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expansion of the —,
'S' power of the first two terms in

Eq. (1.2) namely, (1+Js"p,e '"rde)~", the integration
serving merely as an averaging device. Excitation to
higher levels means, of course, additional terms in the
system s partition function. For example, if there is
one excitation to the higher triplet, this can occur
in 11K/2 different ways, and the contribution to the
partition function in the light of Eq. (1.6) will be

—,'cVi P, 'e 's de ii 1+ P,e 'srde
i

( oo ) ( pao ) -',iv—i

which would appear in the multinomial expansion of
Eq. (1.2). However, if two of the higher levels were
excited, these could occur in somewhat fewer than
11'(scV)(—',E—1)/2 ways, because this would count
cases in which two rotators had a common atom; the
expanded exclusion principle begins to operate. These
deviations would only become important, however,
in the terms of the expansion involving high powers
of Js"p, 'e '~srde, and if the integral is not too large
may be neglected.
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The consistency with Eqs. (2.8) and (2.10) is improved,
and the smaller value of mo almost removes the difhculty
concerning the number of energy levels. At the lower
temperatures d(e/h)/dT is about 0.6, close to the value
in Table II and that given by the Landau-Feynman
theory.

I wish to thank Professor W. A. Bowers for a number
of helpful -discussions.

Note added ie proof. We—have noted a statement by
H. C. Kramers, in Progress in Low Terrlperatmre Physics
(see reference 5), Vol. 2, p. 65, that the phonon specific
heat of Kramers, Kasscher, and Gorter" is too large,
though their total specific heats at 0.8'I and above are
about right. Using the new phonon speci6c heat to
obtain C„changes Table II and the values of mo as
follows:
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The equations for shock-wave structure, with the inclusion 'of radiation effects, are derived. These radia-
tion effects are radiation pressure, radiation energy density, and radiative transfer of energy. Computations
have been performed for a diffusion approximation of radiation Aux and the neglect of radiation energy
density and pressure. The results show that the over-all eifect of radiation (under the aforementioned condi-
tions) can be taken as a diminution of the Prandtl number, and that the shock width is larger than when
viscosity and heat conduction alone are considered. The radiative contribution to the width of the shock is
found to depend primarily on the ratio of the mean free path of radiation to that of the material particles.
The proportionate increase in shock width is found to be a function of the Mach number and to increase
with it.

Possible application of the above results to shock-wave propagation in a medium of low density is
indicated.

1. INTRODUCTION

ACHS has given the Rankine-Hugoniot conditions

~ ~ ~

~

when the effects of radiation pressure and energy
density are included with the hydrodynamics. Sachs
examined only the end conditions of such a shock, and
did not consider radiative transfer of energy. It is the
object of this paper to give an analysis which includes
the effects of such radiation terms on the detailed struc-
ture of a shock front. The analysis is by the Stokes-
Navier equations with the gas possessing its usual vis-
cosity and heat conductivity. The shock will be taken
as plane, steady, nonrelativistic, with no superposed
electric or magnetic fields.

' R. G. Sachs, Phys. Rev. 69, 514 (1946).

Radiation pressure and energy density effects are
important long before the shock is relativistic. For a
shock propagating into air at standard conditions, a
Mach number of 10' is needed before the shock may be
considered relativistic, whereas radiation pressure be-
comes comparable to material gas pressure behind the
shock at a Mach number of about 2&(10'. Again, radia-
tive transport of energy may be important even though
the other radiation terms are negligible. For air of
atmospheric density, a temperature of a few million
degrees must be reached before radiation pressure and
energy density become important while radiative trans-
port is signi6cant even at much lower temperatures.

The significance of the results to shock propagation
through rarefied atmospheres is also brieQy considered.
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2. BASIC THEORY

We- shall assume the shock propagating longitudinally
(along the x axis), and make the flow time-independent
by referring to a coordinate system moving with the
shock front . We shall use the suffixes 0 and 1 to denote
the physical variables (velocity u, material gas pres-
sure p, density p, and temperature T) in front and in
back of the shock, respectively. The following equations
then describe the Qow.

Integration of the equation of continuity gives

pQ =poQO =8$& say.

In (8) it is assumed that the radiation flux at x= + oc

is zero, which will be the case for the diffusion approxi-
mation for radiation flux. Equations (7) and (8)
along with

ppQO =5$=pyQy

from Eq. (1), are equivalent to the Rankine-Hugoniot
equations obtained by Sachs.

The Mach number of the shock may be de6ned in
the usual manner, Mo =

( uo ( /co where co is the sound
speed in the medium in front of the shock. However, in
the present situation,

The Stokes-Wavier equation is ci (Ps+ s'o To')
C

2—
) (1O)

du d 4 d ( du~
(P—+—s~T') +-

~
fr—I,

dx dx 3dxE dx]'
E9p p

(2)

Po yPo+16(y —1)aTo'/3 4aTo' 4aTo'
co' ——— 1+ —,(11)

po- Po+4(7 —1)aTo' - - 3Po - 3po(3)mu —mC = —(p+ ',aT') +4s-@du/dx,

the subscript S indicating that the differentiation is to

d r T4; th be performed for constant entropy (S). Sachs' has
sho that, in the c se of perfect g s, Eq. (10) gi s

pressure, a being the ra,diation constant. Equation (2)
may be integrated directly to give

where C is an integration constant.
The equation of conservation of energy is

where 7 is the ratio of speciic heats for the material gas.
Equation (11) may be further reduced to

d ( aT'q d ( dTq
m—

I ~+
dxE p ) dx E dxi

du (du~ ' dF
(P+ s&T') —

+s'il,

I
—

I
———, (4)

dg'

where

po 7+2O(y —1)ri+16(y—1)rf'
Co

2—
po - 1+12(y—1)rf

aTo /3 radiation pressure

(12)

po material gas pressure
where k is the coefficient of thermal conductivity, F is
the radiation flux, and aT'/p is the radiation energy
per unit mass, which is added to the material internal
energy, E. With the aid of Eq. (3), Eq. (4) may be
integrated to give

Note that as rf ~ 0, coo —+ ypo/po, which is the usual
expression for the material gas. As q —+ ~, co' —+

s (saTo4)/po (for y) 1), indicating that radiation be-
haves like a perfect gas with V„q= 4 .'

We shall assume local thermodynamic equilibrium
throughout the shock and shall take the diffusion
approximation for the radiation Aux, F. Under this
approximation, If is given explicitly by

T''t dT
es

i
8+ —

i
=k + 'mu' nzCu —F C-r, —(5)——

p ) dx

where C~ is another constant of integration.
Finally, we shall take the case of a perfect gas:

p =RpT, F-=C.T,

ac dT' 4acT' dT
)3' Ix

(13)

where 8 and C, are constants. C„ is the specific heat at
constant volume.

The Rankine-Hugoniot conditions are obtained by
assuming unif orm conditions in front and in back of
the shock. Applying (3) and (5) to the front and the
back of a shock. gives, respectively,

(ps+ saTo )+muo=tNC= (pr+ s~T1 )+Blur (7)

where a is again the radiation constant, c is the ve-
locity of light, and ~ is the Rosseland mean absorption
coefBcient. The derivation and validity of the radiation
diffusion approximation is given by Chandrasekhar .' In
general, it is valid when the temperature does not vary
appreciably in a distance of the order of a Rosseland
mean free (radiation) path.

Substituting the radiation diffusion approximation

2 See S. Chandrasekhar, A n Introduction to the Study of Stellar+s ~ P ) &~u + o Sfrudgre (The University of Chicago Press, Chicago, 1939),p. 55.
Cl m(Er+cTr'/pr) s~ur'+tNCur. (8)— ' Reference 2, pp. 208—211.
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into Eq. (5), we get

4acToq dT
l

k+ I
—=ml C.T+

3p~ idx ( p )
—-'mu'+mCu+ Ci. (14)

K=op(p/pp)"III'=KpU ~II&, where n, n and P are con-
stants; po, ko and Ko are the coefficients of viscosity,
heat conductivity, and Rosseland mean absorption, re-
spectively, in the ambient gas in front of the shock.
The radiation broadening factor may then be put into
the form:

dT m(C, T+aT'u/m) ——,'mu'+mcu+Ci

ds (RmT/u+ ioaT4)+mu mC—

Then, from Eqs. (1), (3), and (14) we have ( 4Py —1 c piopXiop
g(II, U) =1

l
1+— — U~'II' —~—"

l,
V copo&o

where

(18)

(k+ 4o acuT'/ma)

which is a differential equation in T and I alone; p, k,
and ~ are assumed to be functions of T and p, and
therefore of T and u Drom Eq. (1)). Equation (15)
may then be numerically integrated throughout the
shock front, the end conditions and constants involved
being evaluated from Eqs. (7) and (8). Once T is
found as a function of u by integration of (15), u may
be found as a function of x by the numerical solution of
Eq. (3), giving the velocity profile through the shock.
The density and temperature profiles may be subse-

quently found.
It is to be noted that, with the diffusion approxima-

tion, there is no radiation flux at x= & oo, since dT/dx
=0 at these points, i.e., there is no "radiation escape"
from the shock region.

3. COMPUTATIONAL EQUATIONS

Computations have been performed for the case
when radiation pressure and radiation energy density
are negligible, but radiative transport of energy is not
negligible in comparison with transport by thermal
conduction. In this situation, Eq. (15) may be put
into the form:

dT C„Tu ,'uo+C—u-o C,u/m —
p4&~

du RT+u' u(3k)—

We shall call the factor

4acuT )
Xl 1+ l . (16)

3zmk

( 4acuTo)
r=l 1+

E 3~mk ) (17)

the radiation broadening factor. The factor s4p/k is
proportional to the Prandtl number, which is usually
taken as constant with temperature variation. Thus,
the radiation broadening factor represents a tempera-
ture- and velocity-dependent diminution of the Prandtl
number.

We shall introduce the dimensionless variables, II
=T/Tp and U= u/up, and shall take p= ppII", k= kpII",

P= Prandtl number= pyc, /k,
5=numerical constant -,'for rigid elastic spheres,

co——mean particle velocity in front of shock
= (8RTp/~)'*,

Pap= radiation pressure in front of shock= ioaTp',

p, =material gas pressure in front of shock,
) gp ——Rosseland mean free (radiation) path in front

of shock= 1/Kppp,

Xo=particle mean free path in front of shock
pp/8ppCO

We note that the fraction appearing in the denomina-
tor of (18), vis. , (c/cp) (piop/pp) (Xzp/Xp), is essentially a
measure of the effects of radiation as compared with
material hydrodynamics. We have taken the radiation
pressure as negligible in comparison with gas pressure
so that the ratio pzo/po will be quite small (but not
zero). On the other hand, the ratio c/cp ——(velocity of
light)/(mean particle velocity) will be quite large. The
ratio Xiop/Xp will be small when radiation transport
effects are negligible, but will grow with the importance
of the radiation transport of energy versls thermal
conduction. The second term in the denominator of
(18) may, under these conditions, be very well com-
parable to, or greater than unity. We thus see that even
when radiation pressure and energy density are negli-
gible compared with gas pressure and internal energy,
it may not be permissible to neglect the contribution of
transport of energy by radiation to the shock structure. '
The radiation broadening factor g(1I,U) goes over
asymptotically to unity for the pure gas (no radiation)
case, but when radiation effects are important, g(II,U)
is temperature- and velocity-dependent and remains
sensibly less than unity.

Under the assumptions we have made (diffusion
approximation and the neglect of radiation pressure
and energy density), Eqs. (7) and (8) give

and
C/up = 1+1/3II p

—Ci/mup' ———',+1/l (y—1)Mp'j.

Upon using these constants and the nondimensional

4 Sachs arrived at similar conclusions by qualitative physical
reasoning. See reference 1.



RADIATION EFFECTS IN SHOCK —WAVE STRUCTURE 563

variables II and U, Eq. (16) becomes'

drr 4z v{11—~LI+-', (~—1)M,']+(1+yMp') (y —1)U—-',v(7 —1)Mp'U')
g(II,U).

dU 3y 11/(yMp') —Ur 1—U+ 1/(yMp') j

where g= x/Xp.
We shall define the shock width according to the

formula
fp=(1 v,)/Iz—v/vgI „ (21)

in terms of mean free particle path, ) p, in front of the
shock, or

t~ = fp/L-'(1+ 11t'Ur) ], (22)

in terms of mean free path inside the shock (average
of mean free particle path in front and in back of the
shock).

The Rankine-Hugoniot conditions may be put into
the form:

and
U&=N&/Np= (& 1)/(7+1)+2/I (7+1)Mps) (23)

11r= Tr/T'p=vMp'Ut[1 Ut+1/(7M—p')g (24)

in back of the shock. Also we have the normalization,
IIp= 1 and Up= 1, in front of the shock.

4. PRANDTL NUMBER

There has been some question regarding the order of
magnitude of the Prandtl number to be used for a
plasma. The first author, in a previous paper, ' assumed
the shock propagation to be governed mainly by the
ions (on account of their greater massp) and used the
value 3/4 for the Prandtl number in order to compare
with earlier work. Marshall, ' however, has given
reasons for using a low Prandtl number for a plasma,
and 6nds that this would broaden the shock consider-
ably more.

Marshall would be right if there were temperature
equilibrium between the electrons and the ions. Even
in this case, however, charge separation will produce
an electrostatic field which will reduce the thermal
conductivity by a factor of the order of one half. '
Further, there is reason to believe that the ions will be
at a higher temperature than the electrons in the shock
front so long as ionization equilibrium is not attained. '

' See H. K. Sen, Phys. Rev. 102, 5 (1956).
'See J. F. Denisse and Y. Rocard, J. phys. radium 12, 893

(1951).' W. Marshall, Phys. Rev. 103, 1900 (1956).
L. Spitzer and R. Harm, Phys. Rev. 89, 977 (1953).' H. Petschek and S. Byron, Ann. Phys. 1, 270 (1957).

Also, Eq. (3) becomes

dV 3Mp~~q &

dp 4 (2)
II/(yMps) —U(1—U+ I/(yMp') j

X (20)
Ugn

The electrons will also have a lower temperature
gradient. These phenomena would reduce (and possibly
nullify) the effect noted by Marshall.

In the last line of Table I the authors have included
a low Prandtl number in order to estimate its e8ect
on the broadening of the shock front. The further
broadening with the lowering of the Prandtl number is
much less pronounced with the radiation 6eld than with
the pure hydrodynamic shock.
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FIG. 1. Variation of temperature with velocity within the
shock. II = I'/Tp and U =e/I p, where Tp and Ip are the tempera-
ture and velocity in front of the shock. (A) Mp= 1.5 (no radia-
tion); (B) Mo 1.5 (with radiation); (C) &0=2 (with radiation};
(D) Mo= 2.5 (with radiation).

5. NUMERICAL RESULTS

The foregoing analysis is perfectly general and will

apply to any gas model. It passes over asymptotically
to the pure gas case or pure radiation case depending on
the relative magnitudes of the two terms in the de-
nominator of g(II,U) in (18). The transition region is
the interesting one, and we shall estimate its character
by putting the constant factor in the second term of the
denominator of g(II,U) equal to unity. This gives
approximately equal weight to collision and radiation
broadening. Further, we shall take y=5/3 (to compare
with earlier results' ), e=2.5, a=i, and P=3.5. The
results presumably would not be too sensitive to the
particular values given to these constant. The radiation
broadening factor then becomes

g(II, U) = 1/(1+ U'II4). (25)

With this form for IL'(II, U), Eq. (19) was solved for
Mp= 1.5, 2, 2.5, and 4 with a Prandtl number of 3/4.
Also, (19) was solved for M=1.5 with a Prandtl
number of 3/40 and the same form, (25), for g(II,U).

Solutions of (19) with a Prandtl number of 3/4 are
plotted in Fig. 1. Also in Fig. 1 is plotted the solution
for Mp = 1.5 without the inclusion of the radiation
broadening factor. Note that the inclusion of radiation
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6. CONCLUDING REMARKS

We see from the above analysis and computations,
that radiation broadening may be an important factor
in shock propagation. In particular, in a highly rarefied
atmosphere, the broadening of the shock front due to
radiative transfer may be so great as virtually to
nullify the shock. Further, the proportionate increase of
hydrodynamic shock width due to radiation broadening
will act to extend the range of validity of the Stokes-
Navier equations towards higher Mach numbers. The
effect of radiation (in the diffusion approximation) may
be considered as somewhat analogous to a decrease in
the Prandtl number.

FIG. 2. Variation of velocity within the shock. (A) M'e ——2 (no TABLE I.Width of shock in terms of mean free path. The suffix R
radiation); (B) 3f'e=2 (with radiation). refers to inclusion of the radiation broadening factor.

causes the values of II (versus U) to be consistently
larger within the shock front than the values without
radiation.

From the results of the solution of Zq. (19), Zq. (20)
may be solved to give U as a function of k. In Fig. 2,
the solution of Zq. (20) is plotted both with and without
radiation for 3Is——2 and a Prandtl number of 3/4. Note
that the inclusion of the radiation broadening factor
(for the parameters we have chosen) considerably
broadens the structure of the shock. Radiation has
"eaten into" the front part of the shock.

In Table I are presented the results of computation
with Zqs. (21) and (22) for the width of the shock.
The last three columns of Table I are perhaps the most
interesting. They show that, both with and without
radiation, the shock width (in terms of mean free path
within the shock front) decreases with increasing Mach
number (for the region covered by the table). However,
the proportional increase in shock width due to radia-
tion increases with increasing Mach number, i.e., radia-
tion becomes increasingly important at higher Mach
numbers.

Prandtl
No.

0.75

0.075

1.5
2
2.5

1.5

9.5
8.5
97

14.7
43.7

toa

27.3
31.4
40.8
87.8
75.1

8.3
5.9
5.0
2.6

37.9

23.7
21.7
20.9
15.7
65.2

2.9
3.7
4.2
6.0
1.7
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K6'ort is being made to extend the analysis to the
complete radiative-transfer equation (i.e., to situations
where the diffusion approximation is invalid). For
radiation Aux approximations higher than diGusion
(use of a Taylor series for which the diffusion approxi-
mation is the first term), a differential equation in T
and x may be obtained. The form of the equation is,
however, quite complicated. It seems best to treat the
radiation as a series of Aux streams, in the manner of
Chandrasekhar. "


