat mysterious: (1) How is it at all
possible for an isolated rectangular block of material to
carry a steady current and (2) why is Cz& =—eE ~0&

Xfp(HO+H'), x j&& given by ieE ~o&(8/Bk +8/Bk ')
Xp&, &, where the operations 8/Bk and 8/Bk ' are formal
differentiations, as though k and k ' were continuous
variables. This latter result seems puzzling when one
considers that for a 6nite block, with center of gravity
at the origin, xqq =0 which would also make Q(HO), $ )&,y

by using (2.17) of Karplus and Luttinger. ' This term is
independent of the collision mechanism, and was found
previously by Karplus and Luttinger. The second term
of (133) does depend on the collision mechanism, and
is rather complex. There is no reason why (133) should
vanish, and in general it does not. It is of considerable
interest in connection with the Hall effect in ferro-
magnetics, and we leave its detailed discussion to a
later publication on that subject.

8

i r88
I g o

z 88
(A3)

Evidently the new variables satisfy the canonical com-
mutation relations. In terms of these, the total Hamil-
tonian to the first order in E(') is

where
Hr —Hp+H'+Hr, —

Ho= (1/2m) (Pp+P '+Pp)
'H=XV(P, q, ),f

Hr= (H~/s)e" H~= PeE&'&/m jP~,

(A4)

(AS)

which corresponds to Eqs. (2)—(15) in the text. If we
call

Lg=—2~r, L2—=r2 —rg, L3=L„ (A6)

However, since the electron wavelengths in question
are much shorter than the macroscopic mean radius r,
we can without appreciable error neglect (1/r)(8/Br)
in comparison with 8'/Br'. Further, since the ring is
thin we may replace (1/r')(8'/88') by (1/r)(8'/88')
This suggests the introduction of the following notation:

P=r8, r&=r r, , f =s, —
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the physical boundary conditions satisfied by the wave which commutes with H, the total pr= —(i/s)C+f is,
functions P are of course, unique.

0 f 0 L 0 L (A7)
We shall now show that

and C =ieE&P&(8P/BP() (A16)
Il (5+Li, n, f) =4 (E,nZ) ' (AS)

the last of these represents the singlevaluedness of the
wave functions.

Now it can be easily shown that our results do not
depend on the exact boundary conditions imposed at
rt=0 and Lp, and at (=0 and Lp, as the current flow
takes place in the $ direction. For convenience we
therefore replace (A7) by the periodic conditions

The conditions (A7') and (AS) correspond exactly to
the periodic boundary conditions used in Sec. II. As
the basis for our representation we shall use the eigen-
functions of Hp which satisfy (A7') and (AS). These are

ei (ki$+kzq+kpr&

= (e/m)E "&LPGA,pj=LHi, pj, (A18)

since t/' is independent of I'~.
We shall next show that the matrix elements of C,

as defined by (A16) are given in our representation by

is a solution of (A14). Here 8/BPz represents the formal
derivative of the operator p, the latter being expressed
as function of P., rt, Pr.

"1
p=E exp —P (Ppz+P„'+Prz)+7 V(&,rt, t)

2m
(A17)

This may be seen as follows. With (A16), we have

zTH, Cj=z(HC —CH)

E9p Bp= —eEIo& (Hp+~V) — (Hp+~V)
BI ~ BI~

(BHp BHp)
p —p

&,BPz BPp&

eik r

0'

(A9)
(8 8

+
~ski Bki ) (A19)

where 8/Bki and 8/Bki' are formal derivatives. This is
the result used in Eq. (C7). These matrix elements are

where k stands for (ki, kp, kp), r stands (from here on)
for (f,rt, f), and Q=LiLpLp.

In analogy with our development in the text, we now
write the total density matrix as

Pr =P+P&) (A10)

z

pp ——
~

—C+( (e",
s ] (A12)

gives
1

isf= C+[H fj+ [[H—i,pj zTH, Cjj—, (A13)—

where pg represents the correction linear in the electric
Geld. pp satisGes the equation of motion:

z(Ops/Bt) = [Hr,prj. (A11)

Substituting (A10) into (A11) and making the "Ansatz"

Bp
C», zeg~o)

0 ~ BPz

1
ieE"& lim — e '"'

XLP(P+p, r) p(P, r) je'"' "dr, —(A20)

where p is a numerical vector in the $ direction. LThat
is, P+ p =(P~+

~
p ~—, P„,Pr).j Equation (A20) follows di-

rectly from the dehnition of the formal derivative. Now

p(P+ p~ r) =e—' pe'' (A21)

because the operator e"" produces a displacement in
momentum space. Equation (A21) may also be verified
directly by expanding in a power series in the mo-
mentum. Inserting (A21) in (A20), we have

icy(')

where H=—Hp+H'. Evidently (A13) will be satisfied if "
g

C obeys

i',Cj= LHi, pj (A14) I $e '&"+'& "pe'tP'+'& '" 'e'"'"pe'"''" jdr (A2—2)
and f satisfies

isf= C+)H,fj. — (A15)

While C is defined by (A14) only to within an operator
=z«"&»m (p~., a~. P~, a). —

[p
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C= ieZ&0) (Bp/BP(). (A30)

Next we want to obtain the matrix-elements of C in
the representation of the Bloch waves

By deinition of the formal derivative with respect to as before
k~ and k&, (A22) is identical with the expression (A19).

Hence, in the present formulation, the correction to
the density matrix is

(ejv(0) gp
+f I"

s M'( ) (A23)

where the f is the solution of the same transport equa-
tion as in the text.

%e must still verify that, despite the extra term in
(A23), we get the same physical current as before. Now
in the present formulation the operator for velocity
along the $ direction is

P)(r) = (1/0'*)w&(r)e'~'" (A31)

where / represents both quantum numbers v and 0 and
ml has the same periodicity as U. Clearly, in analogy
with Eqs. (A20) to (A22), we obtain

1 t Bp
Cll =—i'('& ml*e ik'" ml e'k' "dr

0 ~ BPt

1 | eE')
~~=—

I P~+
mE s

(A24)

—~eg(0) l)m. l ~ 4e ak f'(—e—/e
hei e

. r .
p)

0 ~'~0!e!"
Xml e" "dr.

Now we write

(A32)

This expression is obtained formally from the relation

k=~LH»G

and may also be derived less formally by consideration
of the motion of a wave packet. The expectation value
of v~ is given by

e,=Tr(prvp)

~ k*e—i(k+~) ~ r=~ *e—i(k+~) ~ r I ~I i ~ k* ie—ik ~ r
v, )t, v. k+e ! !!~ vk

Oker

(A33)

~".~ e""'+' "=~,~+.e""'+' "
I

e
I
I—(~

which gives

=e"Tr f—P~+
eg(0) ( ()p q eg(0)-

IPa+p
$5$ 48P~J s')Ã

C« ——ice&') ! + —

Ip)&
(&k) &kg')

) 1 q )eP&&))="»I fP~ I+»I— (pP() I
. (A23)

Em ) & sr)/ M'(

1 & f Bw& &)wp)
p~& +~& p Ie'"''"«(A34)

0& ( ak, ak, ')

8
(p»() = (pP~)»,

BI g kk Bky
(A26)

whose sum over k vanishes. Therefore

The same technique which led to (A19) now gives
To obtain Eq. (113) of the text, we note that

ik//. rp~ le ikr
l / /~ l / / eikrp l/ / l

—ik// rK l*e-ik r
p =~2„l-pll-K l-e-'k

so that the second term of (A34) becomes

(A35)

as required.

1
v~=e" Tr! f—Pk I,( m )

Bloch Case

(A27)

ieE&') t t' ()m)*
e
—'k ~ „e'k"~

Ip „,0~ & ak,
ik I r

i~

~
~

~~I I I r

+p«-I ~& *e "" e" "
I

d' (A36)
ak, '

The problem of electrons moving in a cylindrical
ring with impurities as well as a periodic potential U
can be treated in a very similar way. The unperturbed
Hamiltonian becomes now

Ho= (1/2m) (Pp+P„'+Pr2)+ U(g, ri, t ), (A28)

while H' and Hp are unchanged. This leads again to
the equation

isf= C+ (H,f), — (A29)

where C must now satisfy (A14) with the present H,
which includes the periodic potential. The solution is,

Now, denoting the volume per unit cell by ~, we have

1 t Bml'
~ „+e—iVc" r' eik'rg~

0" &)kg'

1t' r Bwp
«!4-v=~i"', (A3&)

(0 4 w &)kl

where J&"' is the same expression previously defined
in (114).Similarly, using the orthonormality of the f),
we find
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pBmg+
&
—ik r)/leis". rd&

Q4 Bkg
1r' r BW1*

alii d» )4a
Bki

1( t' Owl 5
alii~ d» [Bil,"= —Ji"". (A3&)

.)

Substituting these expressions in (A34) gives

(8 8
&1V=i«!"

) + — [Pll
&Bki Bki')

+Z(I1 Pl" l' Pll Il ) (A39)

which is equivalent to Eq. (113) of the text.

Consider the quantity

APPENDIX B. ENSEMBLE AVERAGE THEOREM

Q k1, ~ ~ k ig =1,~ ~ -N
~ ~ ~

Zg=1 '~'N

expL —i(k —ki)»lij expL —i(ki —k2)»l2] expL i(—k„ 1 k)—»l„jF(k»k2, ~ k„ 1), (81)

where r, denotes the location of the impurity i, S=total number of impurities, Q=volume of container, and
F(ki, k 1) is a smooth function of its arguments. The function F approaches zero for klb))1, where b is a length
much smaller than the size of the container and independent of it.

We shall show that for the overwhelming majority of all arrangements, the difference between M and its "en-
semble average" (M) becomes negligible as 0 ~ ~, with (X/0) remaining fixed. (M) is defined by

t' d»1 d»2 d»i»

(M) = . . —— — M(»1,»2, »N),&gQQQ (82)

and is just the average of M over all possible arrangements of the impurities.
In general several of the i will be equal. We now break up M into a number of terms

M=+ M, (83)

where each M contains all the terms in 3f which differ only through an interchange of the impurities, e;g. , M»
might contain all the terms in M in which all i are equal to each other, M2 those in which i~——i2 and i~——i4—— . -i „,
but i~/i3, and so on. The general 3f will have the form

1
M = P exp(iE1'» 1) exp(iE2'»22) ' ' 'exp('LE 1'»~1) exp| i(E]+ '+E 1) '»le)

Q Z1=1, ~ ~ N
~ t ~

Zra =1 ~ ~ N
Zj QZ'l

XG(E1, E 1,.E„,~ E 1), (84)

where m and the E~ will depend on o, , the E~ are certain linear combinations of the original variables k~, spanning
the same space; G(E1, E~i)—=F.(ki, k„ 1).

We shall now demonstrate that
i(M )i'=(M M )L1+O(1/X)g. (85)

lt is elementary to verify that this is equivalent to the assertion that M —(M ) is negligible compared to (M ),
for the overwhelming number of arrangements. Since M is the sum of a 6nite number of M, the diGerenee between
M and (M) must then also be negligible compared to (M).

To prove (85) we first note that

1
(M ) =—E(E—1) (1V »»1+1) —P G(0, . 0; E, E 1)=—1V(E—1) ' (N —m+1) (0"~I), (86)

Q" &m, ~ ~ &n-1 Q"
where

f~

I= ~ dE„dE 1G(0, 0; E ~ E~ 1).
(2m)'

Since m is a 6xed number independent of X, we therefore have

(M )= (S/0)"I/110(1/E) j.

(8&)

(88)
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To calculate (M M *), we first write down

M *=— P exp( —iEi' rii') exp( —iKs' r~s') ~ exp( —iE r'r~r')
0 SI' =1 ~ ~ K

Xexpf i—(Ki'+ .K r')r~)G*(Kr' K i', E„', E i'). (B9)

When we multiply M by M, the resulting terms fall into two essentially diGerent groups. In the first group,
the contribution of which we will denote by (M M *)i no members of the set ii, i, ii', i ' are equal; the
second group (M M„*)ii contains all the remaining terms.

Clearly

((M M *)i)= X(X—1) (X—2m+1) Q Q G(0, 0;K„, . E„ i)G*(0, 0;E ' . K„,')
02"

III' 1+ol —
l

. (B10)
&n)

This is just equal to l(M )l'[see Eq. (Bg)].
The ensemble average of (M M. )ii is of a smaller order of magnitude. As a typical set of terms contributing

to (M M )», consider those in which ii=ii but there are no other equalities in the set ii, i . Their ensemble
average is

$(iV 1). (S——2m+2) P P 8(Kr,Ki')b(Ks, 0) 5(K„r,0)
02n +1 . +n—1+1 +n—1I r

Xo(Ki+. +E„ i, 0)8(K,',0) ~(K„ i',0)8(K&'+ +K„ i', 0)G(Ki, K~ i; K~, K~r)

1 (X)'" - (1)
xG*(K, ,".K,';K', "K„,')=—

l

—
l lrl 1+ol —l, (B»)

g&fI) Eg)
'

where the notation 5(A,B) is used for the Kronecker symbol. The essential role of the factors 5(Ki+ +E„ i, 0)
and 5(Ki'+ +K„ i', 0) will be noted.

Exactly the same reasoning applies to the other terms in (M M *)ii. Therefore, we have shown that for a suffi-

ciently large sample, M may be replaced by its ensemble average.

APPENDIX C. EXPANSION OF C

In order to obtain the expansion of the commutator C in powers of X, we need 6rst the expansion of p. We may
write

~&—P (II0+JI')
7

E-'=TrLe-&'

Now it is easy to establish the following expansion"

(kle ~'~'+ ' lk') =e ~"b &ik '+E
Jg

I r

e —e
—4~I «

+ . (C1)

In this expression the terms with vanishing denominators have the limiting value obtained by letting them ap-
proach zero smoothly.

For E we obtain, to second order,

e sr (]+p~„„-,)
—

e sa—
K-i=+.-&"—P l

JI'„ l'
k k, k'

(C2)

ro See, for example, R. Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1948), Appendix I.



QUANTUM THEORY OF ELECTRICAL TRANSPORT 607

since we have assumed Hkk' ——0. If we write

we obtain
E=Ep (1+y), (C3)

1 p2~Pq '*

Ep=(Ee '") '=-I
n&m) ' (c4)

(e e k(1+p&pkk~) —e
~=E,P IH'„!

I
(CS)

In (CS), just as in the discussion of the transport Eq. (34), we may replace
I
Hkk 'I' by its ensemble average,

and obtain
e e"(1+P~kk ) ee'"'—

y=Ep p (IH'kk. I')
k, k'

=Ep Z (IH'kk I')P
k, k'

if we interchange the indices k and k in the last term. In this term we must interpret the denominator as a prin-
cipal value when it vanishes, since the original expression for y is perfectly regular when cokk approaches zero.
Therefore, we write

V=ZEoPe 'kEP

=EpP Q e e" dk'P
(2m')

(C6)

We note for future reference that p is proportional to e, the density of impurities.
From (27), we have

Here

( 8 8
Ckk =~« 'I + Ipkk

i ak. ak.')

( 8 8 Pk —Pk
=i«-p(1+V)

I +, I pk&kk + H'kk+Z
Ep&k Bk ') kk'

Pk=—&0& ~",

H'kk"H'k" k (pk pk pk—-—pk)

&kk'
(C7)

(cs)
the zeroth-order distribution function.

In the evaluation of Tk&'&(C), which is as far as we go in this paper, all we need is Ckk &" (k/k') and Ck&'&. From

(C1), these are given by

and

&t c& &I
& pk pk'

C &'&=ieE 'H 'I +
EBk~ Bk ) p&kki

(c9)

BPk 8
Ck&'&=ieE ' y — pk IH'kk I'

Bk Bk

(Pk Pk'
+ ap. !)&kk

(Pk Pk'—
vpk p'IH'kk I'

I

— —+ Ppk, ! .
Bk~ &Pkk' E &Pkk'

Again, in (C10) as in (CS) we may replace IH'» I' by its ensemble average, and obtain

(C10)

Ck&» =i~Z.'
Bk

, Iekk I'(pk »—
+ PPk ! .

)~kk
(C11)

Since y is proportional to e, so is Ck(".
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APPENDIX D. TIME-DEPENDENT PHENOMENA

We shall consider in this appendix another method of
arriving at the transport equation. This method has
the advantage of being able to treat the approach to
the steady state (or to the equilibrium state) as well as
the steady state itself. Instead of turning on the ex-
ternal fieM slowly, we imagine the following situation:
Up to time t=0 we have a collection of electrons in
equilibrium with a heat bath at same temperature T,
and there is no external electric field present. Then at
t=0 the contact with the heat bath is broken and the
full electric field is turned on. This collection of elec-
trons is now described by a single-particle density
matrix pp whose time development is given by (8),
where Hp H+Hi a——nd is independent of time. The
problem is to find a solution of (8) which reduces to the
equilibrium distribution p Lgiven by (10)]at t=0.

To solve Eq. (8), we make wliat is essentially a
Laplace transform of it. Define

F(s) =s) e
—"pp(t)dt

Since pp is Hermitian and (D1) is a real operation, F(s)
is also a Hermitian operator. Without the factor s this
would simply be the Laplace transform of pp. This form
has certain minor advantages for our problem. H we
write s=1/to, then (D1) becomes

1 f

F(s)=— ' e 'I"pp(t)dt,
t0~ 0

which is essentially an average of pz, averaged over a
time of order to or 1/s. LWe might call (D1) the "Laplace
average" of pp. $

From this interpretation as a time average, we see
that if p~ approaches a constant value, then

limpp(t) = lim F(s). (D2)

This theorem can be rigorously proved. "If p& oscillates,
then the right-hand side of (D2) gives the value of pp
at very long times averaged over these oscillations.
This is, of course, just what we want physically, and
therefore the object which will interest us is F(s) for
small positive s.

If one is interested in finite times, then it is necessary
to use the usual inversion formula

&p»(t) BpI, S
Q'aj ga

pt

&&2) ttp»(t r) p—»~(t—r)j cos(ro»~r)dr& (D6)
0

where pi(t) is the term in pp linear in the electric field.
This equation is rather di6'erent than the usual

equation which describes the drift towards the steady
state. In the conventional Boltzmann equation the
rate of change of the distribution function at a certain
instant depends only on the value of the distribution
function at that instant. In (D6) on the other hand,
the rate of change of the distribution function depends
on all its previous values up to the instant in question.
The more usual result is an approximation which is
valid only if the relaxation time t„ is much greater
than a typical "atomic time" t, (see discussion im-
mediately following Eq. (48) for definition of t,).

To see this, let us formally expand p»(t r) in-
powers of 7 and consider the contribution of the first
two terms to (D6). We have

pts(t —r) cos(co» r)dr= p»(t)
0 "0

cos(tdsoir)dr

r}pts(t) I'
r cos(cu»lr)dr+ ~ ~ ~ . (D7)

~o

The first term is easily integrated, giving

t

cos(Q)»~r)dr =
~0

sin(Cosslt)
(D8)

and only going to the first order in E, we obtain

i sf= LHi p j+LH,f]. (D5)

This equation is identical with Eq. (17) which is also
needed for very small positive s, and therefore from
now on the treatment is identical with that of Sec. II
and, of course, yields the same answers.

From our present point of view, however, it is also
possible to study the actual approach to the steady
state. Ke shall not give a detailed analysis of this
problem, but only indicate how it goes to the lowest
order in }t. To this order, fs satisfies Eq. (46) of Sec.
II. Using the inversion (D3), we obtain

1 t
~*" F(s)

op(t) = e" ds, c)0.
2X'Z g goo S

Taking the Laplace-average of (8), we obtain

is/F(s) p]= )Hp, F(s)]—
Defining

~t
(D4) J

r cos(&o»Ir)dr =
0

r}
sin(&oos r)dr

e}(toss ) o

As long as t is much greater than an atomic time t„
(D3) this expression may be replaced in (D6) by 7rb(to» ), as

is well known. The second term is most easily evalu-
ated as follows:

F(s) =p+f
"See B. van der Pol and H. Bremmer, Operat~oeal Calculus

(Cambridge University Press, New York, 1950},p. 122.

r} (1—cos(to»~t) )
r}(ro»') 4 ro»'
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The quantity being differentiated becomes, in the limit
of t))t„just the principal value of 1/o»t. .. so that we
may write

pt tt(t —r) cos(cottt r)dr =pqt, (t)trtt'(tt»t, )
~0

Bptt,, (t) 8 ( 1 )
xi i+ " (D9)

R 8 (ltd»i) Ktdtt tt~ )
In estimating the relative magnitude of the 6rst two

terms in (D9), we note first that

~p t (t)/tlt- p t (t)/t'

On the other hand, if (D9) is inserted in (D6), the
factor

8 1

&(~» )

will give something of the order (~) ' times what the
factor m8(co» ) gives (co being a typical energy arising
in the problem, ~ t, ') Theref. ore, the ratio of the
second to the first term is of the order t,/t, . Taking the
6rst term gives the usual Boltzmann equation, as is
easily seen by substitution. LThe particular method
given here for obtaining the Boltzmann equation from
(D6) is due to Mr. S. T. Choh. j/Thus, the usual Boltz-
mann equation describing the drift towards equilibrium
is valid only if the relaxation time is much greater than
an atomic time, and after a length of time much greater
than an atomic time. Under other circumstances the
more general (D6) must be used.

We may also use the above formalism to study the
"free" relaxation. That is, suppose at time t=0 the
ensemble of electrons is described by a density matrix pp

which is cot the equilibrium density matrix p(H). We
want to investigate how the distribution approaches
the equilibrium one, there being no electric field present.

Instead of (D4) we now obtain

ising(s) —pol=[H, g(s)], (D10)

where g(s) is the Laplace average of the total density
matrix for the ensemble. If we write this as

pt. ———,'fp+(t) e'"'+ p
—

(t)e
—'"'). (D14)

Clearly p is the Hermitian conjugate of p+. Inserting
this in (D13), we obtain for p+(t) the equation

i(8p+/Bt) tdp+=—[Ht,p]+[B,p+]. (D15)

The Laplace-average of this gives (since p+= 0
at t=o)

f'() —f ()=LH, )+I:H,f+()j (D16)

where f+(s) is the Laplace-average of p+(t). We need
f+(s) for small s again. (D16) is identical with (D5)
except for the additional term ( cof+) on —the left-hand
side. This can be taken into account very simply: in
the energy denominator in the nondiagonal equations
a»t,. is replaced by ~» +co, and in the diagonal equa-
tion we have an extra term Mft+ on the left-hand side.
The method of solution is, however, identical and we
obtain to lowest order

BPk E
tdft,+=ieE„' + 2tri-

Q2 k'(k'gk)

X&(~» +~) (fa+ f~+). (D1—7)

Unless the external field oscillates with a frequency
comparable to an atomic frequency the co is completely
negligible compared to the cokk in the 6 function, and
we obtain

~Pk
itdft+ = eIt + p W—t, t, 0(ft, +—ft+). (D18)

k' (k'gk)

This is just the equation one ordinarily would use,
since after long times

As a 6nal application of these methods we consider
the case where the external 6eld is periodic in time with
an angular frequency of, say, co. Then once again we
must solve (8) subject to p=p(H) at t=0 and with
Hr H+——H tcos'rA. Writing again pr ——p+pF, and going
only to the 6rst order in the 6eld, we obtain

i (Bpp/Bt) =LHt, p) cos(ddt)+LH, ppj. (D13)

Let us write

isg(s) =ispo+[H, g(s)), (D11) p
—t. (f+et'~ t+f e t'ttt)—— (D19)

we see that the equation is formally identical with

(D5), f(s) being replaced by g(s) and the commutator
LHt, p) by ispo. Therefore, the entire analysis may be
formally carried. over. To the lowest order in ) and
for the case t„)&t we obtain

Bpt:(t)
~»'Lp~ (t) —p~(t) j (D12)

k'(k'Qk)

the usual kinetic equation. In higher orders, or if t„ is
not much greater than t„ the kinetic equation is re-
placed by something more complicated.

In higher approximations the situation is again more
complicated.

i(BP2/Bt) = [Ht,pt&]+[H,P2j, (K2)

APPENDIX E. JOULE HEAT

To obtain the Joule heat we must solve (8) correct
to the second order in Z . Let us write

pr =p+pt+p2,

where pp is linear in the field and p2 is quadratic. Sub-
stituting in (8) and equating equal powers of E, we
obtain
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pi satisfying (13). Using (15) and (16) this beco

(Bp /)7 t) =[H,f) "+[V,p ),

mes Incidentally, the same method of proof shows that
there is no linear correction to the energy. Multiplying
(13) by H and taking the trace, we obtain

(E3) has the solution

yielding
p ge28 0

2isg = [Hi,f]+[H,g]. (E5)

(8)i——e"Tr(Hf)
eel

=—. 1 Tr(H(CHf]+LHi, p])))=0, (E17)

However,
2is Tr(gH) =Tr(f/H, H&]). (E9)

Now we are interested, in the quadratic correction
to the mean energy of the system (apart from the
interaction energy with the external field). That is,

(H)2 ——Tr(p2H) =e"Tr(gH). (E6)

To obtain this trace, we need only multiply (E5) by
H and take the trace. Then

2is Tr(gH) =Tr([Hi,f]H)+Tr([P,g]H). (E7)

Making use of the formal operator id.entity,

Tr(A)B,C])=Tr([A,B]C),

Eq. (E7) becomes

Z$

by (E7).
The somewhat formal operations implied by using

(E7) may easily be verified with the explicit expressions
given in the paper.

APPENDIX F. QUANTUM STATISTICS

When the electron density is suKciently high, the
exclusion principle must, of course, be taken into ac-
count. Provided that the dynamical interaction of the
electrons is still neglected, we shall see that the only
change required in our formalism is a change in the
form of the equilibrium density matrix: instead of the
Maxwell-Boltzmann form (10) we have to use the
Fermi-Dirac expression

(E10) p=1/Le" "'+1), (F1)
so that

(0)

Tr(gH) =— Tr(fv )

(E11)

where f is the chemical potential determined by the
density of the electron gas.

It is convenient in this derivation to make use of the
formalism of second quantization. All operators are
then thought of as being operators in occupation-
number space. The wave function P of the system be-
comes an operator

8 is just the average velocity as computed from f
Therefore, the quadratic correction to the ener at
any time t is

(F2)

e+a ~a
(H) 2

— e2)t

2$
oror't+or'tor =Orr') (F3)

gy
where the P„are some complete set of functions for a
single electron. The a„are the destruction operators

(E12) which satisfy the commutation relations

On the other hand, the power absorbed per unit
volume due to the Joule heat is just where a„~ is the adjoint of a„,and is the creation operator

for the state r. The operator representing the number of
particles in the state r is

where j (t) is the average current density of an electron
at time t. This is

ej.(i) =—v e".
0 Er=+,R,, (FS)

Consider now a "one-particle" operator. That is, an

(F14) operator of the form

Therefore, the power absorbed for the entire volume,
P(t), is

P(f)=eE &OiV e"' (E15)

The total energy absorbed up till the time t is clearly

where R; depends only on the dynamical variables of
the ith electron. Ke introduce the notation Rp to
mean the form of this operator in the second-quantized
formalism. Then, as is well known,

P(t)d&=
ejv (o)g e2«

(E16)
Rr=g a„ta„R„„, (F6)

which is identical with (812).
where R„„are the ordinary matrix elements of the
one-particle operator R; in the r representation. The
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total Hamiltonian is of this form, so that we have

Bp P——a, ta„(P p)„, .
f', r I

Calling the density matrix in this representation p™z,

we have for its time development

~pT
i =[Hp, pp j.

8f
(F8)

In order to calculate the expectation value of any
one-particle operator such as the current, we need the
trace of the product of this operator with pp. Therefore,
we need objects of the form

i8(pp) „/R
=2&"[(+r)rt" (pr) 7'"r' (pr) rr" (&r)r"r') (F13)
= (&p,pr)-'

In matrix notation,

Qpp/at= )Hp, pr).

Therefore, the object which we need, pp, satisfies
the same equation of motion that the pp satisfied
without statistics. The only difference is that the un-
perturbed value of pp is now different. Without the
electric field we have pz =p, the density matrix which
defines the equilibrium state of a collection of S
dynamically independent Fermi-Dirac particles.

I et the equilibrium value of p& be called p. Then

(R)=Tr(ppRp) =Q Tr(ppa„ta;)R„
gf p„.=Tr(pa;ta, ) (F15)

where

=ZLR-( )".j, (F9) To find what this is, cho'ose for r the representation
which makes II diagonal. In this representation p is
diagonal in the corresponding rl„'s. Therefore, we get

(pr)- =»(ppa', a.)
Equation (F9) may be written

(F10) prr' =Tr (partar) ~rr'

=Tr(pe, )b„„. (F16)

(R)=Tr(Rpp), (F11)

where Tr means the trace in the r representation, and
we are viewing (pr),„asa matrix in that representation.

To 6nd the equation satisfied by (pp) „,we multiply
(F8) by a„ ta„and take the trace. This gives

i8 (pp) „„/Bt
=T ( "'.[&,p j)
=Tr ([a"'a.,&plop)

(F12)

=«[Z" (a 'a" (&p)--=a"'a.(&p). ")pr J,

where we have made use of the commutation relations
(F3). Using (F10) we now have

The quantity multiplying 8„„ is just exactly the defini-
tion of the Fermi-Dirac distribution function for the
state r. Therefore, we may write (F16) in the form (F1),
which proves the original assertion.

The same method of proof goes though if one has
Bose-Einstein statistics instead of Fermi-Dirac.

Finally, we notice that, as a consequence of this
theorem, when we derive the transport equation we
still obtain the same collision terms as previously.
These are limear and fI, and not of the form fi(1—fl, ),
as has sometimes been suggested. This difference can
lead to physical consequences when, say, there are
spin-orbit forces present, and the transition proba-
bilities are not symmetric in k and k'.


