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It has been suggested that the excitations of liquid He' can be
represented approximately as excitations of pairs of helium atoms
acting as hindered plane rotators. For the low excitations S
helium atoms may be considered as li/2 pairs; for the higher
excitations the possibility of random pairing must be taken into
account, a situation which is discussed in some detail. Because
of fluctuations in the hindering potential, and because of inter-
actions between localized excitations, the energy levels of the
plane rotators are broadened into energy bands, which can give
a good account of the specific-heat curve. The multiplicity of
these levels is related on the one hand to the statistics and spin
of He' atoms, and on the other to the vibrational modes of a
quasi-lattice approximating the liquid, and is also concerned with
the development of communal entropy in a quantum liquid. In
He4 the low-lying energy levels are excluded because of the spin
and the statistics. Vibrations of single atoms, pair rotators, and

double pairs, rotating or oscillating like meshed gears, have
excitation energies close to that of a roton (the energies of the
latter two types are estimated by comparison with He', allowing
for the effect of the increased density on the hindering potential).
These types of excitation are not all independent, however, and
there is moderate difhculty in accounting for the multiplicity of
the excitations as deduced empirically from the number of rotons
appearing at different temperatures, which is obtained reasonably
accurately from the specific heats. The picture presented here is
compared with Feynman's theory; it concluded that there is
good correspondence —even the difhculty concerning the multi-
plicity of the excitations being present in both cases. The relation
of a broadened band of energy levels to the idea of a gas of exci-
tations is considered, and it is concluded that such a gas should
obey Fermi-Dirac statistics.

ECENTLY, we have developed the idea that the
excitations (toton type) in liquid He' and He' can

be treated as pairs of atoms acting as hindered plane
rotators, "both the hindering potential and the circum-
stance that the rotator is eGectively confined to a plane
arising from the interaction of neighboring atoms. In
this paper this idea will be reviewed and developed as
to certain of its details, and an attempt will be made to
correlate it with the theory of Feynman' and Feynman
and Cohen. 4

1. EXCITATIONS OF He'

When exchange eGects are important it is convenient,
if possible, to consider the atoms in pairs, and it was
suggested by Price, by Ternperley, and by us' that E
atoms of liquid He' be treated as E/2 pairs. Temperley's
analysis of the specific heat, entropy, and paramagnetic
susceptibility of He' indicated that these properties
could be explained reasonably well if the pairs had a
nondegenerate ground state, three excited states in the
neighborhood of 0.4' above the ground state, and about
eight excited states somewhere near 2.7' above the
ground state. ' Neglecting a Debye term (which Tem-

perley may have overestimated' but which in any case
is not important below 1'K), this leads to the following
partition function for the E atoms forming /V/2 pairs:

g (j+3e-0.4/T+ge 2 7/T)N/2— .

Temperley pointed out that it can be merely an
approximation to suppose that all the pairs have the
same energy levels. In any case one cannot push the
idea of separate energy levels too far, since there will
always be transfers of energy from place to place in the
liquid (compare de Boer'). These influences will result
in broad bands of energy levels for the whole liquid,
and the energy of a pair can be considered only as a
rough mean. Temperley's set of energy levels give a
sharp maximum in the specific heat curve around
0.15'K, which appears not to occur experimentally.
Broadening of the energy band, especially if it means
that the excitation energies range clear down to zero,
should eliminate this maximum and make possible a
better fit to the specific heat curve.

The eGect of the broadening of the energy levels can
be approximated by rewriting Temperley's partition
function in the form

*This work was supported in part by the Once of Naval
Research.

' O. K. Rice, Phys. Rev. 98, 84'/ (1955).
~ O. K. Rice, Phys. Rev. 102, 1416 (1956).' R. P. Feynman, Phys. Rev. 94, 262 (1954).

R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).
~ P. J.Price, Phys. Rev. 97, 259 (1955);O. K. Rice, Phys. Rev.

97, 263 (1955); H. N. V. Temperley, Phys. Rev. 97, 835 (1955),
Proc. Phys. Soc. (London) A68, 1136 (1955). See also J. de Boer
and E. G. D. Cohen, Physica 21, 79 (1955);J. de Boer, in Progress
in Low Temperature Physics, edited by C. J. Gorter (Interscience
Publishers, Inc. , New York, 1957), Vol. 2, Chap. 1.

'lt is convenient to express the energy in degrees, the actual
energies then being k times the values given per rotator or R
times per pair-mole.

) N/2
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./—see [ (1 2)—
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e/h being the energy in degrees. Here p, and p, ' are the
respective densities per unit energy range for the lowest
excited levels and the next lowest excited levels. We

7 O. K. Rice, Conference de Physique des Basses Temperatures,
Paris, 1955 (Centre National de la Recherche Scientifique, and
UNESCO, Paris, 1956), p. 117 (Supplement au Bulletin de
l'Institute International du Froid, 177, Boulevard Malesherbe,
Paris 17').
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T(oK)

C, calc., Eq. (1.6)
C, calc. , Eq (1..8)
C, expt.

0.50

1/5

0.71
0.67

0.69
0.68
0.71

0.78
0.80
0.78

TABLE I. Speci6c heats in calories per degree per mole. integral, Eq. (1.6), is contributed beyond ( p —pp
~

= pp/2.
About 2.7% of it, or about 0.3 energy levels, is can-
tributed from the region between p=0 and p/k=1. 0'.
In order to see the eGect of this overlapping of the

03 energy levels, we have also made a calculation in which
we have replaced Eq. (1.6) by

have, of course,
p, 'dp = 11. (1.8)

"p
p,dc= 3, (1.3)

dp
(1.6)

Also we have chosen slightly diferent values of ep and
ep . The parameters used are as follows:

pp/k= 0.48', pp'/k =2.8',
~=0.40', ~'= i.333 . (1.7)

Values of the specific heat, C, given by these parameters
are given in Table I (erst row of calculated values) and
compared to experimental values. The experimental
values of the specific heat are taken from an empirical
formula of Roberts and Sydoriaka (somewhat extrapo-
lated at T= p'). It is seen that the agreement is very
good except at 1', and here higher energy levels are
undoubtedly becoming of importance. Indeed one might
expect them to have an eGect at T=—,";at this temper-
ature, however, enough of the pairs are excited into
the energy levels centering around 2.8' so that they
probably interfere with each other, and our partition
function may give an overestimate for the specilc heat;
thus the good agreement may be in part due to compen-
sating factors. (We shall see in Sec. 4 that excitations
in the levels around 0.48' will not be expected to inter-
fere with each other ).

There is some overlapping of the diferent energy
bands. The value of a' is such that about 14% of the

T. R. Roberts and S. G. Sydoriak, Phys. Rev. 98, 1672 (1955).

with a similar expression for p, . The validity of this
procedure will be discussed in Sec. 4.

In order to calculate this partition function, we have
represented p, and p, ' by error functions:

p, =b exp( —(p —pp)'/a'k'7, p&0
(1.4)

,=0, eCO
and

p, '=b' expL —(p —pp')'/a'k'7, p&0

& &0.
(1.5)

The values pp/k and pp'/k, at which the energy-level
densities are greatest, correspond roughly to the
energies, 0.4' and 2.7', of Temperley's levels, and the
b's are found from the normalization condition. How-
ever, we have found it better to set

q for Hp

Oo
~q for He

I t

FH;. 1. Energy levels 8' of plane rotator in units g"0=k'/8~')
(where I is moment of inertia of rotator) as functions of the
hindering potential g in units 328'0.

These calculated values are also given in Table I, and
it is seen that the eGect is relatively small.

The molal entropies at T=0.5', given by use of
Eqs. (1.6) and (1.8), respectively, are 1.49 and 1.44
entropy units, either of which is probably within a few
hundredths of an entropy unit of the true value. ' Thus
the thermodynamic properties of He' below 1'K are
well reproduced by Temperley's model with the
broadened energy bands and slightly altered parameters.

The modi6ed values of the parameters suggest that,
for an approximate partition function, it would be
better to replace Eq. (1.1) by

P—(1+3p-P.48/T+]1p 2.8/T)xl2 -(19)

In order to understand the approximate energy levels
and multiplicities appearing in Eq. (1.9) on the basis
of the hindered-plane-rotator model, we need to con-
sider the spin multiplicity of pairs of He' atoms, thp
fact that He' obeys the Fermi statistics, and the nature
of the energy levels of a plane rotator. These energy
levels are shown as a function of the hindering potential
in Fig. I. The states which connect with the even
rotational states at vanishing hindering potential are
orbitally symmetric and hence spin singlets (solid
lines in Fig. 1), and those connecting with the odd
rotational states are orbitally antisymmetric and hence
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spin triplets. If a hindering potential of 9.2 cal per
pair-mole is chosen, ' the excited states have energies
equivalent, respectively, to 0.48 and 2.75', in good
agreement with Eq. (1.7), and are spin triplets. The
triplet character would seem to be in accord with the
multiplicity of the first excited state (without any
spatial degeneracy, such as would occur if the pair were
a space rather than a plane rotator) but the higher
multiplicity of the second one needs further explanation,
and a erst attempt at this explanation has already
been given. '

The difhculty is connected with the arbitrary pro-
cedure of dividing the N atoms into X/2 pairs. It has
been pointed out that with this procedure the two
lowest states of the plane rotator completely account
for the spin degeneracy of the system. There is a
fundamental difference between the first excited state
and all the higher ones in that the former connects with
one of the lowest vibrational states at the limit of high
hindering potential, and hence in this limit has no
excitation energy. With a hindering potential of 9.2 per
pair-mole, the energy of the ground state (zero-point
energy of the rotator) is about 1.8', and the excitation
to the next state, as noted, 0.48'; under these circum-
stances the motion of the pair is, indeed, rotational
oscillation with occasional exchange of position, rather
than nearly free rotation. When liquid He' as a whole
is unexcited, half of the atoms have spin in one direction,
half in the other. Each atom probably has on the aver-
age about four nearest neighbors, and its nearest
neighbors will generally have opposite spin. This can
presumably remain true, even if pairs of atoms are
exchanging, since the spins of coupled atoms can turn
over in pairs. It may be risky to attempt to elaborate
such a roughly approximate description in too much
detail, since we may well say more than the uncertainty
principle allows; however, it is in the spirit of our
approximation to say that if the small necessary exci-
tation energy is available, the spin of one atom may be
turned over, to give us an atom surrounded by four
others of like spin. If it exchanges with one of them,
the orbital state will be antisymmetric; this, of course,
is why the excitation is necessary. Which of its four
neighbors it will exchange with (and, thus, how much
excitation energy will be required in any given case),
may depend to some extent upon how easy the exchange
will be; the hindering potential of 9.2 cal per pair-mole
is only an average value, and will vary from one pair
to another, so one might expect some preference for
exchange with the neighbor for which the hindering
potential happens to be smallest (incidentally, it is to
be noticed that this requires the highest excitation
energy). However, the average zero-point energy,
around 2' for the hindered rotation, is only about half

9 This is based on a value of 3.57 A for the interatomic distance
in He' (instead of 3.45 A as in reference 1); this new value is in
turn based on the more recent value for He4 of C. F. A. Beaumont
and J. Reekie, Proc. Roy. Soc. London A228, 363 (1955).

of the average zero-point energy per mole degree of
freedom. "So the question as to which partner a given
atom will take may well be determined by the accidental
Quctuations associated with the zero-point energy.
Since the atom has no choice as to the neighbor with
which it is to pair, it is correct to consider a division
of E atoms into E/2 arbitrary pairs

In the case of the excitations near 2.8' the situation
is quite diferent. In this case there is orbital excitation
requiring cooperation of two adjacent atoms, and the
way of pairing off is decided by that pair of atoms
which has the orbital excitation, a choice being possible
under these circumstances. If each atom has about four
nearest neighbors there are approximately 4XN/2
possible pairs. Since the state is a triplet, this means
an effective multiplicity of 6 per atom, or 12 per pair
if we consider that there are E/2 pairs, assuming that
all these excitations are independent of each other. The
observed multiplicity, according to our estimate, is 11.
Since an atom has a choice as to which neighbor it will
pair with, the number of choices will be drastically
reduced once a large fraction of the pairs is excited.
This will not happen in the case of the lower excitation
where there is an arbitrary or 6xed division into N/2
pairs; in this case the separate excitations will be
essentially independent of each other; this is important
since a large fraction of them is already excited at
0.5'K. This situation is further discussed in Sec. 4.

The question arises as to whether there can be as
many as 4XX/2 independent pairs, even when. the
density of excitations is low. This is a question which
involves some rather fundamental considerations, and
also has some applications to the case of He'. If we
were to suppose that the E helium atoms were 6xed in
a rigid lattice, there would be 3X normal modes"-'of

vibration. The normal modes could be thought of as
derived through perturbations from the three vibrations
of each of the X individual atoms moving in the
surrounding potential-energy fields. The pair-rotators
resemble somewhat partially developed normal modes
of vibration, involving more than a single atom but
not all the atoms. This description amounts to a way
of setting up the individual degrees of freedom; singly
excited rotational oscillators" can be thought of as
derived by linear combination from excitations of
individual atoms. The 3X erst excitations of atomic
oscillations thus cannot be independent of each other.
Under ordinary circumstances one might question
whether as many as two-thirds of the degrees of freedom
could be assumed to be well described as rotational

'0 See F. London, SuperglHs (John Wiley and Sons, Inc. ,
New York, 1954), Vol. 2, Chap. B.

~~ When we refer to singly excited rotational oscillators, or to
the fIrst excited state, we are thinking of the states which connect
to the first excited state at the pure vibration end of Fig. 1. The
primarily spin-type of excitation (lowest broken curve of Fig. 1)
can actually be thought of as part of the zero-point energy with
respect to the excitations we are considering here and in the
remainder of Sec, 1.
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oscillations, especially since the singly-excited excita-
tions of the phonon spectrum would also have to be
derived from linear combinations of the 3E 6rst exci-
tations of the atoms. "Helium, however, has a density
only about half as great as that of a close-packed
structure. This will result in many extra excitations,
though probably not of the rotational-oscillatory type.
If a single helium atom among E atoms were excited,
not only couM any one of the X atoms be the one
excited, in any one of three ways, but an atom would
also have the choice of being either on a "lattice space"
or a "vacancy. "In fact there would be 1V vacancies for
a given atom, but since the atoms are indistinguishable
it would not matter which atom it was. So there would
result a total of 6 possible excitations per atom. Actually
the number of possible excitations might well exceed 6,
since there might be more than S possible choices of
"vacancies. " Use of a vacancy would bring an atom
close to more than four neighbors on the average, and
would probably not lend itself well to cooperation of a
pair to produce rotational oscillation, but an atom in
this situation could contribute to the phonon excita-
tions. In a liquid as dilute as He, it is perhaps not
strange that there are something like 11/12 of 2 exci-
tations per atom which have the low excitation energy
characteristic of the hindered plane rotator.

It will be observed that the presence of vacancies is
able to increase the number of excited states, but, of
course, there is but one ground state, and the zero-point
energy associated with it is probably an average of
what might be expected for the zero-point energy of
the various kinds of excitation, supposing them not to
acct each other. Since the excitations which can be
described as arising from rotational oscillations consti-
tute a relatively small fraction of the total number, it is
not surprising that the zero-point energy per degree of
freedom is considerably greater than that expected for
this particular type of excitation.

This discussion has an interesting relation to the
concept of communal entropy. If all the degrees of
freedom were in their first excited level, there would
be more than 6 possible excitations per atom. For the
number of distinguishable arrangements assuming X
atoms and X vacancies, would be (2N)!/(X!)'. This
amounts to roughly four arrangements per atom, or 12
excitation states per atom, not counting spin states.
This increase in the number of possible states is the
beginning of the excitation of communal entropy.
Communal entropy, like all other types of entropy, is
completely frozen out" at O'K; there is but one state
which possesses the zero-point energy. Communal
entropy can arise only when there is mixing of excited
atoms. As long as there are only a few excitations, the
fluctuations in position of the atoms, other than the

excited ones, do not lead to any new states. Entropy
of mixing between excited atoms and unexcited appears
when there are only a few excited atoms, but communal
entropy (which might be described as entropy of mixing
with free space) can appear only when there are many
excited atoms.

Although the presence of many excited atoms can
give rise to extra distinguishable states, we shall, as
noted above, hnd that the number of excitations which
can be described in terms of the plane-rotator picture
will not be raised correspondingly, since an atom cannot
be a member of more than one pair at a time.

Z= (1+me—'I'r)~ (2 2)

which, since it is to be applied where the roton density
is low, can be replaced by

Z= (1~2me "r)~", (2.3)

which puts it on a basis comparable to our pair-rotator
treatment of He'. In either case the eth power term,
with factor e "",represents an e-fold excitation, and
the corresponding terms in Eqs. (2.2) and (2.3) are
approximately equal as long as Ã))n. For the greatest
term, e is given by Eq. (2.1).

A rough estimate" of e/k and m gave 10.1' and 9.3,
respectively. A more accurate estimate can be made
from specific heat data. To do this we must take account
of the phonon excitations. Let, m„de be the number of
phonon excitations per atom with energy between e
and e+de. Then the complete partition function,
including phonons and rotons, will be

Z=~ 1+ m~de+me ''r
~

(
) (2 4)

The erst term in the binomial expansion of 1 and
J'em„d e+mexp( —e/kT) gives the contribution of
single excitations, the second term the contribution
from cases where two energy levels are excited simul-
taneously (either two phonon levels, two roton levels,
or both), etc. (compare Sec. 4). We may now write
for the total entropy

2. EXCITATIONS IN He4

In the case of He4 we have remarked'4 that around
1'K, where the roton density is low, the thermodynamic
properties are consistent with the following equation
for the number n of rotons per E atoms:

(2 1)

Here e is the energy of the excitations and m the
multiplicity. Equation (2.1) is equivalent to the use
of the partition function.

"More highly excited phonon excitations are derived from
multiple excitations in which more than one degree of freedom
are excited; this will be discussed in more detail in the case of He4."0.K. Rice, j.Chem. Phys. 6, 476 (1938).

S=E/2+k lnZ
=kTB lnZ/BT+k lnZ.

' 0 K Rice Phys Rev 96, 14Q) (4954)

(2.5)
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Here 8 is the total energy. Since both Jp"m~de and
m exp( —e/kT) will be small compared to 1 at low
temperatures, we may expand the logarithms, obtaining

00

S=NkT B mme/BT+B(me '~sr)/BT)
Jo

00

Cr
d(e/k)/

e/k d T 200n/N
e/k,

m Eq. (2.20)

0.8 0.0222 0.0102 9.75 0.5 0.00328 6.4
9.85

1.1 0.191 0.160 9.90 0.5 0.0942 7.6
9.96

TABLE II. Number of rotons e per S atoms, multiplicity m,
and excitation energy e.'

+Nk ) m~de+me 'Isr
0

(2.6)

1.7 2.11 1.995 10.5 1.7 2.41

1.4 0.780 0.715 10.07 0.7 0.656

11.6
10.33

d inc/dT= e/kTs, (2.10)

which is obtained from Eqs. (2.1) and (2.7), we find

Q„=I(es/kTs+de/d T) . (2.11)

This can also be interpreted as the result of the diGer-
entiation of the total roton energy ne with respect to T.

We have obtained n and m from the data of Kramers,
Wasscher, and Gorter. " The results are shown in
Table II.We have given the values of e/k and d(e/k)/d T
used to obtain I/N from Kq. (2.11) and m from Eq.
(2.1); the final column gives values of e/k calculated
for the intervals from the values of I/N, using Eq.
(2.10), in order to check the consistency of the calcu-
lation. The calculations are also reasonably consistent
with Eq. (2.8). Some authors'e have found values of
the speci6c heat uniformly greater than those given by
Kramers, Wasscher, and Gorter. A uniform change
would not acct e/k but would change m correspond-
ingly. (See note at end. )

'~ Kramers, Wasscher, and Gorter, Physica 18, 329 (1952).
"G. R. Hercus and J. Wilks, Phil. Mag. 46, 1163 (1954);

Pearce, Markham, and Dillinger, National Science Foundation
Conference on Low Temperature Physics and Chemistry, Baton
Rouge, Louisiana (unpubhshed).

which means that in this approximation photon and
roton energies and entropies are additive, and to obtain
the roton entropy from the experimental results we can
subtract the phonon entropy extrapolated as a Debye
term from very low temperatures as though the rotons
did not exist. NkTB(me 'Is )/BT is to be taken as the
roton energy divided by T. If there is a range of roton
energies, as is expected for the same reasons that the
energy levels in He' were broadened, e and m are
average values, but

NkTB(me ~~' )/BT=Ne/T, (2.7)

since ne is the total roton energy, and, hence,

kTB lnm/BT= Be/BT. (2.8)

From Kqs. (2.6), (2.7), and (2.1) the roton part of the
entropy is given by

(2.9)

It is better to use the roton specific heat C, to calculate
n, since the speci6c heat C is measured directly and the
phonon part is a smaller fraction of the whole than is
the case with the entropy. By diGerentiation of Eq.
(2.9), and using

a T and «/k in K; C and Cs in joules g ' deg ~.

We now wish to see how the experimental values of
e/k and m fit in with our ideas of what the excitations
should be. In the first place we may note that He4 has
a zero-point energy which is estimated" to be in the
neighborhood of 30 or 35 calories per mole or $0 to 12
per mole-degree-of-freedom. The first excitation should,
then, be roughly 20 to 24 calories per mole-degree-of-
freedom, or somewhat less than this if we allow for
some anharmonicity. This corresponds to e/k 10', on
the average, in excellent agreement with the experi-
mental result.

Although oscillational rotations of pairs of atoms will
not be independent of these vibrations, it will be
desirable to estimate the energy expected to be associ-
ated with such excitations, in view of their low value
in He'. In the case of He4 only symmetrical orbital
states are possible, and we shall be interested in the
erst excited solid curve of Fig. 1. If one assumes the
hindering potential to be the same as for He', and allows
for the different mass, the e/k for a hindered plane
rotator would only be about O'. However, the eGect
of the greater density of He4 will be to raise this figure
considerably. It is dificult to make an exact estimate
of this eGect, without knowing how much of the
hindering potential in He' is due to penetration of the
rotating pair into the repulsive part of the potential
arising from the neighboring atoms and how much may
arise from increased kinetic energy (zero-point energy)
in the radial direction (i.e., perpendicular to the rota-
tional motion) as the atoms go past each other. The
hindering barrier is small enough in He' so that we
can suppose that there is not too much penetration.
The potential energy begins to go up when two atoms
are about 2.9A apart"; supposing that in He' the
atoms of the rotating pair penetrate to within 2.8 A of
their neighbors when the exchange occurs, we would
suppose (multiplying this figure by the ratio of the
cube root of the molecular density of He' to that of
He') that the corresponding distance in He' would be
2.54A. The potential energy at 2.54A is about 39
calories per gram atom, or about 78 calories per pair
mole, greater than it is at 2.8 A, so we might estimate
the hindering potential to be&~around)85gcalories per

'7 J. L. Yntema and %. G. Schneider, J. Chem. Phys. 18, 646
(1950), Eq. (19).
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pair mole."This results in an excitation of about 12.8',
which is fairly close to the experimental results.

One should probably also consider modes of excitation
involving more than two atoms. We have previously
discussed' the possibility of the rotation (or, rather the
rotational oscillation, with rather infrequent exchange)
of interlocking pairs, meshing like a pair of gears. With
the same hindering potential, but now with twice the
reduced mass, the value of q of Fig. 1 would be doubled;
the excitation energy, again recalling the doubled
reduced mass, turns out now to be reduced to about
9.4'. However, this much cooperation of several atoms
would require an enchanced zero-point energy, which
should presumably be added to the excitation; the
exact amount is dificult to estimate, but there would
seem to be no doubt that the result is as close as one
might expect to the experimental result. This zero-point
energy would go up rapidly as the number of atoms
increased, and is presumably some indication of the

difhculty of this type of cooperation; probably we do
not need to consider more than two pairs of atoms in
the case of He4 or more than one in He'. Possible
rotations of more than two atoms have also been
considered by de Boer, ' but without allowing for the
hindering potential.

We have pointed out that there are many ways in
which two adjacent pairs of atoms can be selected, ' but
it now appears from the discussion in Sec. 1 that they
are not independent of the single-atom vibrations, and
so will not serve to explain the relatively large value of
m. It is of interest, however, that we are not led to
any low excitations, as we are in He', and that any
way of estimating the energy gives a result fairly close
to the observed value of e/k.

We have pointed out in Sec. 1 that we might expect
six or a few more lowest excitations per atom, so at
first sight the value of m 7.5 seems quite reasonable.
However, it must be noted that if there is a spread of
excitation energies the effective value of m will be
somewhat less than the actual number of excitations
per atom. In the Grst place, the phonon excitations are
included and, as will be seen in the following section,
they may account for about one excitation per atom;
secondly, the excitations having di6erent energies will
not be equally easily excited. If we assume that the

"This calculation is of course based on the assumption that
the difference in density between He' and He4 is to be ascribed
to a difference in interatomic distance rather than an e8'ective
coordination number. If the latter were the case, a considerable
increase in the hindering potential would still be expected, but it
would be more dificult to make the calculation. If the number
of nearest neighbors in He4 is actually about four, as stated by
Beaumont and Reekie, ' it seems most likely that the number in
He' will not be much less. D. G. Hurst and D. G. Henshaw
l Phys. Rev. 91, 1222 (1953); 100, 994 (1955)j, however, believe
that there are a greater number of nearest neighbors at a greater
average distance, and with a greater spread of distances; the
over-all distribution is actually not too different according to the
two sets of data. The value of the hindering potential obtained
here is somewhat greater than a previous estimate, ~ but leads to
an excitation energy only about 2' higher.

number of energy levels p,de in a range e to e+de, such
that e/k is near 10', is given by an error function

p de —b exp) (e ee) 2/a2k25de (2.12)

we can in this case, without appreciable error, carry
the integration from e—so= —~ and write for the
total number of levels

2222 ——b exp f
—(e—ee)'/a'k'jd(e —ee). (2.13)

The average value e of the energy of the rotons (which
is the energy which appears (without the overrule) in
Eqs. (2.1) to (2.11)g is given by

p,e '" d-(e —ep)

= eo—a'k/2T, (2.14)

and the partition function is given by

00

Z= 1+ ~ P,e '2'(e ee)—
—00

—(1+222 e—o/ exp(a /4T ))
= (1+mp exp( —e/kT) exp( a2/4T2))N.—(2.15)

Thus, by comparison with Eq. (2.2), we can write for
the eGective value of m

222=2Np exp( —a'/4T'). (2.16)

In view of the fairly small spread of the estimated
energies of excitations of the roton type, it might be
reasonable to suppose that a is as low as 1'. If this
value of a be assumed, then we estimate the following
values of mo from the values of m given in Table II:

T 0.8' 1.l ' 1.4' 1.7'
mo 9.5 9.4 9.9 12.7

The values of mo for the three lower temperatures are
close to 9 or 10 and the number of required energy
levels would go up to about 10 or 11 per atom if the
phonon states were added. This is certainly somewhat
higher than expected, but perhaps not out of reason.

The considerably higher calculated value of @so at
1.7' can be explained only as arising from interactions
between rotons. Since there are actually only about
0.024i roton per atom, it may seem that the inter-
actions could not produce so much eGect. But it must
be remembered that the whole calculation is an approx-
imation and that Eq. (2.2) or Eq. (2.4) will break
down when there are interactions. We must, rather,
consider directly the energy levels which go into the
partition function. The increase in e/k and in 2222 are
associated with a greater density of the high energy
levels of the whole system, which involve multiple
excitation. Even with only 2% of the atoms excited,
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the excitations are not on the average far removed
from each other, and if this approach causes the energy
of excitations to be decreased, this will increase the
density of high-energy excitations. Even double exci-
tations of single atoms or single pairs may become of
some importance, and in view of the anharmonicity of
the vibrations may have some e8ect in increasing
density of energy levels. To bring the magnitude of
the eGect into better perspective, we may note that if
100m/N were reduced to 2.36 the eBect would disappear;
there would be a concomitant reduction of C„ to 1.815
joules gram ' degree '.

3. COMPAMSON WITH FEYNMAN'S EXCITATIONS

Feynmans and Feynman and Cohen4 have given a
treatment of liquid helium starting from an entirely
diGerent point of view. Using a variation method they
have constructed wave functions, for the liquid as a
whole, whose energy is close to that of the rotons. This
leads to the inference that the wave functions must be
somewhat near the true ones, and it will be of consider-
able interest to compare the excitations of He4 which
we have described with those to be inferred from Feyn-
man's wave function.

In his earlier work Feynman wrote the wave function
for the whole liquid (He') containing a single excitation
in the form

P—P.sit. r;y (3 1)

Here r; is the position vector for the ith atom, k the
vector wave number determining the momentum and
having the character of a quantum number, the sum is
taken over all atoms and P (a function of the distances
between atoms, r;;=r;—r;) is the wave function of the
ground state. The presence of p prevents impossible
overlapping of atoms. Feynman showed that with
small k this would represent the phonon wave functions.
This means that it would represent single exeitations
of the normal modes of vibration having long wave-
lengths. A double excitation of a given mode, for
example, would be represented by a function like
g.p . &it reit rid

With large k, a wave function like (3.1) would
represent motion of a single atom (the summation
merely symmetrizes the wave function and allows it to
be any atom). With intermediate k several atoms may
be involved; this type of excitation is a roton.

If the energy corresponding to one of these wave
functions is evaluated by means of the integral expres-
sion J'P*HPdr/J'&*/dr, where H is the complete
Hamiltonian for the whole liquid and d7. the corre-
sponding volume element, it is found to be given by a
curve of the form shown in Fig. 2. Up perhaps to the
maximum the energy corresponds to a phonon exci-
tation, while the rotons are represented by parts of the
curve beyond the maximum and especially near the
minimum.

Application of the momentum operator ih Q; gra—d;

FIG. 2. Energy levels as a function of ) ir j according
to Landau and Feynman.

Ak. r;;~-
&=y P e't "exp I

i Q( iii~o [r;;(')
(3 2)

where r;;=r;—r,. This function had the double ad-
vantage of essentially eliminating the divergence of the
current and of lowering the minimum in Fig. 2; 3, was
determined so as to minimize the energy intergral for a
given k. The new function is still an eigenfunction of
the momentum operator with the same eigenvalue as
the unmodified function.

In spite of Feynman's arguments, it is our belief that
the true eigenfunctions of H are not eigenfunctions of
the momentum operator. An excited atom is affected
by the 6eld of its neighbors, and can exchange momen-
tum with them. It can scarcely be expected to maintain
a certain momentum in a certain direction. Therefore,
it would appear that the complex wave functions should
be combined to form real ones; instead of Eq. (3.2) we
would have

Ak r;;
f=yg sin] k r;+ g +o (,

i&i~'& [r;;)'
(3.3)

where 8 is a phase factor. This wave function retains

shows that the liquid as a whole has momentum,
presumably with respect to the surroundings. This
momentum is ascribed to the excitation. Only for small
k is Eq. (3.1) an exact form; for larger k it is found
that the current is not conserved. Feynman remarked
that if this wave function were combined with one of
the form g; e 't"'p to form a real wave function this
conservation di@.culty would be avoided. He rejected
this solution because he felt that by collisions with
phonons and with the wall the components would be
separated, and since the sine and cosine functions
would be equally good solutions further linear combi-
nation could again result in wave functions of the
form (3.1). Therefore, he proposed the incorporation
of a back Qow, which could be represented approxi-
mately by a function of the form
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the part which corresponds to the backQow, which
seems to be necessary, even though the question of
conservation of current no longer arises. It will give
the same dependence of the energy integral on k as the
function (3.2), and the density of energy levels will be
the same. The wave function for that value k of ~lr

~

which corresponds to the minimum energy in the roton
range will be an approximation to the true wave
function for the lowest roton excitation. Although the
P of Eqs. (3.3) for k is only an approximate wave
function, its expansion in terms of the complete
orthogonal set of true eigenfunctions will not be ex-
pected to involve the low-energy phonon wave functions
to any appreciable degree; therefore, its energy integral
will presumably give an upper limit to the energy of
the lowest roton excitations. Since the inclusion of the
backQow lowers the minimum roton energy consider-
ably, it must contribute to the improvement of the wave
function for k .

In addition to the e6'ect on the energy, and quite
apart from the conservation of current, there are some
interesting physical reasons for inclusion of the back-
Qow. London" pointed out that if a helium atom were
entirely confined to the space between its neighbors the
zero-point energy would be higher than it is. The
lowering of the zero-point energy must imply some
cooperation back Qow, or "around Qow, " in the atoms
surrounding any given atom even in the ground state,
and it would be expected to be at least as important in
an excited state. The optimum value k in the roton
part of the excitation spectrum, as found by Feynman
and Cohen, is close to 1.85 A ', corresponding closely
to a wavelength of 2m/1. 85 3.5 A, which is somewhat
larger than the expected mean free path for an atom
completely confined by its neighbors, and this also
indicates the desirability of taking the backQow into
account.

The approximate wave functions of Eq. (3.3) depend
upon pairs of atoms only through the factor p, which
merely prevents atoms from coming too close to each
other, and in the backQow term, which is a kind of
correction. Essentially they represent single-atom exci-
tations, corresponding to the first excited vibrational
state, which as we have seen, in Sec. 2, should require
an excitation of about 10'. Feynman and Cohen have
found that the best value of A at k gives an excitation
of 11.5'. We have seen that the rotational oscillations
which we have discussed are not independent of the
single-atom vibrations, although their consideration
gives valuable confirmation of the energy involved.
The picture of Feynman, therefore, appears, upon
analysis, to be reasonably consistent with the picture
we have presented.

De Boer' has suggested that Feynman's excitations
correspond only to the longitudinal or compressional
type of normal vibration. Transverse vibrational modes,

!'F. London, J. Phys. Chem. 43, 49 (1939).

such as occur in solids, cannot occur in liquids on a
large scale, but in the region of small wavelength they
are replaced by rotations or rotational oscillations of
small groups of atoms. It is our opinion that these are
included in Feynman s excitations, since, as already
noted, they appear not to be independent of the
single-atom excitations. It is true that a term of the
form sin(ir r,) such as arises as part of one of the
exponentials in Zq. (3.1), has a series of parallel nodes.
In a special case, for example, in which k„=k,=0, we
would have sin(k, x,), with nodal planes perpendicular
to the x axis. Though the discussion given by Feynman
(p. 267 of reference 3), by which he identified eigen-
functions, of the form (3.1) with compressional waves,
was not meant to apply to short wavelengths, this
arrangement of nodes of the component sinusoidal
functions, is still one that would be associated in a
general way with compressional waves even when the
wave length is short. But a linear combination of two
wave functions, say one with k„=k,=0 and the other
with k,'=k, '=0, and with k, =k„' (so that they both
correspond to the same energy), namely,

would contain sinusoidal terms like sin(k, x,)+sin(k„y, )
which would have two intersecting sets of nodal planes.
This would correspond to a diferent, though not
independent, type of vibration, certainly one involving
some localized shear. It is more dificult to see what
would happen with wave functions like (3.3), but
qualitatively we would not expect the situation to be
very diGerent.

Since one apparently cannot, in any obvious way,
call in the help of excitations which are not already
included, the difhculty of finding enough excitations to
account for the experimental results, noted at the end
of Sec. 2, appears also in the Feynman's formulation.
Feynman and Cohen noted this, remarking that the
curvature around the minimum of their curve seemed
to be too great. The energy, according to their curve,
appears to rise sharply when

~

k
~

becomes greater than
about 2.1 A '. Larger values of ~k~ presumably corre-
spond to eigenfunctions which are related to higher
excitations of the single-atom oscillators, and

~
k

~

=2.1,
which corresponds to a wavelength of 3.0 A is a reason-
able cutoG point. The classical range of motion for an
oscillator with kv/k=10' in its first excited state and
with a mass equal to that of He4 would be about 3.8 A;
but the backQow would increase the effective mass"
and so decrease the range of motion. If we apply periodic
boundary conditions to the wave functions at the edges
of a cube with sides of length /, we find that the number
of energy levels in a range between

~

k
~

and [it ~+&
~

k
~

(remembering that ~k~ is the magnitude of a vector

2 The backflow would decrease the reduced mass, but the
coordinate to be used with the reduced mass is the relative
position of the atom with respect to those taking part in the
backQow, rather than its position in a axed coordinate system.



ELEMENTARY THEORY OF LIQUID He 559

and that the diGerence bk, between consecutive allowed
values of a component of k must obey the relation
Ebk =22r) will be 42rP~k~sd)k~/(22r)2. The total number
of atoms is P/vs, where vs is the volume per atom
(46 A'). Thus, the number of states per atom up to
~
k

~

= 2.1 A will be given by

)2.1
(46/22r2)

~

k
~

'd
~

k =7.2.
Jp

From this we must subtract the phonon states. One
might reasonably assume that the phonon states extend
up to the maximum in Fig. 2, which occurs at

~
k

~

= 1.3,
which would mean that the number of available states
would be reduced to 5.5. If the curve should be Hatter,
so that the increase in energy occurred around

~
k

~

= 2.4,
and if the cutoG for the phonon states should be at
~k~ =1.0 instead of ~k )

=1.3, we would find about 10
available states.

The calculation of Feynman and Cohen apparently
cannot say anything conclusive about the spread in
energy, but the considerations of Sec. 2 make it appear
that the spread of energies may be rather low. This
might mean, for example, that the maximum in Fig. 2
should be lowered and pushed to the left. We may
remark that the distribution of roton levels indicated
by Fig. 2 would be rather diGerent from that assumed
in Sec. 2, since according to Fig. 2 we have many
levels near the minimum, and a sharp cutoG there, as
shown in Fig. 3. It seems quite possible that the theory
of Feynman and Cohen has the levels too closely
associated with the parameter k. However, it does seem
that we can conclude from their work, not only that
the minimum energy which they find is an upper bound
for the lowest roton energy, but that there are at least
as many states in the same general energy region as
their distribution would suggest. This is true because
the approximate wave functions of the form of (3.2)
or (3.3) are all orthogonal to each other, if the function

p is made to conform to the periodic boundary condi-
tions as well as the other parts of the function, so they
can be used as a basis for expanding the true wave
functions, and it seems unlikely that the perturbations
will be large enough to throw the energies of the true
wave functions entirely out of the region.

4. GAS OF EXCITATIONS

In the original papers of Landau" the rotons were
treated as a gas of excitations obeying the Bose-
Einstein statistics. Feynman also followed this idea. If
we think of localized excitations which are broadened
into a band, there must be as many levels in the band
as there were original localized levels. More than one
localized level can be excited at the same time, and this
would correspond to having an equal number of the
levels in the band excited simultaneously. This assumes
that if the liquid is excited in one particular way, it

I L. D. Landau, J. Phys. U.S.S.R. 5, 71 (1941);11,91 (1947).
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FIG. 3. Landau-Feynman energy distribution contrasted
to error function.

does not prevent it from being excited in some other
way at the same time. The number of possible ways
that a certain number of the levels of the bands can be
excited, if it does not matter just which ones are
excited, is just equal to the number of ways the localized
excitations can be distributed among the possible
positions in the liquid, provided that no level can be
doubly excited. At least this proviso is necessary, unless
we also suppose that two localized excitations can be
exactly superimposed at the same place in the liquid-
but this would amount to a higher excitation, and
would not be included in the usual type of roton. Thus
we wouM have something like the Pauli exclusion
operating with respect to the placing of excitations in
energy levels, so we conclude that the gas of excitations
should obey the Fermi-Dirac statistics rather than the
Bose-Einstein. It must be granted, however, that this
distinction is somewhat academic in the case of He4,
for when the density of excitations became dense enough
for any appreciable difference between the two statistics
to become important, they would begin to aGect each
other, and this interaction between excitations would
blur the eGect of the statistics. Since the excitations
may overlap, having one excitation may prevent
development of a neighboring one—a kind of expanded
exclusion principle.

One of the diGerences between He' and He4 is that in
the former this expanded exclusion principle does not
operate with respect to the lower states (ground state
and lowest triplet) of the pair model. If we consider
just these lower excitations in He', there are, at any
instant, exactly —,E possible positions for an excitation,
and these excitations cannot overlap. It is not certain
that they will not aGect each other at all, but this
would seem to be a reasonable approximation. The
ground state gives one term in the partition function.
There are ~E ways for a single excitation to occur,
giving ~1V terms in the partition function. There are
32(21Ã) (21)V—1)/2 terms in the partition function corre-
sponding to double excitation, 32('2N') (2iV —1) (—,X—2)/
3. terms corresponding to triple excitation, etc. It will
be seen that with Eq. (1.3) these successive terms
correspond exactly to those which occur in the binomial
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expansion of the —,
'S' power of the first two terms in

Eq. (1.2) namely, (1+Js"p,e '"rde)~", the integration
serving merely as an averaging device. Excitation to
higher levels means, of course, additional terms in the
system s partition function. For example, if there is
one excitation to the higher triplet, this can occur
in 11K/2 different ways, and the contribution to the
partition function in the light of Eq. (1.6) will be

—,'cVi P, 'e 's de ii 1+ P,e 'srde
i

( oo ) ( pao ) -',iv—i

which would appear in the multinomial expansion of
Eq. (1.2). However, if two of the higher levels were
excited, these could occur in somewhat fewer than
11'(scV)(—',E—1)/2 ways, because this would count
cases in which two rotators had a common atom; the
expanded exclusion principle begins to operate. These
deviations would only become important, however,
in the terms of the expansion involving high powers
of Js"p, 'e '~srde, and if the integral is not too large
may be neglected.

0.8
1.1
1.4
1.7

e/k

9.39
9.57
9.88

10.4

100n/N

0.0041
0.1030
0.683
2.44

5.11
6.19
7.94

7.6
7.6
9.0

12.1

The consistency with Eqs. (2.8) and (2.10) is improved,
and the smaller value of mo almost removes the difhculty
concerning the number of energy levels. At the lower
temperatures d(e/h)/dT is about 0.6, close to the value
in Table II and that given by the Landau-Feynman
theory.

I wish to thank Professor W. A. Bowers for a number
of helpful -discussions.

Note added ie proof. We—have noted a statement by
H. C. Kramers, in Progress in Low Terrlperatmre Physics
(see reference 5), Vol. 2, p. 65, that the phonon specific
heat of Kramers, Kasscher, and Gorter" is too large,
though their total specific heats at 0.8'I and above are
about right. Using the new phonon speci6c heat to
obtain C„changes Table II and the values of mo as
follows:
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The equations for shock-wave structure, with the inclusion 'of radiation effects, are derived. These radia-
tion effects are radiation pressure, radiation energy density, and radiative transfer of energy. Computations
have been performed for a diffusion approximation of radiation Aux and the neglect of radiation energy
density and pressure. The results show that the over-all eifect of radiation (under the aforementioned condi-
tions) can be taken as a diminution of the Prandtl number, and that the shock width is larger than when
viscosity and heat conduction alone are considered. The radiative contribution to the width of the shock is
found to depend primarily on the ratio of the mean free path of radiation to that of the material particles.
The proportionate increase in shock width is found to be a function of the Mach number and to increase
with it.

Possible application of the above results to shock-wave propagation in a medium of low density is
indicated.

1. INTRODUCTION

ACHS has given the Rankine-Hugoniot conditions

~ ~ ~

~

when the effects of radiation pressure and energy
density are included with the hydrodynamics. Sachs
examined only the end conditions of such a shock, and
did not consider radiative transfer of energy. It is the
object of this paper to give an analysis which includes
the effects of such radiation terms on the detailed struc-
ture of a shock front. The analysis is by the Stokes-
Navier equations with the gas possessing its usual vis-
cosity and heat conductivity. The shock will be taken
as plane, steady, nonrelativistic, with no superposed
electric or magnetic fields.

' R. G. Sachs, Phys. Rev. 69, 514 (1946).

Radiation pressure and energy density effects are
important long before the shock is relativistic. For a
shock propagating into air at standard conditions, a
Mach number of 10' is needed before the shock may be
considered relativistic, whereas radiation pressure be-
comes comparable to material gas pressure behind the
shock at a Mach number of about 2&(10'. Again, radia-
tive transport of energy may be important even though
the other radiation terms are negligible. For air of
atmospheric density, a temperature of a few million
degrees must be reached before radiation pressure and
energy density become important while radiative trans-
port is signi6cant even at much lower temperatures.

The significance of the results to shock propagation
through rarefied atmospheres is also brieQy considered.


