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Exact Nonlinear Plasma Oscillations
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The problem of a one-dimensional stationary nonlinear electrostatic wave in a plasma free from inter-
particle collisions is solved exactly by elementary means. It is demonstrated that, by adding appropriate
numbers of particles trapped in the potential-energy troughs, essentially arbitrary traveling wave solutions
can be constructed.

When one passes to the limit of small-amplitude waves it turns out that the distribution function does not
possess an expansion whose first term is linear in the amplitude, as is conventionally assumed. This disparity
is associated with the trapped particles. It is possible, however, to salvage the usual linearized theory by
admitting singular distribution functions. These, of course, do not exhibit Landau damping, which is asso-
ciated with the restriction to well-behaved distribution functions.

The possible existence of such waves in an actual plasma will depend on factors ignored in this paper, as
in most previous works, namely interparticle collisions, and the stability of the solutions against various
types of perturbations.

I. INTRODUCTION one admits singular first-order distribution functions,
in particular Dirac delta functions. ' These singular
solutions do not exhibit the phenomenon of Landau
damping, ' which is associated with distribution func-
tions which are required to be initially analytic.

'gAST treatments' ' of the problem of electrostatic
oscillations in a collision-free, completely ionized

plasma have customarily resorted to linearization of
the governing equations in order to obtain a mathe-
matically tractable problem. This procedure has led,
for the case of sinusoidal waves, to mathematical
difhculties associated with those particles which travel
with the wave velocity. These problems are discussed
and resolved within the framework of the linearized
theory, on formal mathematical grounds, by Van
Kampen. 4 Bohm and Gross' have suggested that these
difhculties are associated with those particles which
are trapped in the potential-energy troughs of the wave,
which implies a breakdown of the usual linearized
theory. This is indeed the case, as we here demonstrate
by solving the nonlinear problem.

In one space dimension it is possible to derive simply
exact general solutions of the coupled Boltzmann and
Poisson equations, which solutions correspond to
stationary travelling waves. These solutions are not
completely determined by the aforementioned equations
and it is possible to construct waves of quite arbitrary
shape, for instance isolated pulses, and sinusoidal waves.
The method of derivation emphasizes the special nature
of those particles trapped in the troughs of the electro
static potential.

In particular, when one passes to the limit of smal
amplitude waves it transpires that the distributio
function describing the trapped particles does no
possess an expansion in integral powers of the amplitud
of the electrostatic potential, but rather one in half
integral powers. This feature would appear to indicat
that the usual linearized theory is inadequate to describ
stationary traveling waves. It is shown, however, tha
the conventional linearized theory can be salvaged i

II. FORMULATION OF THE NONLINEAR PROBLEM

YVe seek stationary nonlinear electrostatic waves.
Consider for simplicity a plasma composed of electrons
and ions. The extension of the following considerations
to more complicated systems is immediate. It is con-
venient to work in a coordinate system in which the
wave is at rest, the so-called wave frame, so that all
quantities are time-independent. The equations gov-
erning the phenomenon are

c)fg(x,v) e cly(x) r)fg(x, v)
V =0,

8$ ssy 8$ Bv

ct'y(x) 00
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A. Vlasov, J. Phys. U.S.S.R. 9, 25 (1945).
~ L. D. Landau, J. Phys. U.S.S.R. 10, 25 (1946).' D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 (1949).' N. G. Van Kampen, Physica 21, 949 (1955).

Equation (1) is the Boltzmann equation in one space
dimension in which collisions have been ignored,
written for ions or electrons, accordingly as one chooses
the upper or lower sign. Equation (2) is the Poisson
equation. In the above expressions f~ represents the
distribution function in joint configuration and velocity
space, m~ the mass, e the magnitude of the charge of
the electron, P the electrostatic potential, and v the
velocity.

If one introduces the energy

Ey= sntyv &Ash~ (3)
t the general solution of Eq. (1) may be written

f+=f+(&+). (4)

Note that Eq. (4) satisfies Eq. (1) independently of the
c P. A. M. Dirac, Prt'nccples of Quantum kfcchantcs (Clarendon

Press, Oxford, i94/), third edition, p. 58.
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partition between the two directions of the velocity of
particles with a given energy.

In addition to Eqs. (1) and (Z), there are certain
other conditions which have to be satisied. Consider a
potential of the form shown in Fig. 1. Ions with an
energy E~ such that carte; &E+&&, are trapped by
the potential, i.e., restricted to regions where &&E+.
Thus, an ion with energy E+= e4 t is restricted to regions
C and Ii of Fig. 1, but once in C cannot move into Ii
and ~ice versa. That is, x~, x2, and x3 are turning points
at which the ion reverses its velocity. Since the dis-
tribution function must be independent of the time,
ions of energy E+=egt must be equally distributed
between the two directions of the velocity, and simi-
larly for all trapped ions. Of course, ions with energies
E+)e@,„can move freely in either direction, and
hence their partition between the two directions of the
velocity is arbitrary. Note that the distributions of the
trapped ions in regions C and F are independent since
the two regions are isolated from each other.

Similarly electrons of energy E & —elm, a are
trapped. For instance an electron of energy E = —edet

can be only in regions 8 and D of Fig. 1, and the trapped
electrons must be equally distributed between the two
directions of velocity. Electrons of energy E )—set

can move freely, and their partition between the two
directions of velocity is arbitrary.

Equation (4), the general solution of Eq. (1), can be
substituted in Eq. (2), which on introduction of the
energy of Eq. (3) in place of the velocity reads

&* &mc

FIG. 1. Potential energy trough illustrating the & trapping of
particles.

Equation (6) can be solved by a quadrature, namely

x—x,=+ @lV(ys) —V(y) l-i, (
4o

where xs is a point at which ~/dx vanishes and at which
the potential is ps. Clearly one can construct periodic
solutions of Eq. (6) if V(p) has the form of a well Le.g. ,
V(p) =consbg7. Aperiodic solutions are also possible,
but these will be treated by an alternate way of viewing
Eq. (5).

IV. INTEGRAL EQUATION

One can look upon Zq. (5) as an integral equation
for the distribution function of trapped electrons.
Namely, if one writes d'P/dxs= —E(sell), where E(&)
is the net charge density, Eq. (5) can be written in the
form

d'et (x)
l

t." dEf (E)
=4ere

dx' l,e LZete (E+ey(x))7i

dEf+(E)

~.e $2tre+(E ey(x))7—i

where

-fl etem in

dEf-(E)LZm-(E+se)7-'=g( ~), (9)

(5) g(eP) = X(eg)/4tre—+ dEf+(E)$2ets+(E eP)7 i—
In Eq. (5) we have suppressed the subscript plus or
minus where its deletion will cause no confusion.

III DIFFERENTIAL EQUATIONe

If one prescribes f+ and f Eq. (5) is a second-order
nonlinear ordinary diGerential equation for the po-
tential P. It can be integrated once on multiplying it
by dp/dx and integrating with respect to x. The result is

(4P/dx) s+ V(P) =const, (6)
where

V(y) =8~ dEf+(E)$2(E—~)/tre+7i
e$

F00

+8er dEf (E)$2(E+ey)/ere )&. (7)

' Equation (5) has been considered independently, but in some-
what less detail by E. G. Harris, Bull. Am. Phys. Soc. Ser. II, 2,
67 (1957). An equation similar to Eq. (5) has also been treated
by D. Bohm and E.P. Gross, (see reference 3), who, however, did
not exploit its full power and generality. LSee K H. Prenderg. ast,
Astron. J. 59, 260 (1954); H. K. Sen, Phys. Rev. 97; 849 (1955).j

dEf (E)/Zets (E+eg)7—
& (10)

—&4'min

is the density of trapped electrons at the point x cor-
responding to the potential p(x). Thus, if one prescribes
the potential @(x),which determines de/dxs and hence
P(erie); the entire ion distribution f+(E); and the dis-
tribution of untrapped electrons, f (E) for E)—e@
then g(eg) is a known function, and Zq. (7) is an
integral equation of the convolution type for the dis-
tribution function of the trapped electrons. It can be
readily solved by the Laplace transformation, yielding

(Ztts )' t
s dg(V)

f (E)= — i dV L
—E—V7

—
&,

&dmin
E& ey; (11)—

which result can be verified directly by substituting
Eq. (11) in Kq. (9).

The choice of the arbitrary quantities in Eq. (10) is
restricted only by the weak requirements that
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g(&-;)=0, which follows from Eq. (9), and that
f (E) as given by Eq (.11)be non-negative in order that
f (E) be a legitimate distribution function.

If one substitutes Eq. (10) in Eq. (11), it is possible
to perform certain of the indicated integrations. The
result is

(2m)& r
s dV dlV(V) 1 t'"

f (E-)=, +
4 e ~ee-; t E —V5—' dV ~"-ee-; V—E V—eP-;„

dVf(V) ™E'

1m & r" df+(V) (E+V)'
+—

~

dV —,
' ln E& ey-;—. (12)

~ m~ ~ .e ;. dV L(V—ey ;„)&—(—E—ey ;„)&54

Clearly one can equally well solve for the distribution
function for the trapped positive ions.

We shall now show how to achieve almost any
potential wave form which has a continuous second
derivative. To this end prescribe a situation such as
that represented in Fig. 2. Divide the x coordinate axis
into intervals AB, BC, CD, .-, which are bounded by
values of x for which dg/dx=0, and which contain no
such points. Within any such region, x is a monotonic
function of p. Suppose that the potential and distri-
bution functions are consistent to the left of point J3.
Note that the distributions of trapped electrons in the
intervals AB and BC are not necessarily related since
they are isolated by the potential minimum at B. The
distribution in energy of untrapped electrons, and the
distribution in energy of all ions, must be taken be to
the same in the interval BC as in AB. The distribution
in energy of trapped electrons, however, can be deter-
mined via Eq. (12) to be compatible with the desired
potential in the interval Bc (subject only to the con-
dition that it turn out non-negative). The process can
clearly be continued, by determining the distribution
in energy of the trapped ions in the interval CD, the
distribution in energy of the trapped electrons in the
interval DE, etc. Continuity of d'P/dx' at the extrema
of p guarantees that the charge density is continuous.

One corollary of the above result is that it is possible
to construct isolated potential pulses. lt is only neces-
sary to prescribe that both dP/dx and d'P/dx' vanish
at the points where the pulse joins on to regions of
constant potential. For a positive pulse one determines

the distribution in energy of the trapped electrons, for
a negative pulse the distribution of trapped ions, so
that Poisson's equation is satis6ed. Such a pulse solu-
tion can, of course, connect regions of diferent constant
potential, in which case one might call the resultant
traveling front a "shock wave, " since the width of the
transition region can be chosen as small as one wishes.
Of course, there is no dissipation and the "shock wave"
can travel in either direction.

Clearly on the basis of the preceding considerations,
one can prescribe a periodic potential wave form of
arbitrary wavelength. The wave velocity, however, is
also arbitrary since it is given by the arbitrary Galilean
transformation from the wave frame to the laboratory
frame. Moreover one can always avail oneself of the
freedom in the partition between the two directions of
motion of the untrapped particles of a given energy, so
as to arrange that the mass velocity of the plasma is
zero in the laboratory system. Thus, there is no dis-
persion relation in the usual sense of a one-to-one
correspondence between wavelength and wave velocity,
or alternatively between frequency and wave number.

V. SMALL AMPLITUDE WAVES

I,et us consider now the case of small-amplitude
waves, that is, waves for which e(g —p-; ) is very
much less than the mean particle energy. This suggests
that one expand the particle distribution functions in
powers of e(p —p-; ). For the trapped electrons this
can be effected by integrating Eq. (12) by parts. 7

There results

f (E) =L(2m )~/4m e5 2I e4-; E—5llV'(e—4-;,)+st- eQ-; E—5'Ã" (e—Q-; )+0L(—e4-; —E)'5

+(I/~) ~f ( e@;„)+2[ eP—;„E5-:~I'— dVV—lf '(V) n[ ed&;„E—5f '—( eP;—)—
—&4'min

+Ot-( —ey-;„—E)'5 +(1/x)[e /++5' 2L—ep-; —E5& dVV &f+'(V)+0[( ey-; E)&5, (13)— —
+ed mxn

where a prime indicates a derivative of the associated
function with respect to its argument. Since the
minimum value of E is —&-*,Eq. (13) above is the
desired. expansion. Note that the expansion is in half-
integral powers and hence while it follows from Eq. (13)

that f is continuous at E=—ep-;., df /dE is not
necessarily. However, in the conventional linearized

7 The details of the integration by parts are presented in the
appendix. In all of these it is assumed that f (E) is an analytic
function of 8 for E=ReE) —&~jul.
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tion reproduce to 6rst order in the amplitude of the
potential all the moments of the distribution function.
These are given in general by

A(v") = dvv"f(x v) v=0, 1, 2,

FIG. 2. Potential wave form.
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Thus, if we henceforth delete the subscript minus on
the electron distribution function, indicate particles
with v&0 by a superscript plus, and particles with
m&0 by a superscript minus, one can write, observing
that for the trapped particles f+=f = ',f, -

theory of plasma oscillations, '—' it is assumed that one
can write the distribution function as the sum of two
terms, the erst of which is space independent, and the
second of which is proportional to the amplitude of the
potential. Thus, it would seem that the conventional
linearized theory is inadequate for representing the
stationary waves here considered. It is possible, how-

ever, to salvage the conventional theory.
This is accomplished by observing that it is necessary

and sufhcient that the "erst-order" distribution func-

X(v")=) dv f—
L-2'm(v' —u') jv"

+ t dv-,'f Pm(v2 —u') jv"

+ ~ dvf+t-', 2i2(v2 —u2))v" (15)

where u =L2e(p —p; )/m]&. On appropriate expansion,
one obtains

g(v")= dvv" t f (-,'mv')—
l

e(y —P; ) Bf (-,'nzv2)

+" + dv-'v" (f(0)+a[u2 —v2]'+btu2 —v'j+ " )
8

+ dvv" f+(2inzv2)—
~(@—4- ) ~f+(2~v') +", (16)

mv 85

where the coeKcients u, b, are given by Eq. (13.)
The zeroth-order distribution function fo(v) charac-
teristic of the conventional linearized theory is

while in general

f(Z) =f+(&)s(v)+f (&)s( v),-—

where the step function s(v) vanishes if its argument is
negative, and is unity otherwise. It is usually assumed
that fo(v) is analytic in v for real values of v, a condition
which should permit one to represent all physical
situations. This implies, however, that f+(8) and f (&)
in general have an expansion in half-integral powers of
E, and that Bfo(v)/Bv~„o/0 Thus=, if o.ne rewrites
Eq. (16) in the form

e(4 4; ) " — Bfo(v) e(4 —4;„) I" ufo(v)
E(v")= dv fo (v)+ dvv ' + +

00 m QQ Bv m, Bv

~fo(v)+ dvv"-' r, —
J 2

v-0
+a[u2 —v2]&+ ~ (19)

j&

it is clear that the only moment which is affected to
6rst order in P—P; =mu2/2e by the integral from
—u to +u, which manifests the effects of the trapped
particles, as well as the analytic character of fo(v) for

0, is the density (v=0). Moreover, by definition of
the principal value (indicated by Pr),

1 Bfo(v) ~ " 1 Bfp(v)
Pr.

~

de — = lim de-
n Be

~" 1~fo(v)
+ dv- . (20)

'v 8$

Thus, if one introduces the Dirac delta function' 8(v),
and interprets integrals in the sense of a principal value,
a legitimate "first-order" distribution function is

in the sense that Eq. (21) will reproduce all the mo-
ments of the distribution correct to Grst order in the
amplitude of the potential. The constant c is determined

by Eq. (19).
The first two terms on the right of Eq. (21) are just
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APPENDIX. THE ASYMPTOTIC EVALUATION
OF CERTAIN INTEGRALS

Consider the second integral on the right side of Eq.
(10). If one introduces the variables u= —E, x=v/u,
and for convenience chooses g; =0, it can be written

1 ~" dxf (xu)

~~ o x-:(1+x)
(A-1)

The problem is to obtain a representation of J valid for
small e. To this end observe that one can write, on
integration by parts,

those which enter in the usual Landau theory' of plasma
oscillations. The singular term involving the 8 function
has been introduced previously by Van Kampen4 on
formal mathematical grounds for the case of periodic
linear waves. The derivation presented here has the
advantage of yielding the physical interpretation of the
source of the singularity, namely the necessity to
account within the framework of the linearized theory
for the eBects of the trapped particles, on the basis of
more elementary mathematical considerations. It also
covers more general situations than periodic waves.
The phenomenon of Landau damping, the universal
damping in time of all waves excited in a plasma close
to thermal equilibrium is, of course, absent from Eq.
(21) when fo is taken to be the appropriate Maxwell
distribution. This is because Landau damping is
associated with the restriction to analytic fj.rst-order
distribution functions. It is to be emphasized, however,
that while Eq. (21) is singular, the exact solution from
which it was derived was perfectly well behaved.

Note that in order to transform any of the preceding
expressions to the laboratory frame, it is only necessary
to replace x everywhere by x—ut, and v by e—u, where
u is the wave velocity. For periodic waves u=co/k,
where co is the frequency, and k the wave number.

In closing it is to be emphasized that whether such
waves can exist in an actual plasma will depend on
factors ignored in this paper, as in most previous works,
namely inter-particle collisions, and the stability of the
solutions against various kinds of perturbations.
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where a prime indicates a derivative with respect to
the argument of the associated function. Note, however,
that for x&1,

or —2 arc tanx&=2x~ ——',x t+;,'x &— . (A-3)

This indicates that in order to proceed with the process
of integration by parts so as to develop a power series
in ascending powers of u, one writes

~I=sf (0)+u dx (m.—2 arc tanx& —2x &jf '(xu)
aJ 0

=vrf (0)+2u&j dV V lf '(V)

QQ

+uf '(xu) (x+1)(or—2 arc tanx&) —2x&

0

=sf(0)+2u&, dV V &f' (V) ~uf '(u)—

dV V &f "(V)
~0

—u2j" dx f "(xu)L(x+1)(m —2 arc tanx&)
0

—2x' ——,'x-&j. (A-4)

The coeKcient of u' in Eq. (A-4) can be bounded by
the product of max~ f "~ and the integral from zero
to in6nity of the term in square brackets, which latter
has been constructed to be convergent. Thus Eq. (A-4)
is the desired expression.

The 6rst integral on the right ot Eq. (12) can be
handled by straightforward integration by parts. The
third integral, by judicious subtraction of properly
chosen factors, can be written (1/n.) (m /m~)V, where

orI = —Lor—2 arc tanx& jf (xu) J=2u& ' dVV ~f+'(V)+o4u& ~' dVV &f+"(V)—

+u t dh$n —2 arc tanx&jf '(xu) (A-2)

=sf (0)+u t dxLs —2arctanx-'*jf '(xu),

(x-1)'—u' dxf+" (xu) (x—1)-,' ln —2x&+ox-& .
"o (x&—1)4

The coefFicient of N' is bounded by a number inde-
pendent of N.


