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Previous work is extended so as to obtain a unified theory of collective and individual electron effects in
the excitation of a degenerate electron gas by fast incident electrons. The two characteristically collective
features of the characteristic energy loss, the relatively large magnitude and the sharpness of the energy,
are shown to follow from a straightforward quantum-mechanical treatment of one-electron excitations,
provided only that the interactions of the electrons are taken into account. The interaction causes the
excitation to be transferred from one excited configuration to another, resulting in an exciton in momentum
space. This “momentum-exciton” is a discrete state which separates from the continuum of one-electron
excitations and rises to higher energy, in accordance with Hund’s rule. Correlation is taken into account
by means of Feynman graphs in which the excitation makes a “jog” and travels backwards in time, as
well as forwards. With this refinement the identification of the momentum-exciton with the Bohm-Pines

plasma oscillation is completed.

I. INTRODUCTION

S emphasized in Sec. III of I, there are two
qualitative features of the inelastic scattering of

fast electrons by metal foils which are impossible to
understand on the basis of individual excitation of
noninteracting conduction electrons. These are first,
the magnitude of the energy loss, which is much greater
than the change in kinetic energy which the conduction
electrons experience upon being excited out of the
Fermi sea, at least for small angles of scattering. The
second feature is the sharpness of the characteristic
energy loss, or eigenloss as we prefer to call it, which
bears no resemblance to the broad low-lying continuum
of kinetic energy increments. The failure of this simple
theory is clearly attributable to the neglect of the
Coulomb interactions between pairs of electrons. The
main effect of the interactions is to permit plasma
oscillations, which in turn immediately explain away
the above two discrepancies. In I the plasma oscillations
were treated in the style of the Bohm-Pines theory by
introducing collective coordinates. Since it is permitted
to introduce only a limited number of these coordinates,
it is not possible to handle all of the inelastic scattering
in this way. This treatment therefore suffered from the
unsatisfactory feature that at a certain maximum angle
of scattering it was necessary to “switch over” from
Bohm-Pines theory to one-electron theory. The first
step in developing a more unified approach was made
in II, where the excitation of plasma oscillations was
described quantitatively without the introduction of
collective variables. In this time-dependent self-con-
sistent field treatment it was necessary to work in the
classical limit of large quantum numbers of excitation
for the plasma oscillators, and to invoke the corre-

* Investigation supported by the Office of Naval Research.

t Preliminary report: J. J. Quinn and R. A. Ferrell, Bull. Am.
Phys. Soc. Ser. II, 1, 44 (1956). The present paper constitutes a
continuation of already published work which will be referred to
to as I [R. A. Ferrell, Phys. Rev. 101, 554 (1956)], and II [R.
A. Ferrell, Phys. Rev. 107, 450 (1957)].

spondence principle in order to obtain relations for
plasmon creation in the ground state.

The present paper has as its purpose first to establish
that all of the results obtained in II can be verified
directly without the necessity of working in the classical
limit. In addition the magnitude of the eigenloss as
well as its sharpness are shown to follow from a straight-
forward quantum-mechanical treatment of one-electron
excitation, provided the Coulomb interactions of the
electrons are taken into account. One finds that a
plasma oscillation is nothing but an exciton in mo-
mentum space. An electron excited out of the Fermi
sea can interact with another electron and excite it,
with the first electron at the same time falling back
into its hole. In this way the excitation is passed about
in momentum space from one electron to another. The
stationary state representing a plasmon is simply a
certain linear combination of the various one-electron
excitations. The collective nature of the plasmon arises
from the fact that such a superposition can have
properties different from those of the individual basis
states.

In Sec. IT we evaluate the total interaction energy
belonging to the superposition generated by the scat-
tering itself. This is seen to account quite adequately
for the magnitude of the eigenloss. In addition the
electron-electron positional correlation resulting from
this configuration mixing is exhibited explicitly. In
Sec. III the interaction of the one-electron excitations
is studied in more detail and by means of a sort of
Tamm-Dancoff treatment an approximate diagonal-
ization of the Hamiltonian is carried out. As the
interaction strength is increased from zero, at first no
qualitative change occurs in the spectrum of excited
states. But after the strength surpasses a certain
minimum value, a discrete state splits off from the
continuum of one-electron excitations and rises to
considerably higher energies as the interaction strength
is further increased. This ‘“momentum-exciton” is
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identical to a plasmon, within the approximations
inherent in the Tamm-Dancoff treatment. The refine-
ments necessary to complete this identification are
made in Sec. IV. The effects of three-, five-, etc.,
electron excitations in the excited state and two-, four-,
etc., electron excitations in the ground state must be
taken into account. It is not necessary to calculate the
energies of the two states separately since all we are
interested in at present is their difference. The difference
is most easily calculated by using the Feynman time-
dependent formulation of the Schrédinger equation.
“Bubble” graphs cancel out of the difference, leaving
only irreducible graphs in which the excitation makes
a “jog” and travels backwards in time, as well as
forwards. Inclusion of such graphs completes the
identification of the momentum-exciton with the plas-
mon. In this way all the results of IT can be verified
directly for plasmon creation in the ground state. A
brief summary constitutes Sec. V.

II. INTERACTION ENERGY

The first goal of this paper is to demonstrate how an
interacting degenerate electron gas can absorb from an
incident electron very much more energy than can be
accounted for in terms of individual kinetic-energy
increments. Suppose the incident electron undergoes a
change of momentum —7#k. Figure 2 of I shows the
fraction of the Fermi sea which is permitted by the
Pauli exclusion principle to undergo one-electron exci-
tation. The kinetic-energy increments corresponding
to these one-electron excitations form a continuum
whose maximum equals (%%/2m) (k*-+2kko), where %ko
is the Fermi momentum and # the electron mass. This
continuum is illustrated in Fig. 1 of II. It is completely
inadequate, for small momentum transfer, to account
for the relatively large energy losses observed (e.g.,
15 ev in aluminum). In the extreme case of #—0 the
continuum contracts to zero. One is forced to attribute
the discrepancy to the interaction of the electrons,
which, of course, should be taken into account anyway.

For the present qualitative purposes of this section
let us therefore calculate the total potential energy of
the state generated by the scattering of the incident
electron. According to Sec. III of I, the incident
electron acts on the Slater determinant representing
the unperturbed Fermi sea by means of the operator
> ;e xi where x; are the electron coordinates, and
converts it into N’ = Nv(k/ko) Slater determinants, each
representing a certain one-electron excitation. N is the
total number of electrons in the degenerate gas and the
function v(k/ky) is given in 1. For k/ko<1, v is approxi-
mately 2(k/ko). Let the Slater determinant in which
momentum 7k; has been excited to Zk;+7%k be desig-
nated by ¥, The superposition generated by the
scattering is therefore

Y=N""13,¥, 1
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Fi1c. 1. Transfer of excitation between one-electron-excited
configurations. The dashed line shows the interaction between
the 7sth and jth electrons, while the dotted lines indicate the
exchange transitions which are neglected here (but investigated
in paper II). %k is the momentum of excitation and %k, the
Fermi momentum. The shaded portion of the Fermi sea is pre-
vented from contributing to the momentum-exciton by the Pauli
exclusion principle.

and the potential energy we are interested in evaluating
is ’
(T, U0)=N""2:;(¥:,U¥)), (2

where U is the total interaction operator,

4re? 1 )
i e ©

V k0 k2 i<i

V is the volume of quantization and e the electron
charge. The matrix element (¥,;,U¥;) is illustrated in
Fig. 1. The solid line extending from the vacant circle
labeled k; to the dot labeled k;+k represents ¥;. Upon
application of the operator U the electron of momentum
hk;j+#k is de-excited, as shown by the dashed line,
and the electron of momentum 7k; receives the exci-
tation. The matrix element for the process is simply

M= (¥, U¥,))=4re/VE, (4)

independent of ¢ and 7, for 75 j. Because of the identity
of the electrons there is also an exchange contribution
to M, as indicated by the dotted lines in Fig. 1. This
complication does not, however, introduce any quali-
tatively new effects and will be ignored throughout the
present paper. Its influence on the dispersion relation
for plasma oscillations has been estimated in IT and
found to be relatively small. Substitution of Eq. (4)
into Eq. (2) yields (N'—1)M, which can be replaced
by N’M because of the large value of N’. If we further
make the substitution N/V =k¢/37?, we find

ezko ko 1.22 ry ko
¥, 0¥~ — —=——. ©)
T k rs R

As an example, consider the case k/ky=0.5 for alumi-
num, where 7,=2.07. Substitution of the numbers
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yields 16.0 ev, or more than ample to explain the
relatively large magnitude of the energy loss. It is
clear that this success is only qualitative, since for
smaller values of the momentum transfer the potential
energy of excitation becomes even larger, and ap-
proaches infinity as 2—0. This result is, of course,
incorrect. The error arises, as shown in Sec. IV, from
the neglect of configurations containing more than one
excited electron.

In order to better understand the nature of this large
potential energy of excitation it is desirable to consider
the positional correlation of the electrons. Because the
¥ of Eq. (1) is composed of more than one Slater
determinant, or in other words is a mixture of con-
figurations, there are important correlations in the
positions of the electrons which are not present for the
¥; individually. Thus, the incident electron upon
passing through the degenerate gas leaves the electrons
in the state ¥, in which they are “bunched.” Because
of this inhomogeneous charge distribution the total
electrostatic potential energy is larger than for the
unexcited Fermi sea. It is easily established from Eq.
(1) that the pair distribution function is given by

P(x) =Nn-+2nv(k/ko) cos(k-x). (6)

P(x)d’x is the probability of finding one electron
somewhere in volume V¥ and a second within the
infinitesimal volume &x at distance x from it. The
quantity #=N/V is the average electron density. Here
again we have neglected exchange effects. Since the
homogeneous term in P(x) is cancelled by the positive
background (we are replacing the ion lattice of the
metal by the usual Sommerfeld model of a uniform
fixed positive background), the total potential energy
is given in terms of P(x) by

1 e
(¥, U%)=- f I P(x)—Nndx. )
2J x

Substitution from Eq. (6) and carrying out the inte-
gration yields the same results as in Eq. (5). Equation
(7) makes it clear that the increased electrostatic
energy in the excited state is directly attributable to
the positional correlations. By taking these correlations
into account, simply by considering a superposition
rather than a single Slater determinant, it is possible
to understand qualitatively the large magnitude of the
energy loss.

III. ORIGIN OF THE DISCRETE STATE

The second of the two qualitative features of the
experimental scattering data which are impossible to
understand on the basis of noninteracting electrons is
the sharpness of the eigenloss. This sharpnessisincontro-
vertible evidence of excitation of a discrete state. Let
us make the approximation of expanding ¥, the wave
function for this state, in terms of the one-electron
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excitations ¥,. Thus,
V=3 A¥; ®

where the sum is over 1<i<N’. Let us further follow
a sort of Tamm-Dancoff approach and neglect the
portion of the interaction Hamiltonian which would
take us outside the subspace of Hilbert space spanned
by the basis states ¥;. If we introduce the abbreviations

Ti=E(k+k)—Ek,), 9)

and denote the energy of the excited state by E, the
Schrodinger equation reads

Td+M Y, A;=FEA.. (10)

The prime on the summation, which indicates that the
term j=1 is excluded, can be dropped without appreci-
able error. The condition that the resulting set of
homogeneous linear equations have a nontrivial solution
is that the secular determinant should vanish. It is
simpler, however, to put Eq. (10) into the form

(11)
E— Ti 7

Summing over ¢ and cancelling the common factors

yields

The behavior of the function F(E) is illustrated in
Fig. 2, from which it is clear that Eq. (12) determines
N’ different eigenvalues for E. The lowest N'—1 of
these are interspersed in the dense spectrum of the T,
but the top eigenvalue is free to separate from the rest
and rise to higher energy, provided the interaction
matrix element M is sufficiently large. For very large
values Eq. (12) requires E~N'M, which is just the
case studied in Sec. IT. As the interaction strength is
reduced E drops toward the lower lying continuum and
at a certain minimum strength coalesces with it. This

F(E)

o

Fic. 2. F(E)=M Z;(E—T;)™! vs energy E. M is the matrix
element of the Coulomb interaction for the transition indicated
by the dashed lines of Fig. 1. T; are the kinetic energy increments
for the one-electron-excited configurations. The condition F(E)=1
determines the energy levels of the coupled system, in the Tamm-
Dancoft approximation. All the eigenvalues except the highest
must remain interspersed with the dense T'; spectrum. The highest
eigenvalue splits off and forms the discrete momentum-exciton
state, for sufficiently strong interaction.
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F16. 3. Origin of the discrete state. Excitation energy (in units
of the Fermi energy) vs the square of the electron charge, measured
in units of its naturally occurring value. The abscissa value of 1.0
corresponds to the case found in nature. Passing to zero strength
and neglecting the interaction of the electrons causes the discrete
state to merge with the continuum and be lost. The spacing of
the horizontal lines below excitation energy of 1.25E, is inversely
proportional to the density of energy levels in the continuum of
one-electron excitations. The momentum of excitation is taken
to be one-half the Fermi momentum. The upper curve shows the
Tamm-Dancoff approximation to the excitation energy of the
discrete state. Correction of the momentum-exciton model for
correlation yields the lower curve, in complete agreement with the
Bohm-Pines theory of plasma oscillations.

behavior has been calculated and is exhibited by the
upper curve of Fig. 3. This figure is drawn for the case
k/ko=% and the horizontal lines for excitation energies
less than 1.25E, indicate the dense T; spectrum, or
continuum, as we have been calling it. The density of
the electron gas has been chosen as that corresponding
to 7,=2, and the “interaction strength” is the ratio of
the value of ¢* appearing in Eq. (3) to that actually
occurring in nature. Since only the ratio of interaction
energy to kinetic energy matters for a degenerate
electron gas, one can alternatively keep ¢* at its natu-
rally occurring value and vary the density. Thus, the
abscissa can, with this interpretation, be considered
equal to 7,/2.

The origin of the discrete state can be regarded as a
manifestation of Hund’s rule. In the absence of inter-
action the low-lying continuum of the T'; represents a
set of essentially degenerate energy levels. “Turning
on”’ the interaction splits the degeneracy and the linear
combination of the basis states which has the highest
spatial symmetry becomes the highest energy level.
The wave function of Eq. (8) is essentially the same as
that of Eq. (1), where all the expansion coefficients are
equal and of the same sign. The other N'—1 linear
combinations have expansion coefficients of both signs.
Because of the much lower spatial symmetry of these
energy levels they remain with the continuum.

IV. PLASMON AS A MOMENTUM-EXCITON

In Sec. IT we have seen where the extra energy of
excitation comes from, while in Sec. III we have studied
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how the interaction produces a discrete excited state of
the electron plasma. Having removed these two quali-
tative discrepancies, we are now interested in seeing
how well we can expect our simple quantum-mechanical
approach to describe quantitatively the sharp eigenloss.
A particularly convenient check is provided by the
Noziéres-Pines sum rule. According to Eq. (52) of II,
the oscillator strength corresponding to excitation of ¥
of Eq. (8) above is restricted by the inequality

J1*<N.

If we continue to use the simple Fermi-sea description
for the ground state, we find

(13)

M2 —1
| V(oo >= 224 AiP:[ng] . (19

Here we have squared Eq. (11) and applied the require-
ment of normalization. Let us consider the case where
the discrete state is well separated from the continuum,
SO we can write

E—Ti~E~ (¥, U¥)~N'M. (15)

Equation (14) becomes simply N’*, which, when substi-
tuted into Eq. (53) of II, yields

8
fmkz N

Tmne’
‘02 (k / k 0)
2kt

3(k )1(’“)2
~N—(koao)1{ —
o 0 g

=N (0.4987,tko/ k)2 (16)
According to Sec. IV of II, the quantity in parentheses
in the last form of Eq. (16) is of the order of unity in
the vicinity of the cutoff. Although the approximations
made in deriving Eq. (16) are not valid in this case,
it is clear that Eq. (16) is compatible with the require-
ment of Eq. (13). This is not the case for smaller values
of k, however, for which Eq. (16) yields fio*>N,
definitely inconsistent with Eq. (13). Thus, our simple
theory grossly overestimates the oscillator strength of
the momentum-exciton for small momenta of excitation.

This failure of our one-electron excitation theory can
be expected to extend to other quantities of interest.
A refinement of the theory is clearly required before it
can be used for quantitative purposes. The error is'due
to the Tamm-Dancoff approximation of restricting the
excited state wave function to the one-electron subspace
of Hilbert space. In reality the interaction couples this
subspace to the states of three-, five-, etc., electron
excitation. In addition, it is clear that whenever the
interaction is strong enough to cause the discrete state
to split off from the continuum, it will also introduce
important correlations into the ground state. These
correlations are described by admixtures of two-, four-,
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Fic. 4. Higher con-
figurations which, as ad-
mixtures, represent posi-
tional correlations in the
stationary states of an
interacting degenerate
electron gas. Diagram
(a) shows a two-electron
admixture in the ground
state while (b) shows a
typical  three-electron
excitation which occurs
as an admixture in the
excited state.

(a) (b)

etc., electron excitations. A typical two-electron ground
state admixture is shown in Fig. 4(a), while Fig. 4(b)
shows a three-electron admixture in the excited state.
It would be a difficult problem to calculate separately
the energies of the ground state and excited state,
taking into account accurately the correlations. Fortu-
nately this is not necessary here, for we are interested
only in the difference of these two energies, which is
much more easily calculated. The calculation is facili-
tated by Feynman’s time-dependent formulation!' of
the Schrodinger equation. As illustrated in Fig. 4(a),
the excitations which represent the ground state corre-
lations are created and annihilated in pairs. The graphs
which determine the ground-state energy consist there-
fore of closed loops, or “bubbles.” These bubbles also
appear in the excited-state graphs. Calculating the
excitation energy by taking the difference cancels out
the bubbles and leaves only the connected graphs of
Fig. 5. Figure 5(a) shows an interaction taking place
at time 1 so that the excitation is transferred from a
certain one-electron excited configuration to another.
At time 2 a second interaction takes place and the
excitation is passed on to yet another configuration.
The flow of time is upward and the excited configuration
of an electron outside the Fermi sea plus the hole left
behind is represented by a single line. This type of
graph has already been taken into account in Sec. III.
Figure 5(b), on the other hand, illustrates the refine-
ment necessary in the momentum-exciton model to
make it give quantitatively correct results. The inter-
action which takes place at time 2 creates an excitation-
pair, resulting in a three-electron admixture in the
excited-state wave function. The member of the pair
which carries the arrow pointed backwards in time
corresponds to the excitation of the left hand side of
Fig. 4(b). It carries momentum — %k and, by virtue of
the interaction at time 1 (later than time 2), annihilates
with the incoming one-electron excitation. It is con-
venient to assign backward-pointing arrows to the
excitations of momentum —7k so as to emphasize that
the excitation can be considered to be conserved and
to be carried continuously along its “world-line.” The
world-line can make an arbitrary number of ‘“jogs”
backwards in time as it works its way from the past
to the future.

1 R. P. Feynman, Phys. Rev. 76, 749 (1949).
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Let A& exp(—iEt/%) denote the probability ampli-
tudes at time ¢ of the forward- and backward-going parts
of the graphs of Fig. 5. According to the Schrédinger
equation in the interaction representation, the incre-
ment in the amplitudes due to the interaction acting
during the infinitesimal period df; at time /; is

— (idty/ ) 22(A;P+4,7) exp(—iEh/h).

The propagation of the forward-going excitation from
time #; to the later time #; is described by the propagator

exp{ —i[E(ki+k)— E(k)](tla—11)/%}.

The forward-going amplitude at {=0 is therefore
0
AP =—ih M > (4;P+4,9) f exp(—iEhL/%)
7 —o0
Xexp{i[ E(ki+k)— E(k:)Ji/7}dty

M .
Z (A J.(+)+Aj(—)).

= @an
E—Ek+k)+EKk,) i

Except for the presence of A;) this equation is
identical to Eq. (11). The propagation from ¢; to ¢2</y
is, on the other hand, described by the propagator

exp{—i[E(ki— k) — E(k;) ](t:— 1) /7}.
The backward-going amplitude at ¢=0 is therefore

A =—iM Z(A,-(+>+Aj(—))fw exp(—iEt/%)
7 0
Xexp{—i[E(k;—k)—E(ki)]tl/h}dh

M
= (4P +A4,).
—E—Ek:—k)+Ek:) i

Equations (17) and (18) are identical to Eq. (30) of IT
[after substituting there from Eq. (7)]. Since the
Bohm-Pines dispersion relation follows from these
equations, they complete the identification of the
momentum-exciton with the plasmon. To illustrate the
quantitative, as distinguished from qualitative, nature
of the refinement of the present section, the Bohm-
Pines plasmon energy has been included for comparison
in Fig. 3 (lower curve).

(18)

Fic. 5. Feynman graphs
basic to the momentum-
exciton model. Graphs of
type (a), in which the exci-
tation is always carried
forward in time, are already
taken into account by the
Tamm-Dancoff approxima-

2 tion. (The flow of time
[ is upward.) Inclusion of
graphs of type (b) corrects
for correlation and com-
pletes the identification of
the momentum-exciton with
the Bohm-Pines plasmon.

(a) (b)
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The inclusion of Feynman graphs with backward-
going parts not only corrects the excitation energy but
removes the difficulty with the oscillator strength as
well. The square of the matrix element for plasma
excitation is simply

|V (pw)10]2= | 2;(4,P+A4,7) |
=2:(|4:P 2= 4,92

X { > il
i [E—E(ki+k)+E(k)]
M2 -1
- (19)

i [-E—E(ki—k)+E(k)]

Use has been made of Egs. (17) and (18). Normalization
to unit temporal flow of excitation requires

(|40 |2 | 4,0]7) =1, (20)

Introducing the reduction factor G of II [following
Eq. (33)] leads to

B2
|V (px)10]2= V—s—;G_l’ (21)
e

in exact agreement with Sec. V of I1.2

2 In the general identification of the work of the present paper
with that of II it should be noted that 4;, although in actuality
real, is formally the complex conjugate of the corresponding
quantity in II. It should also be mentioned that all of the sums
in the present work are restricted by the Pauli exclusion principle.
This restriction has, however, no practical effect, as proved in
the discussion following Eq. (32).
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V. SUMMARY

In the above work it has been shown that a straight-
forward quantum-mechanical treatment of the excita-
tion of a degenerate electron gas automatically yields
the two characteristic qualitative features of collective
plasma oscillations, provided only that the interaction
of the electrons is taken into account. In Sec. IV the
additional refinement is presented which makes the
momentum-exciton model quantitatively useful and
which completes the identification of the momentum-
exciton with the plasmon. The plasmon oscillator
strength as well as excitation energy is worked out,
thereby supplanting the derivations of the previous
paper, which invoked the correspondence principle. The
present work also makes it clear why the continuum
is not excited by small-angle scattering of the incident
electrons. The continuum states have low spatial
symmetry and do not exhibit the bunching found in
the discrete state. There is consequently hardly any
electrostatic field associated with these excitations,
and they are coupled only very weakly with the incident
electrons. It is possible to show that the present theory
is equivalent to the screening out by the conduction
electrons of the external field set up by the incident
electrons, where the screening is calculated by Lind-
hard’s® and Hubbard’s? theory of the dielectric constant.
It is hoped to deal more with the excitation of the
continuum in the future.

3J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-fys.
Medd. 28, No. 8 (1954).
4J. Hubbard, Proc. Phys. Soc. (London) A68, 441, 976 (1955).



