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Effective Magnetic Anisotropy and Magnetostriction of Monocrystals
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The effective magnetic anisotropy energies associated with the domain theory are derived to second order
for cubic crystals. These effective anisotropy energies are expressed in terms of the intrinsic anisotropy for
an undeformed crystal, the magnetostriction, and the elastic moduli. Also, in the process of d.eriving the
eRective anisotropy energies to second order, the expression for the magnetostriction of a cubic crystal is
expanded to sixth order in the direction cosines for the magnetization. The interrelation between the effective
anisotropy in domains and domain walls is studied and its influence upon the domain configuration
suggested.

I. INTRODUCTION

HE magnetic anisotropy of an undeformed mono-
crystal will be defined as the intrinsic magnetic

anisotropy. The eRective anisotropy of a monocrystal,
which has been permitted to deform freely due to mag-
netostriction and/or deformed by an applied stress, is
the sum of the intrinsic anisotropy and contributions
from the magnetostriction and/or the applied stress.
The eRective anisotropy of a saturated monocrystal is
the eRective domain anisotropy and is the only eRective
anisotropy energy which can be directly measured. The
intrinsic and domain-zoll anisotropy energies can not
be directly measured and must be determined from the
measured eRective domain anisotropy, the magneto-
striction, and the elastic moduli.

Other workers have derived the eRective domain
anisotropy expression to the erst order. ' ' Experimental
data on many materials indicate the anisotropy energies
must be expressed at least to the second order. Hence
the main purpose of this paper is to derive and study
the eRective anisotropy energy expressions to the second
order. The domain and the domain-wall anisotropy
energies are interdependent through the intrinsic
anisotropy and magnetostriction. The interrelation
between domain and domain-wall anisotropy energies
is shown to have a profound inhuence upon the mag-
netic domain con6guration in a crystal and hence also

upon its macroscopic properties.
The second-order terms in the expression describing

the anisotropy energies are sixth order in the magnetiza-
tion direction cosines. Therefore, the magnetostriction
must also be expressed to sixth order in the magnetiza-
tion direction direction cosines. Since existing expres-
sions for the magnetostriction are inadequate, a new
and more general expression has been derived. The
sixth-order magnetostriction expression, which has been
derived, conveniently reduces to existing lower order
expressions and in addition is independent of the nature
of the magnetic anisotropy.

TABLE I. Five-constant magnetostriction data.

Material h1 X106 h2 X106 he X10 h4 X106 hg X106

78'Po Ni-Fe (quenched)a
78% Ni-Fe (slow cooled)'
Nickela
Magnetite (Feg04)b

13.7
20.9—68.8—24.5

2.6
2.8—36.5

123.3

—0.3
1.7—2.8—0.4

1.1—1.4—7.5—4.76

—0.1-0.2
7.7

-20.2

& R. M. Bozorth and R. W. Hamming, Phys. Rev. 89, 865 (1953).
b L. R. Bickford, Phys. Rev. 99, 1210 (1955).

II. MAGNETOSTRICTION

The spontaneous magneto striction of an uncon-
strained cubic monocrystal at a fixed temperature can
be expressed as a series expansion in the direction co-
sines n, and P, for the directions of magnetization and
measurement respectively. The direction cosines are
referred to the cubic crystallographic axes. Only the
terms of even order in the n, and p; are nonzero because
of the cubic symmetry. The magnetostriction can be
expressed to second, fourth, or sixth order in the n;
with two, five, or nine constants respectively. Second-
and fourth-order expressions have already been de-
rived' which are satisfactory except for the dependence
of the fourth-order expression upon the magnetic
anisotropy. The zero reference for the existing fourth-
order expression, although arbitrary, is defined as the
strain for the special domain configuration of an equal
volume of domains magnetized along each of the eqniea
lent easy dsrections of ntagnetiscttion, e.g. , the (111)
directions in nickel and the (100) in iron. Thus, in cases
where the anisotropy changes the direction of easy
magnetization with temperature or composition, the
magnetostriction for the same variations does not have
the same zero reference. A sixth-order expression has
already been derived but it does not conveniently re-
duce to the existing lower order expressions, and in
addition it involves ten constants. '

The required sixth-order expression for describing the
magnetostriction has been obtained by a straight-
forward extension of the method used by Seeker and
Boring to determine the fourth-order expression; see

r R. Becimr and W. Doring, Ferromagrtett'smls (Verlag Julius
Springer, Berlin, 1939), p. 145.

~ C. Kittel, Revs. Modern Phys. 21, 541 I'1949).

580

'R. Vautier, Ann. phys. 9, 322 (1954). The three constants
h3 h5 and h6 of Vautier's expression can be replaced by two
constants.
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~lpp 3h1 ~111 3h2) h3 to h9

Almost all existing magnetostriction data on mono-
crystals consist only of the two constants ),1pp and X111.
Two-constant data for several materials have been
listed in Table II.

When hs, , hs/0, Eq. (2) is not a valid repre-
sentation and the measured constants, X1pp and X111,
are not unique. Therefore, since the constants h3 to h9

have not been determined for most materials, the two
constants ) lpp and X»1 and Kq. (2) must be used with
caution. Most experimental techniques, used to obtain
Xlpp and X»1, exploit the symmetry of Eq. (2) with

Appendix A. It is

@/&= hi(esi'pis+1222ps'+483'ps' —8)

+2h2(&1&2PlPS+422&SPSPS+&1&SPlPS)

+hs(S —-', )
+h4(4214P12+o124P22+4234pss+ 8S 8)—
+2hs(&1&2%3 plp2+&sisscsl psps+&l&3&2 plp3)

+hS(431 Pi +&2 Ps +423 PS +S P 3)
+2h7(42la2423 plps+c32438&1 P288+&1&8&2 P1PS)

+hs(P —1/105)
+2hp(&1 422 plp2+&2 428 psps+&1 &3 pips))

where

431 &2 +422 &8 +431 428
y

+ 131 &2 &8 ~

The zero reference of Eq. (1) has been delned as the
strain for the special domain configuration of an equal
volume of domains magnetized along all crystallo-
graphic directiorls and therefore is independent of the
magnetic anisotropy. Also the first five constants of
Eq. (1) correspond directly with those of the existing
fourth-order expression.

Theoretically all nine constants of Eq. (1) could be
experimentally determined by extension of the method
now used to obtain the first five constants. The h, are
obtained by the inversion of a strain matrix, which is
made up of a su%.cient number of independent strain
measurements. However, the present experimental tech-
niques used to make the strain measurements introduce
errors which make the determination of the constants
h4 and h5 very uncertain. Since the constants h6 to hg

would be expected to be smaller than the first five,
determination of all nine constants does not seem fea-
sible using present experimental techniques. Neverthe-
less, all nine constants will be retained to ascertain the
role of the higher order terms on the anisotropy energies.
Existing five-constant data are listed in Table I to
provide a comparison between various materials and a
basis for following calculations.

The most familiar representation of magnetostriction
is the two-constant expression,

@/i slllpp(&1 Pl +&2 P2 +&3P3 3)

+ 3~ 111(431422PA+ 42&SP 2PS+ 42 ESP 1PS) y (2)

TABLE II. Trvo-constant nlagnetostriction data.

Material

Iron
Nickel
Fe304'
Nip. sFe2. 2o4
CoFe204b
Cop. sFe2. 204'
Cop 3Znp 2Fe2.204'
Cop. sMnp. 4Fe2.p04
Mno. gsFe1.s604'
Mnp. 6Znp &Fe2, 104'

&tpp X10P

+19.5—46—19.4—36—515—590—210—200—35—14

X1i1 X10P

—18.8—25
+86.4

4
+45

+120
+110
+65—1

14

a B. A. Calhoun, Technical Report No. 68, Laboratory for Insulation
Research, Massachusetts Institute of Technology, July, 1953 (unpublished).

b R. M. Bozorth and J. G. Walker, Phys. Rev. 88, 1209 (1952).
Bozorth, Tilden, and Williams, Phys. Rev. 99, 1788 (1955).

respect to the directions of magnetization and measure-
ment (i.e., symmetry with respect to the direction
cosines 42; and P, , respectively). Inspection of Eq. (1)
shows that such symmetry does not hold for higher
order expressions. Hence, if h3 to h~/0, the evaluation
of Xipp and X»1 will diGer according to whether the
direction of magnetization or measurement is kept
constant. It can easily be shown, by using the data in
Table I, that the evaluation of the two constants for
nickel or magnetite could vary by 10%,depending upon
the method of measurement.

U =E1S+ESI', (3)

where S and P, functions of the magnetization direction
cosines, have already been defined for Eq. (1). An
undeformed crystal is one which has not been permitted
to deform either due to magnetostriction or externally
applied stresses. Although the undeformed state is
virtually impossible to obtain, it is a useful concept and
is the defined reference state for describing the anisot-
ropy energy for any other state of strain.

When magnetic measurements are made no external
stresses are usually applied and the sample is allowed
to deform freely due to magnetostriction. The effective
anisotropy energy for a saturated monocrystal under no
constraints may be expressed by

~d'= (&1) 21S+(&2) li&, (4)

which has the same form as Eq. (3). It should be noted
that Kq. (4) expresses the eRective dosssaiN anisotropy
since a saturated monocrystal is by delnition a single
domain. The effective anisotropy constants of Eq. (4)
are, however, not equal to the corresponding constants
of Kq. (3) since the total magnetoelastic energies of an
unconstrained monocrystal vary with the direction of
magnetization. The anisotropy contributions from the
magnetoelastic and elastic energies have been derived
in Appendix B. The resulting expressions for the eBec-

III. EFFECTIVE DOMAIN ANISOTROPY ENERGY

The intrinsic magnetic anisotropy energy, i.e., that
for an undeformed monocrystal, may be expressed in
the form
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tive constants of Eq. (4) are

(&~).«=&i+(C»—C») I
k~'+-k~k4 —k~ka —kA I

)hp h3hsq
2C44k2 +3(C»+2C»)

I

—+ I) (5)
& 5 105&'

(&,)e«E2 3 (C» C$2)kgk4+12C44h2k5

(k3ks ks
+3(C»+2C12) I + I (6)

5 1052

The E& and E2 are the anisotropy constants defined by
Eq. (3), the h~ to hg are the magnetostriction coefficients
de6ned by Eq. (1), and the C~~, C», and C44 are the
usual elastic moduli for a cubic crystal. When the
higher order magnetostriction coeRcients are zero,
Eqs. (5) and (6) reduce to the simpler erst-order ex-

pressions derived by others. ' '
Since an unconstrained monocrystal is allowed to

deform freely to a lower energy state, it has been argued

by some' that always
I (E&),« I

(
I
E& I. It will be shown

subsequently, however, that for both magnetite and
cobalt-zine ferrite I(E~),ffI) IX~I. These results for
magnetite and cobalt-zinc ferrite are not anomalous
since the concept derived above is based on a fallacious
argument. The fallacy is that the reduction in the total

energy produced by a free deformation is arnsotropic.
Although the total energy of the crystal is always
lowered by permitting the free deformation, the aei-
sotropy of the total energy may either be increased or
decreased. Therefore, the intrinsic anisotropy constants
E& and E2 of Kq. (3) may be either greater or smaller

than the measured effective constants and must be
calculated from Eqs. (5) and (6).

In order to calculate the intrinsic anisotropy con-
stants from Eqs. (5) and (6), the elastic moduli must
be known. The elastic moduli C11, C12, and C44 describe
the elastic deformation of a cubic monocrystal under a
given stress. When these moduli are measured for
magnetic materia1s it is essential that strains, such as
could be produced by magnetostriction and/or ionic

ordering, should not occur during the period of meas-

urement. The inQuence of the magnetostriction can be
removed by maintaining the sample in a saturating
field, thus fixing the magnetic state during the period
of measurement. The elimination of the inliuence of
ionic ordering however is practically impossible. Fine
and Kenney'were so concerned about the inhuence of
the order-disorder transformation of magnetite at
120'K that they were not willing to calculate even the
room temperature moduli from their data. The inhuence

of magnetostriction upon the determination of elastic
moduli has been recognized for some time and called

4 H. Shenker, Naval Ordnance Laboratory Report 3858, Febru-
ary 8, 1955 I'unpublished}.

~ M. E. Fine and N. T. Kenney, Phys. Rev. 94, 1573 (1954).

the "hE effect." Despite this fact, most existing data
on the elastic constants of magnetic materials have
been obtained without regard for the irtelastic strairts
produced by Ntagnetostrictiort. Thus, at present we must
be content to use such data that are available; see
Table III.

The intrinsic anisotropy constants of Eq. (3) can be
calculated from Eqs. (5) and (6). Using the data in
Tables I, II, and GI, the measured anisotropy constants
of Eq. (4) for some materials have been compared in
Table IV with the calculated intrinsic constants. The
intrinsic constants are significantly different from the
reported effective constants.

TABLE III. Elastic moduli.

Material
C~1X10 '2 Cts X10»
{ergs/cc) (ergs/cc)

C44 X10 &2

(ergs/cc}

Feg04a
Cop. 32Zn p. 22Fe2. 204"
Nickel'
Il on

2.7
2.66
2.50
2.41

1.08
1.53
1.60
1.46

0.987
0.78
1.185
1.12

a M. S. Doraiswami, Proc. Indian Acad. Sci. 2SA. 413 (1947}.
b McSkimin, Williams, and Bozorth, Phys. Rev. 9S, 616 (1954).
& Bozorth, Mason, McSkimin, and Walker, Phys. Rev. VS, 1954 (1949).
d R. Kimura and K. Ohno, Sci. Repts. Tohoku Univ. 23, 359 (1934).

IV. EFFECTIVE DOMAIN-WALL ANISOTROPY

Most magnetic monocrystals have a magnetic do-
main configuration in which domains of a given satura-
tion magnetization are separated from each other by
transition regions called domain walls. The volume of a
domain wall is so small compared to that for the adja-
cent domains that the elastic state within a domain
wall is dictated by the deformations of the adjacent
domains. Hence the rotation of magnetic moment
through a domain wall, from one domain to the other,
must be accomplished under the constraint of an
essentially fixed elastic state, within the domain wall.
The general calculation of the effective anisotropy
energy for a fixed elastic deformation is quite complex.
However, the problem is greatly simplified for certain
special cases. Since the magnetostriction of the domains
is an even function of the direction of magnetization
Lsee Kq. (1)], the magnetostriction of antiparallel
domains is the same. Thus, in the case of 180' domain
walls, the elastic deformation is a constant across the
wal1 thickness. In other than 180' domain walls, the
deformation must be considered a function of the dis-
tance through the wall. Only the effective anisotropy
for a 180' domain wall (i.e. , constant deformation)
will be calculated.

The deformation existent within a 180' domain wall
is considered to correspond to the magnetostrictive de-
formation of the adjacent domains when the magnetiza-
tion in these domains is defined by the direction cosines
i;, referred to the cubic crystal lattice. The anisotropy
energy, U„, within a 180 domain wall associated with
the rotation of the magnetic moment, defined by the
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TABLE IV. Anisotropy constants in units of 104 ergs/cc.

Material
Effective-measured

(Kl)eff (K2)en

Intrinsic-calculated
(5-constant magnetostriction)

KI Kg

Intrinsic-calculated
(2-constant magnetostriction)

KI K2

Iron
Nickel
Fe304
Cop 3Znp. gFe2. 204
Mnp. psFe1. 8pO4

»p. sFe2.2o4

42—4.26~
11b

1500
—2.8d

39e

~ 0 ~

0.2+0 4~

—4.48—8.0

42.1—4.35—8.0
143—31f
—4.2'

15
1.09

~ ~ ~

0.2~0.4f

a Y. Nakamura, J. Phys. Soc. Japan 10, 937 (1955).
b L. R. Bickford, Phys. Rev. 78, 449 (1950).' R. M. Bozorth et al. , Phys. Rev. 99, 1788 (1955).
d J.F. Dillon, Jr., e. al. , Phys. Rev. 100, 750 (1955).

62 R. M. Bozorth et aI.„Phys. Rev. 99„1898 (1955).
& In lieu of experimental data, the elastic constants have been estimated to be (C» —C&s) =C44 =10» ergs/cc.

direction cosines 0.;, has been derived in Appendix C: 3 (Cll+ 2C12)
U = El+ hs' S+E2P

(Cll C12) (hl +hlh4) (&1 3)

(Cll C12) (hlh4+h4 ) (&1 + 8$ 3) ~

Donsa&n ntagnetisation along (111)

f1=i 2=$3=1/v3,

2 (Cll+ 2C12)
hP S+E2P

5(7) U„= IC1—

U„=(Ei—3(Cu+ 2C12)hsLhs(S0 —6)+hs(P0 —1/105)])S
+(Es—3(Cu+2C12) hs)hs(S0 —6)+hs(P0 —1/105)])P

(Cll C12)hl L&1 ' ll+422 (22+433 $38
—

4C44h2'Lrslc22312+c22423 "23+42ic33$13]
—(Cli C12)hih4L(21 511+432 (22+423 ass+to('3S ——;)]

4C44hshsk+lr22043 512+c62rrsrrl 023+cllcrsc12 (18]
(Cll C12)hlhsr 421 $11+Q2 $22+633 $38+7o(S P 3)]
'4C44h2h7L&1&2&8 $12+&2&8431 ~23+&1&3422 $13]
4C44h2h95rrl 422 $12+122 628 $23+421 428 $13]&

where

Phg +h—4t +hsgs],
h1

t'h22 hshs )—4C44~ —y ~(~,~2+~2as+~,~3)9)
(hshs hP)—4C44~ +—l(~1&~3+~2~3~1'+ 1&3~2)~ (9)
E. 3 9&

$44 = I h2M—7+hsi fA'+h7M7t 3'+hsi "17']
h2

to =—Lhl —h4(250 —1)—hs(3S0—3P0—1)],
h1

SO i 1 t 2 +i 2 f 3 +i 1 f3 y

Ps= t 1'f2'ps'

As will be shown later, the form of Eq. (7) is quite
similar to the expression for describing the inhuence of
an externally applied linear stress. Thus, the gross
inhuence of the magnetic domains upon the domain
wall may be interpreted as an equivalent stress parallel
to the domain magnetization, which tends to align the
magnetization within the wall parallel to that in the
adjacent domains.

In most materials the domains are magnetized along
either (100) or (111) directions depending upon the
domain anisotropy. Eq. (7) is greatly simplified for
either of these special cases; the corresponding expres-
sions for h6 to h9 equal zero are

Donsain nsagnetisation along (100)

f1=1, f's=i 3=0,

The lack of cubic symmetry in the domain-wall ani-
sotropy energy is the main feature which makes the
domain and the domain-wall anisotropy energies dif-
ferent. The constants of Eq. (9) may be calculated for
nickel and magnetite by using the data in Tables I, III,
and IV. The constants for the noncubic terms are
approximately J 1/10 for both materials.

The first-order form of Eq. (7), obtained by letting
+2 0 h '& 3 0 h1 2~1QO and h2 2~111 i»imply

Uw +1S—(9/4)(C11 C12)71100 (421 i 1 +r22 f2 +crs t 3 3)
9C4471111 (c61422flf2+72&sf2i 8+&1&si lf8) ~ (10)

It should be noted that the second or third terms of
Eq. (10) go to zero when the domain magnetization is
along a (111)or (100) direction respectively. Therefore
usually only one of the last terms predominates in a
given material. The coeKcients for Eq. (10) have been
calculated for several materials and tabulated in Table
V. As noted by Kittel, the magnetostrictive contribu-
tion to the eft'ective domain-wall anisotropy is small for
the metals iron and nickel. However, in the magnetic
oxides this contribution can be quite large, as for Fe304
and Cop. 3Znp. 2Fe2.204, or very small as in the case of
Mnp, gsFe1.8604.
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TABr.z V. EBective domain-wa)1 anisotropy constants,
in units of io' ergs/cc.

Material
—(9/4) (Cii -Cio)

XXiooo —9C44X i i'
Iron
Nickel
Fe804
Coo.8Znp. 2Fez. K4
Mn0. 98Fe1.8604
Nip. 8Fe2.204

+42.1
4.35—8.0

+143—31—4.2

—0.08a
—0.43—0.14
11a

—0.27—0.29

—0.09—0.17'—1.7a
—2.1
10—4 a

0.03a

& Predominant term resulting from direction of domain magnetization.
b Elastic constants approximated: (Cll Ci2) =C44 =10'o ergs/cc.

V. INTERRELATION BETWEEN THE EFFECTIVE
ANISOTROPY IN DOMAINS AND

IN DOMAIN WALLS

The effective anisotropies in a domain and in a domain
wall depend on the same independent parameters and
are therefore interrelated. The magnetic domain con-
6guration and thus also the magnetic properties of a
material are grossly influenced by not only the absolute
values of the domain and domain-wall anisotropy
energies (Ud and U ) but also by their relative values.
The special cases which are the most interesting and
also the most illuminating are those for which either
of the anisotropy energies is zero and those cases for
which certain of the independent parameters are zero.
For brevity, only the first-order expressions for U& and
U„will be used. The first-order expression for Ud is
readily obtained from Eqs. (4), (5), and (6) as that
given in Eq. (11).The erst-order expression for U,„has
already been given in Eq. (10).

U~ = (Et).n&, (11)
where

(Et)444=Et(9/4) j(Ctt —CU)&800 —2C4dtt88 j
In the expression for Ug all the terms have the same

symmetry and U& ——0 if (E,)„&——0, i.e., if

Et= —(9/4) P(C11 C12)i~100 2C44~111 j. (12)

Substitution of Eq. (12) into the expression for U„
shows that if Uq is zero thee U„ is eot eecessarily zero.
Since the expression for U„ is comprised of terms each
having a di6'erent symmetry, U„can be zero only when
each term is separately zero. Therefore, it follows that
if U„=O thee Us 4egst also be zero

If U„=O, then discrete domain walls would not exist
and the change in magnetization from one domain to
another would be accomplished in a rather incoherent
way. The fact that U„/0, even when V&=0, means
that the magnetization process can usually be con-
sidered one of discrete domain-wall motion in addition
to domain rotations. The domain-wall energy density,
which is dependent upon U„, should be minimized to
reduce the static and dynamic losses. s One should
therefore question how U„may be reduced and what is

' J.3.Goodenough, Phys. Rev. 95, 917 (1954), and ¹ Menyuk
and J. B. Goodenough, J. Appl. Phys. 26, 8 (1955).

TABLE VI. Inhuence of magnetostriction on domain wall type.

Xioo =0

Xiii =0

Conditions favoring 90'
domain walls

{a) (Ki)eff )0, orK» (9/2) C44X»i2
(b) (Ki)eff (0, or

Ki (—(9/4) {Cii-Ci2)Xiooo

Conditions favoring 180
domain walls

(c) (Ki).ff &0, or
Ki & (9/2) C44Xi i i2

(d) (Ki)eff%0, oi
Ki & —(9/4) (Cii -Cia)Xiooo

7 R. M. Bozorth, Revs. Modern Phys. 25, 42 (1953).

the corresponding eGect on the U~ and the general
domain structure.

The reduction of U„breaks down to the possibilities
E1=0, XIpp=0, X111=0 or any combination of two of
these possibilities (the case of all three being zero has
already been considered). When E,=O, Us depends
only upon the magnetostriction coefficients. In fact,
Up=0 if

(Cll C12)ltlQQ 2C44~118 (13)

Eq. (13) does not require elastic isotropy (Ctt —C82
=2C44) or magnetostrictive isotropy (Xioo=htti), but
isotropy of the magnetoelastic energy. If Eq. (13) is
fulfilled and E&=0, then U may be expressed in a very
simple form:

UM (9/4) (Cll C12)ltt00 cos'8, (14)

where 0 is the angle between the magnetization in the
wall and the magnetization in the adjacent domains.

When the total magnetostrictive contribution to U„
goes to zero, 180' domain walls tend to separate into
"90"' domain walls. ' Therefore, in addition to the
possibility of reducing U„, it is also necessary to estab-
lish the conditions which favor 180' or 90' domain walls.
When both happ =0 and A, 111=0 U =E15 and 90
domain walls will be favored. When either ) «pp=0 or
X111——0, the magnetostrictive contribution to U„may
or may not be zero, depending upon the direction of
magnetization in the adjacent domains Lsee Eq. (10)].
In Table VI the cases favoring the types of domain
walls are tabulated for either X1pp or X111=0.

In cases (a) and (b) of Table VI, the domain ani-
sotropy energy will simply be U„=E&Sand 90' domain
walls will be favored. Both of these cases are nicely
illustrated in the system Fe-Ni and have been studied
in detail by Bozorth et a/. ' It is notable that the re-
sponse to a magnetic anneal in the system Fe-Ni goes
to zero at the compositions for which cases (a) and (b)
are fulfilled and thus where 180' domain walls are not
favored.

In cases (c) and (d) of Table VI, the domain-wall
anisotropy will be expressed as

U~= Et& 9C44~181—(421422)1/2+&2428 f2t 8+421488$1t 8)) (15)

U„= EBS—(9/4) (Cgt —C82)X8002

X (~82i 42+~22i.22+~82f 82——'.), (16)

respectively. In both cases the U will not be sensibly
affected by the fact that one of the magnetostrictive



MAGNETIC AN I SOTROP Y AN D MAGNETOSTRI CTION

coefficients goes through zero. An illustration of case (c)
is not known although one does not see why it would
not be physically possible. Case (d) is illustrated in the
system Fe-Si where 180' domain walls have been
observed. '

In all the ferrites measured, ) &00 has always been
negative. Hence, the occurrence of X~00=0 in the ferrites
would seem unlikely. The sign of )»& does, however,
change sign for the ferrites and can be made zero. Thus,
only cases (b) and (d) need be considered for the fer-
rites. Since (Kl),ll is usually negative, 90 domain walls
will predominate in most ferrites whee X111=0. Only
when (El),41 is Possti ve wil/ 180' domain walls be favored
K'h&2 Appal =0.

VI. INFLUENCE OF APPLIED STRESSES

The inQuence of externally applied stresses upon the
magnetic state may be expressed as a contribution U,
to the total effective anisotropy energies.

U(r &hl(nl Yl +ns 73 +Q3 78 3)
20 hs(nlQ37172+nsn37273+nln87178)

—0 ha(S ——,')
—oh4(nl'713+no'73'+Qs'73'+ 3S—3)

2&Tha( l nnasnYl'72+nsn3nl Y3Y3+nln3ns Yl Y3)

&ho(nl 71 +Q2 72 +Q3 73 +S 1 3)
—2ahs(nlnsns'7173+nsnsnl 7273+Qlnsns Y1Y3)
—aha(1' —1/10&)

2&ho(nl ns 7172+ns Q3 7378+nl Q3 '71Y3)

U, as expressed. in Kq. (17) has been derived in Ap-
pendix D, where the applied stress has been defined as
linear with a magnitude 0 and direction cosines y, .
The total effective anisotropy energy expressions for
domains and 180' domain walls are

U4'= Uoo+ U. ,

U '=U„'+U. ,

respectively, where U&' and U„' are the respective
anisotropy energies for an unconstrained monocrystal.

The first-order expression for U, is obtained from
Kq. (17) by letting hl=skloo, hs=sX111, and hs,
kg=0:

8&~100(nl 71 +Qs 72 +Q3 Y3 3)
3&411(nln27172+nsn87373+nln37173) (20)

The corresponding first-order expressions for U~ and
U ' are given in Kqs. (10) and (11). The first-order
expressions U&' and U„may now be used to study the
interrelationship between the effective anisotropy in
domains and domain wall in the presence of an applied
stress. The results obtained are similar to those ob-
tained in Sec. V for zero stress. The most significarit
difference is that, in general, the presence of an applied

L. J. Dijkstra and U. M. Martius, Revs. Modern Phys. 25,
146 (1953).

stress makes 180' domain walls more favorable. Only
rather special stresses will not tend to inhibit the forma-
tion of "90"'walls.

VIL SUMMARY

A nine-constant expression has been derived for
empirically describing the spontaneous magnetostric-
tion to the sixth order in the direction cosines of the
magnetization. This expression is readily reduced to the
familiar 6ve- and two-constant expressions. The zero
reference usually used for magnetostriction expressions
has been replaced by one that does not depend upon the
eGective anisotropy. The questionable significance of
existing two-constant data is also pointed out.

The effective first- and second-order anisotropy co-
efGcients of an Unconstrained monocrystal have been
derived in terms of the intrinsic anisotropy coefficients
of an Undeformed rnonocrystal, the nine rnagnetostric-
tion constants, and the elastic moduli. The contribution
to the total effective anisotropy from a linear applied
stress has been derived to the sixth order.

The effective anisotropy for a 180' domain wall has
been derived and compared with that for a domain.
The interrelation between the effective anisotropy
energies in a domain and in a domain wall has been
studied, and the conditions favoring the formation of
180' or 90' domain walls determined for the cases when
the magnetostriction constants go to zero.

APPENDIX A. MAGNETOSTRICTION OF AN
UNCONSTRAINED MONOCRYSTAL

The phenomenological expression for describing the
magnetostriction of a monocrystal to sixth order in the
magnetization direction cosines, n;, is derived by ex-
tending the method of Seeker and Boring' to higher
order.

The elastic energy, U„of a cubic crystal may be
expressed as

2 (Cll C») (e-'+ e»'+ e-')
+ 1 3Cls(e,+e»+ e„)'+3C44(e,„'+e„,'+e„'), (A1)

where the C's are the elastic moduli and the e;; the
strain components.

The magnetoelastic coupling energy, U&, which may
be considered. responsible for the phenomenon of
magnetostriction, may be expressed in the general form

U&, =I lie* ++sac 3+~sac
+I"»e.„+I'sse,.+&lac*.) (A2)

where the Ii;, are functions of the n; and must have
the same invariance to crystal symmetry operations
possessed by the corresponding e;;. Therefore it follows
that F;, must be an even function of n;, n;, and nq and
also be symmetrical in n; and n&, which is expressed in
general form by

~-=bo+bl(n' —-', )+baS+b4(n +3S——;)

+bo(n, a+S I' 8)+bapl —(A3)—
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where the b s are called the magnetoelastic coupling The Ug, is defined as the anisotropy energy for an un-
coeScients. Similarly Ii;; must be symmetric in n; and distorted crystal which for a cubic crystal may be
a, which results in expressed to the sixth order in the o.; as

hp =—bp/ (C»+ 2C16),

hp= bp/C44, —
h4= —b4/(Cll —Clp),

h6 b6/(Cll C12) i

h, =—b,/(Cl, +2C16),

h 1= —b 1/(Cl 1—C12) i

h3 bp/(Cll+2C12)i

hp —— bp/C44, —
hl = bl/C44, —
hp = bp/C44—

The strain of a monocrystal in the direction defined

by the direction cosines P; may be expressed by

—=2 e'O'P
i, g'

(A9)

The measured strain may be completely described
with respect to an arbitrary zero reference. A special
magnetic domain configuration has been defined for a
zero reference, namely that an equal volume of domains
are magnetized in all crystallographic directions. Hence,
suitable averaging of Eqs. (A6) and (A7) for the zero
reference and substitution into Eq. (A9) yields

hp+hp/S+hp/10S =0. (A10)

Finally, substitution of Eqs. (A6), (A'7), and (A10)
into Eq. (A9) gives the desired expression for describing
the magnetostriction as Eq. (1) in the text.

APPENDIX B. EFFECTIVE ANISOTROPY ENERGY
OF AN UNCONSTRAINED MONOCRYSTAL

The total energy dependent upon the direction of the
spontaneous magnetization may be expressed in the
following form:

(»)U~6= U6+ Ul+ U'

F;&=2bpn4nl+ 2bpn, ajar
+2b&u, na&4+2bpn;pulp, for i Wj . (A4)

Static equilibrium of the crystal requires that

8(U),+U,)/Be;;=0, (AS)

which results in six independent equations. The explicit
dependence of the e;, on the magnetization direction
cosines may now be found by solving Eq. (AS) for the
e;, and eliminating the Ii;; by use of Eqs. (A3) and
(A4). The resulting expressions for the e„are

e;,= 2hpn, u,+2hpn, u;n6'

+2hln, n;n64+2hpu46n, ' for i', (A6)

e,;=Ilp+hl(n' ')+—h-pS+h4(u +6S 6)—
+hp(a 6+ S—Z ——',)+hs&, (A.7)

and the corresponding expressions are obtained by
cyclic permutations of the n;.

The b; of Eqs. (A6) and (A7) are the magnetostric-
tion constants, which are related to the magnetoelastic
coupling coefficients in the following manner:

U6= E1S+Epr'. (82)

The elastic energy and magnetoelastic coupling energy,
U, and Ul, are given in Eqs. (A1) and (A2) as functions
of the F;; and e;,. Substitution of Eqs. (A3), (A4), (A6),
(A7), (A8), and (A10) into Eqs. (A1) and (A2) and
retention of terms up to sixth order in the n; yields

7
Ul+ Ua (Cll C12) (161 + hlb4 h4b6)

3

(h66 hphp )—2C44hp'+3(C11+2C16)
~

—+
~

S
& S 10S&

—3 (Cll —Clp) Jllh4+12C44hphp

Ji'166kp hp' )—3(C»+2C»)
I + —

I
& (83)

4 S 10S)

Using Eqs. (82) and (83), the Eq. (81) for the total
energy may be expressed as Eqs. (4), (S), and (6) in
the text.

UI, is the intrinsic anisotropy energy defined by
Eq. (82). Ul, the magnetoelastic coupling energy, is
given by Eq. (A2) where it should be noted that the
strain components e;; are now constants. The constant
e;~ may be expressed in terms of the domain magnetiza-
tion by replacing the n4 of Eqs. (A6) and (A7) by the

APPENDIX C. EFFECTIVE ANISOTROPY ENERGY
WITHIN A 180 DOMAIN WALL

The case of constant deformation in a crystallite is
the first-order approximation to the condition existent
with 180' domain wall. The distortion is dictated by
the distortion in the adjacent domains. The distortion
will be taken as that consistent with the direction of
magnetization defined by the direction cosines, f„ i'll
the adjacent donsaies. The direction of magnetization
withe the domain mull will be defined by the usual
direction cosines, 0,;. Considering the magnetization as
rotating through a domain wall, the direction cosines
f; may therefore be considered the initial values of
the a;.

Since the state of strain of the 180' domain wall is
independent of the direction of magnetization within
the wall, the elastic energy is not a function of the
direction of magnetization and will not contribute to the
effective anisotropy energy. The eGective anisotropy
energy for a 180' domain wall is the sum of the anisot-
ropy of the undistorted crystal, U&, and the magneto-
elastic energy, Uy.
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corresponding initial values l; S.ubstitution of the con-
stant e,; together with Eqs. (A3), (A4), (A8), and
(A10) into Eq. (A2) yields the form of U&, for final
substitution into Eq. (C1) to give the desired expres-
sion for U as Eq. (7) in the text.

APPENDIX D. MAGNETIC ANISOTROPY RESULTING
FROM AN APPLIED STRESS

The elastic strain components e;; resulting from the
application of a linear stress are

and the direction cosines y;. Since the e@ do not
depend upon the magnetization, the only contribution
to the magnetic anisotropy energy is through the mag-
netoelastic coupling energy U&,

Ul'= Ulema U' (D2)

Uq' is the magnetoelastic coupling energy for zero
applied stress used in Appendixes A, 8, and C. U is
the total contribution to the magnetic anisotropy
energy due to the applied stress which, by analogy with
Eq. (A2), may be expressed as

e-=
C11 C12 (C11 C12) (Cl 1+2C12)

(D1)

U.=F1«..'+F22e„'+Fsss, .'
+Fisc,„'+F22e„, +Fisc„. (D3)

e;; =~VA'j
for iW j,

C

where the applied stress is defined by the magnitude 0.

Substitution of Eqs. (A3), (A4), (AS), (A10), and
(D1) into Eq. (D3) finally gives U, as an explicit
function of the magnetization direction cosines n; and
the applied stress in Eq. (17) in the text.
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Anomalous Variation of Band Gap with Composition in Zinc
Sulfo- and Seleno-Tellurides
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A monotonic variation of band gap with composition occurs for many binary solid solutions. Qf some

Group II—Group VI systems, ZnS-ZnSe shows this type of variation of band gap with composition, whereas
ZnSe-ZnTe, ZnS-ZnTe show an anomalous minimum in a plot of band gap versls composition of the solid

solution.

INTRODUCTION
I

~

~

~ ~

~

~ ~

~ ~

OME measurements of the variation of band-gap-
energy with composition in isomorphous series of

two-component solid solutions have been reported.
Gisolf' has investigated the ZnS-CdS system, Johnson
and Christian, ' the Ge-Si system, and Folberth, '
Group III—Group V materials. The results seemed to
confirm a postulate that intermediate members of a
two-component series have band-gap energies inter-
mediate to those of the extreme members of the series.
The present work reports results which show that
although the systems ZnS-ZnSe follows the above
postulate, the systems ZnS-ZnTe and ZnSe-ZnTe do
not.

EXPERIMENTAL

Synthesis of Materials

Phosphor-grade zinc chalcogenides were used through
out the work. Powder mixtures of the pure ingredients

' J. H. Gisolf, Physica 6, 84 (1939).' E. R. Johnson and S. M. Christian, Phys. Rev. 95, 560 (1954).
3 O. G. Folberth, Z. Naturforsch. 10a, 502 (1955).

(in the desired molar proportions) were dry ball-milled
for six hours, to insure homogeneity of mixing. The
materials were then transferred to silica boats, and
crystallized in an atmosphere of purified nitrogen at
900'C. The materials were cooled under nitrogen.
Phosphor-type purity and precautions were maintained
throughout the synthesis.

Analysis

X-ray diGraction studies were carried out using a
North American Philips diBractometer, with a copper
target and nickel filter, to obtain monochromatic 1.54 A
radiation.

~ ..Chemical quantitative analyses of tellurium in solid
solution were carried out by an electrometric titration
method developed by Dr. M. C. Gardels of these
laboratories. 4

Re6ection Spectra

In the absence of single crystals for direct absorption
measurements, the disuse reQectance of the micro-

4 Method to be published elsewhere.


