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The properties of a certain class oi functions f(a.',P',7', . ) of noncommuting observables a, P, y, are
investigated. They have all the usual properties of distribution functions, except that they are complex.
They satisfy simple Marko6'-type stochastic equations and permit the calculation of the expectation values
unambiguously. Conversely, quantum theory can be formulated in terms of such distribution functions
having the prescribed properties.

l. INTRODUCTION
''N von Neumann's density matrix formalism of
~ - quantum mechanics, the state of a system is
described by the statistical operator I', satisfying the
following conditions: Pt=E, Tr 2=1, ( lI'l ) &~0 for
any state

l ). Then P—P'&0. Equality in the last
equation holds for pure states. The expectation value
of any observable G in the state

l ) corresponding to I'
is given by G= ( lGl ) =Tr(GE), Gt=G. The equation
of motion of I' is ihP =[H I') '

As an extension of this formalism we shall investigate
the properties of a simple operator P, de6ned below,
and a class of bilinear forms derived from Ii which will
constitute the quantum-mechanical analog of the
joint density operator and density distributions for any
set of noncommuting observables. A spectral resolution
of the observables and the relativistic and nonrela-
tivistic equations of motion of the distributions are
given, showing a Marko6-type stochastic equation
between space-like surfaces. The expectation values of
the observables will be found unambiguously in the
usual manner. However, there are some fundamental
differences as compared with the classical stochastic
processes. The theory applies to "mixtures" as well as
to pure states so that all information which the quantum
theory gives can be obtained from a knowledge of P.
In this sense the theory of these distribution functions
is one of the, by now many, equivalent formulations of
quantum theory.

In the special case of nonrelativistic quantum theory
without spin, where all observables can be written as a
function of coordinates and momenta, a real phase space
distribution function has already been given by Dirac'
and signer and Szilard, 3 studied in detail by Moyal, 4

Takabayasi, ' and used in several applications. ' Re-
* Supported in part by the Air Force Once of Scientidc Re-

search.
' J. von Neumann, Muthematica/ Ii oundutions of Quantum

1'heory (Princeton University Press, Princeton, 1955). For a
recent reviewer of density matrix theory and applications see U.
Fano, Revs. Modern Phys. 29, 74 (1957).' P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).' E. P. Wigner, Phys. Rev. 40, 749 (1932).

4 J. E. Moyal, Proc. Cambridge PhiL Soc. 45, 99 (1949).
e T. Takabayasi, Progr. Theoret. Phys. Japan 11, 341 (1954).' H. S. Green, J. Chem. Phys. 19, 955 (1951);J. H. Irwing and

R. W. Zwanzig, J. Chem. Phys. 19, 1173 (1951);H. Mori, Progr.
Theoret. Phys. Japan 9, 473 t,'1953); W. E. Brittin, Phys. Rev.
106, 843 (1957).

cently Bopp' and Uhlhorn' have also discussed the
problem of phase space distributions in quantum
mechanics.

However, the Dirac-Wigner-Szilard distribution func-
tion is valid only for a very limited class of operators,
namely those operators which can be written as

G= exp[i(rr y+e q)$((rr, e)drrde,

where $(e,e) is the Fourier transform of the corre-
sponding c-number function, i.e.,

G(y,q) = t exp(i(rr y+e q) jP(rr, e)drrde

It cannot be used to find expectation values of some
simple and important operators such as the com-
mutator Lp,xf or IIs (a quantity important in statistical
mechanics) or M', etc. This fact does not seem to be
realized by some of the authors who have used this
distribution function. This situation is remedied in the
present approach by the use of a class of "equivalent"
distributions functions. This is another quantum e6ect
besides the nonpositivity of the distribution functions.

The distribution functions studied here show very
clearly the fundamental distinctions between classical
and quantum-mechanical distribution functions (Sec.
3) and obey stochastic equations with simpler kernel
functions (Sec. 4). The general theory can be applied
to any quantum-theoretical case and to field theory.
Distribution functions corresponding to Feynman-
amplitudes are also given (Sec. 4).

2. DISTRIBUTION FUNCTIONS

Let a, p, , p, o be X different complete commuting
sets of observables. We denote their normalized eigen-
functions by l

u'),
l p'), l

o') and a general normalized
state of the system, for the time being, by l ). cr, p,
may also represent the same complete set at diferent
times. We define the operator F (in dyadic form) by

' F. Bopp, Z. Physik 144, 13 (1956).
s U. Uhlhorn, Arkiv Fysik 11, 87 (1956).
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and form the bilinear functions

It is seen immediately that the integration of f over
all the sets of observables except one gives the proba-
bility distribution of this set in the state

I ).' Actually
for a given system of complete sets we have a whole
class of El functions having this property, namely
functions obtained from f(a',p', ,o') by permutations
of the arguments. Among them are the complex
bilinear functions obtained from Hermitian conjugate
operators

I.e.
F'=

I
)(p'l~')4" Ip')" (~'lp')( I, (3)

f(a',P', ,o')drr'dP' do'= 1,

and under successive integrations they reduce as follows

Thus, Eq. (4) expresses a symmetry of the distribution
functions to the eGect that reading the arguments
backwards is equivalent to taking the complex con-
jugate.

The distribution functions are correctly normalized,

According to Eq. (4), Ref(a',P') is a symmetric,
I mf(n', p') an antisymmetric function of its argument.
However, Ref is not necessarily positive nor must it
remain positive in time, Since our aim is not to reduce
quantum mechanics to classical statistics —in fact it
will be seen that this is not possible —but to give a
simple and closest possible analog of joint distribution
functions, we shall prefer to use f rather than its real
part. The reason is that, as we shall see, f satisfies a
much simpler stochastic equation than Ref

From Eqs. (1) and (3) one gets that

FFt=FtF=I~IsF&0; a=('IP')" (p'I '), (g)

since von Neumann's density operator I' can be written
in dyadic form as F=

I )( I. F is therefore a normal
operator, and as such, its eigenfunctions corresponding
to distinct eigenvalues are orthogonal. Indeed the
eigenfunction of F is the state vector

I ), the eigen-
value being a=(n'Ip') ~ ~ (p'lo'). For mixtures, the
eigenfunctions are ls') with the corresponding eigen-
values X. =P, a. We also note that since FF=F,

TrF= ( IFI )=—F=P, )t, . (9)

We see further from Eq. (2) that the distribution
functions are such that two noncommuting quantities
cannot have definite values, for if the system is in the
state In"), i.e., f(a',p') is proportional to 5(n' —n"),
then its p'-dependence is necessarily proportional to
(p'In"). This expresses the uncertainty principle which
quantitatively formulated in terms of mean square
deviations reads

2

6'(rr) 6'(P) & ~rr'P' Im f(os', P') dn'dP'

(6)
and

srTrnrrP+Prr)F j= ~n'P'

Ref�(n',

P')dn'dP'

I G(a")f(a',rr",P') der" =G(n') f(rr', 8'),

where the final functions f(cr') are the positive real
probability densities of a single complete set. From this
relation it follows that the real part of f(rr', p') itself
could also be taken as a kind of joint distribution func-
tion and that

Thus, the imaginary part of f(rx', p') is purely of quan-
tum-mechanical origin and is responsible for the
uncertainty principle, for the second term in Eq. (10)
is also true for dependent random quantities in classical
statistics. We expect, therefore, that in the limit to
classical statistics, the imaginary part of f vanishes and
that the real part approaches the classical distribution
function.

' For a statistical mixture of states (s) with a priori proba-
biiities p, the deiinition of I" is F=Z, . p, ~

s') (n'~ p') (p'~ ) (s'~.
All the results in this paper apply also to this case unless stated
otherwise. However, the introduction of mixtures" into quantum
theory is purely formal and phenomenological since the proba-
bilities p, are unknown, except in equilibrium. In general, if a
mixture is given by its statistical operator P, then Ii is defIned by
~=&(~'lP')(O'IV') "(p'lo').

3. EXPECTATION VALUES AND SPECTRAL
RESOLUTION

For the expectation value of any quantity which is
of the form G=(n P"ys. pro*)„s„, where the paren-
theses indicate any arbitrary order of the operators in
the product, we can easily prove the relation

(IGI)=—G= Z G(',p', " ')f(',p', ", '), (»)
a'P' o'



NONCOM MUTI NG OPERATORS

a'pr

The expectation value of arbitrary functions which
are defined in terms of their power series expansions can
be given by using Eq. (11)for each term. From Eq. (11)
we get for the general term

where G(n', ~,o') is the function obtained from the Hence,
operator G by replacing the operators n, P, , o by
the corresponding e-numbers and the arguments of f
have 10 aPPear in the same order as the corresPonding
operators appear in G. Thus, each member of the class
of equivalent distribution functions will be used in
finding the mean values. Equation (11) is proved as
follows:

+(&I& I
')( 'I )= «c.

gpt ~ ~ ~ tgp

However, using the commutator C =Ln,P] we can
reduce this equation as follows:

a'pp a'c'

In this way, various identities between different f
functions and between the real and imaginary part of

f can be obtained. For example, in the case of coordi-
nates and momenta, fx,p]=ih we get

If some of the operators are repeated in G, for example,
G=o.Pn, then in Eq. (11) we have to sum over repeated
observables as though they were different quantities
in the order in which they appear:

G=oPn; G= Q n'P'n"f(n', P',n")dn'd9'dot"

6= G(n', P') Ref(n', P') dn'dP'+R, (12)

where R is an operator depending on C, n., P, and is zero
when C is zero (see Appendix). Thus, in the transition
to classical mechanics, the quantum-mechanical cor-
rection term R approaches zero and Ref goes over to
the classical probability density function. This is in
agreement with and supports the statement made at the
end of Sec. 2.

Furthermore, we can give by the uniqueness of the
expression for 6 a spectral resolution of G in terms of
the corresponding classical functions. Introducing the
generalized projection operators

E- p
=

I
~') (&'I ' &- p'=&p - = IP') (~'I, (1~)

&&f(n'P'n" g' n&"&P&"&)dn'dP' dn&"&dP~"&

Introducing the commutator C=
I n,P] we can derive

in this general case, the relation

G(x')p' Imf(x', p')dx'dp'

G(p')x' Imf(x', p')dx'dp'

with the property

E~ip.E~"p.i ——(p'I et")E~ip. i,
f
G'(x') Ref(x', p')dx'dp', we get from Eq. (11)

2J
G= P G(n', P', . ,o')uE;;

p t ~ og (14)

G'(p') Ref(x', p')dx'dp'
2~

Equation (11) is also valid for the functions of
ordered noncommuting observables and for a pre-
sumably larger class of functions, introduced by
Dirac, ' containing the former. In each term in the
expansion of functions of ordered operators, for ex-
ample, observables relating to diferent times, the order
of the operators is one and the same such that only one
f-function is necessary. Dirac's functions are defined
as follows:

G(~,&') lP') =G(o,P') lP') ' G(~,P') l~') =G(~',0') l~')

't P. A. M. Dirac, Revs. Modern Phys. 17, 195 (1945).

&=(~'lP')" (p'l~').

For arbitrary operators, we again have to use the power-
series expansion and apply (14) for each term. Thus, if
G is any simple product, a general function F(G) of G
can be written"

F(G) =F( P G(n', a')aE„. ),
~ ~ o y'pt

for example,

g +p=exp

"Another spectral resolution, in nonrelativistic mechanics, has
been given in R. P. Feynman, Phys. Rev. 84, 108 (1951). This
paper contains a detailed discussion of functions of ordered
operators mentioned above.
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BF~ i= —-I H(t) P'(t)l.
Ot

(16)

Using the unitary transformation connecting the state
vectors at diferent times

lt, ) = U(t„t,) lt,), U(t„t,) = U(t„t,) U(t„t,),
we can get also the equation of motion in integral form:

F(t,) = U(t„t,)P(t,)Ut(t„t2). (17)
The corresponding equations for f can be obtained by
means of Eq. (2)

A a f(n",p', 0')
—.—f(~', . . .~') = (~'lP') 2 (~"IHI~')
i Bt (~"

I
p')

„f(~' . . p'~")—(p'l~') Z (~'IHI~"), „, (1g)
(p'l~")

or, taking, for instance, n=x and p=p

~af(*,p)
-

t ~aq
=(x'Ip') HI *',—.—I{f(x',p')(p'I*')}

i at I, 'iax)

aild

t'22 a
-Hl —.—,* I&f(*',p')(p'I*')&, (»')

~iax' &

f(& )t3 )
' ' '

)p )& ) t2)

(~'I t7') (p'I ~')

,
—„("I U'

I
') ( 'I Ul ")

-""' (~"I&')(p'l~")
Xf(ci",0', ,p', ~"; ti)

0 II allt

Xf(~"P', p' ~" ti) (19)

Under arbitrary canonical transformations represented
by unitary operators V, Eqs. (17) and. (19), give the
transformation of F and f if U is replaced by V.
Equation (19) is a simple Markoff-type stochastic
equation whose kernel is related to the Green's functions
(i2'I Uln"), of the system. The kernel satisfies the
relation

4. EQUATION OF MOTION

For a time-dependent state vector It) we write

P(t) = It) (~'lP') (p'I ~') (tl. (1~)

Then in the virtue of the Schrodinger equation (a/at) I t)
= —(i/tt)H(t)lt) and its conjugate complex, we can
differentiate F(t) and obtain

aF(t) =——
I H(t),F(t)];

f(1,3)f(3,2)
f(»2) =&

f(3)
(21)

In the relativistic case the state vectors depend not
only on time t but on space-time points x„and satisfy
(a/ax„) I ) =—(i/h)P„I ), where P„ is the energy-mo-
mentum operator. Equation (16) becomes in this case

Z= —-LP Pj.

Again using the unitary transformation connecting the
states between the space-like surfaces o-~ and o.2,

I ~2) = U2il~i),

we get instead of (17}and (19}

P()72) U21P()71) U21

(~'lP') (~'I p')
f(&2)= Z--' ( "l~')(a'I")

x(p-i'I p-2")(~-2"l~-i' )f(~,). (23)

In field theory f will be functionals of the field
variables, or space-time functionals. They may be
useful in the theory of Green's functions or propagators
which are the vacuum expectation values of the
products of ordered field operators and can be calcu-
lated, in principle, according to Eq. (11).

If n and P represent coordinate and momenta, in

and can be interpreted as the analog of complex transi-
tion probabilities. The probabilities in configuration
space, i.e., IPI2, or in momentum space alone do not,
as is well known„obey a simple stochastic equation of
the type (19).We remark that for scattering problems
U will be replaced by the S-matrix and that, as operator
equations, (15) and (17) are also valid in interaction
representation.

If the operators n, P, , 0 relate to difFerent times,
then the f-functions represent distribution functions
along the "trajectory" of the system, i.e., distribution
functions corresponding to Feynman amplitudes. Such
functions have been introduced by Dirac."For example,
in f(a',P'), n' may represent the coordinates at time t',
P' the coordinates at time t". More generally, we can
introduce the analog of "phase-space" transition proba-
bilities. Consider three phase-space points n', P' at time
t' (point 1); n",P" at time t" (point 2); and n'",P'" at
time t"' (point 3). Then

f( ) Pl tf. )I Pll t))) f(1 2)

is equal to the kernel of Eq. (19) provided f at each
point is normalized to one, i.e., f(n', P') =1; otherwise

f(1,2) =&( '0't', "0"t")/f( ',P').

These transition functions satisfy the equation
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nonrelativistic mechanics and B is independent of time,
Eq. (19) can be written in terms of the wave functions
in coordinate and momentum space as follows:

f(x,p, t) = (min)(~is')(p'i&')(e'i p)

Xexp t(—E-„E„—') exp —(P'x' —Px)

Xf(x',y', 0)l) (p—y') dx'dy'. (25)

In the case of nonrelativistic mechanics it is easy to see
that f(x,p, t) in pure states also satisfies the differential
equation

Bf Bf 82f
f —=—0

8$ Bp (tÃ8p
(26)

which may be taken as the equation characterizing the
pure states.

It remains only to characterize the stationary states.
In this case f is independent of time and the problem
of finding fo reduces to solving the homogeneous integral
equation of the second kind:

f
f()(n', . ,a') =

) Ef2(n", o")dn"do". (27)

The kernel is, in principle, known if U(tl, t2) is given.
For example, fo ——constant is a stationary solution of
(25). The differential equation (18), on the other hand,
with the left hand size equal zero, separates and we get
the usual time-independent Schrodinger equations in
coordinate and momentum spaces.

5. DISCUSSION AND CONCLUSIONS

We have investigated the properties of certain func-
tions of noncommuting quantities which have all the
properties of the classical joint density functions except
that of being always non-negative. These complex
functions allow the unambiguous calculation of ex-
pectation values in the usual form and satisfy relatively
simple equations of motion. Conversely, functions
having these properties provide a formulation of quan-
tum mechanics in terms of distribution functions rather

Xf(*',p', 0)d42dN'd*'dp', (24)

where H~N) =E ~42). For instance, for a free particle,
we get

(422k ) ~
t i 2)2 P t

f(x,p, t)=( (,~ exp ——
~

(x—x')+—p'
~

&2~it& ~ i'2 2t & 2)2

than probability amplitudes. These functions have
rather remarkable symmetry properties, and it would
be perhaps a complicated mathematical problem to see
to what extent these properties uniquely determine, in
more general cases than the stationary states, the
distribution functions. It may also be of interest to
study the important theorems of probability theory,
such as ergodic theorems and central-limit theorem, for
the case of these complex distribution functions.

Physically, f may represent a stationary wave, a
wave packet, or even a mixture. In applying (19) we
have to choose f in agreement with (26) and the
boundary conditions imposed on it by the symmetry
properties and the uncertainty principle. From given
wave packets, new ones may be obtained by canonical
transformations. In this case Eq. (19) is again valid, U
being independent of time, for instance U=e' or
U' —gi~llf z

Finally, we mention that such distribution functions
may be useful in quantum hydrodynamics or in sta-
tistical mechanics where one desires to develop quantum
equations in analogy to the classical equations in terms
of distribution functions.

I am greatly indebted to Peter G. Bergmann and
Richard L. Arnowitt for suggesting valuable improve-
ments in the presentation.

APPENDIX

A function of the two noncommuting operators can
be expanded as follows:

G = p p Anln2 ~ ~ ~inn p nnlnp2n4s. .npn nn1nn+.

nM

the second summation is taken over
n+1 n

such that p 222 22 and——contains p
k=1 r=p

Let Ln,P7=C. Then

Lnn P7
—nn —1C+nn —2cn+nn —8cn2+. . .+Cnn 1 C(n)——

C
nn P 7=Cm( ) —pnmm—lc, (n)+pm —2+(n)p+. . .+C(n)Pm 1—

With the help of C&" ' we can commute once all n's to
the right and once to the left. Taking then the average
value we get Eq. (12) where the operator R is given by

00 n/2 —1
R= 2 Q Q Anln2 ~ nn+1 E jt3 2.4 4+ +

n=P r=p

)(C(n1+n3+ +n2r+1 n2r+2)~2r+3 ~n1+n3+ +n2r+1

XC(n2r+3 n2+n4+ ~ ~ +n2r+2) )P2r+4n2r+2. . Pnnnnn+1.

where the second summation is as above.


