
MASER NOISE CONSI DERATIONS

such detectors do not have spontaneous-emission noise,
and can be made to have no output unless energy is
incident on them. A molecular beam can in principle be
made to operate in such a way that only molecules
which were originally in the lowest state, then absorbed
electromagnetic 6eld quanta, will be detected. Future
development of molecular beams might make feasible
the detection of single radio-frequency quanta with no
spontaneous-emission noise.

A power ampliGer can in principle be constructed.
which operates only when ground-state particles are
excited. Consider a beam of molecules with total spin of,
say, rs. In a magnetic field we can have 2m+1 equally
spaced states. First we arrange a molecular beam so
that only particles in the lowest state (with tl= —e)
enter an interaction region. Those which absorb micro-
wave quanta will now have m= —rs+1. All molecules
are now removed from the beam except those with
m= —e+1. These remaining molecules now enter a
region in which the magnetic 6eld is slowly dropped to
zero, then reversed to its earlier value. The molecules
now have m=e —1. If these are allowed to enter a
second cavity, each molecule can then lose 2n —2

quanta of the same frequency as the exciting radiation,
giving in principle a power gain of 2e—1. Such an
ampli6er would not have spontaiieous emission noise.
However, it would not be a maser. The more general
term "quantum mechanical ampli6er" should be used
to describe it.

CONCLUSION

The saturation Geld has only a very small eBect on
the noise of a three-level maser, for the mechanisms
considered here. The value hv/k which has been given
as the limiting equivalent temperature does not appear
to be fundamental to all amplihers, although it does

apply to existing maser devices.
It appears that quantum theory does not set a lower

limit to the noise temperatures theoretically attainable
with microwave detectors and ampli6ers, at low tem-
peratures.
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A general analysis of the Brownian movement is given which is not limited to systems having a linear
relaxation mechanism. -Detailed results are obtained for the case of modest nonlinearity, to which presumably
all problems of physical interest are limited.

1. INTRODUCTION

'T may perhaps seem presumptuous today to. suggest
- - that it is still worthwhile to give an analysis of
Brownian movement. However, we wish here also to
attempt an analysis of the Brownian motion of a
system having a nonlinear relaxation mechanism, and
we hope in so doing to give a consistent analysis of
Brownian movement which might perhaps be freer of
difhculties and possible obscurities than is sometimes
the case.

2. ANALYSIS

To be specific, let us consider an elementary electrical
circuit with capacity C and resistance R as shown in
Fig. 1; the resistance E. is assumed to be placed in a
thermal bath at temperature T. The condenser is
idealized so that its behavior is completely characterized
by the charge, q, on it at any instance. We now assume
that the resistance E is the seat of random thermal

Quctuations of electrical charge, and consequently that
the charge q on the condenser will also fluctuate. It
follows immediately that the element R must be able
to dissipate power at an appropriate rate if a statistical
equilibrium is to be maintained; the condenser will
then have a mean energy E=(q')/2C. The condenser
itself being idealized as a purely electromechanical
element, this energy is free energy (i.e., available in
principle for doing work). It follows then that, no
matter what resistance is connected across the con-
denser, E must have the same value, because otherwise
we might in principle establish in this way, using a
condenser as intermediary, a net Row of power from
one resistance to another (both being at the same
temperature), which is contrary to the second law of

FIG. 1. Simple electrical circuit
for discussion of Brownian move-
ment. (al Gj
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thermodynamics. It is of course sometimes said that
fiuctuations themselves contravene the second law, but
this is not relevant for a strict classical application of
thermodynamics to steady state situations.

Let us now consider an ensemble of electrical circuits
of this type. We shall limit ourselves here to a strictly
classical discussion; Nyquist, ' Weber~ and Balazs' have
considered the Brownian movement problem in linear
systems when quantum sects become significant. We
wish to determine the probability distribution for the
charge, q, on the condenser, say f(q). If the resistance
R were very large, so that we might talk of very weak
coupling of the condenser to the thermal environment,
we could invoke the theorems of statistical mechanics
and say that

f(q)dq= (1/2trkTC)& exp( —qs/2kTC)dq. (1)

However, we wish to treat the general case, and
consequently we may only use the result for the mean
energy of the condenser:

(q')/2C= kT/2, (2)

since as we have pointed out above this result must be
independent of the particular resistance.

The fraction of circuits in the ensemble in statistical
equilibrium at any time having a charge q between

q and q+dq is by definition f(q)dq Let now .the average

rate of change of charge for this subensemble be given
by

(q) = —qG(q)/C.

This equation then define operationally the conduct-
ance G(q) and removes an arbitrariness in the meaning
of the resistance sometimes present in such discussions.
Let the random component of change be r(q); evidently
(r(q))=0. Now consider the maintenance of statistical
equilibrium in the ensemble: given any specific value
of q, the average number of circuits whose charge
increases upwards through q must equal the average
number whose charge decreases downward through q
in any interval of time, t, over which we believe that
statistical equilibrium is maintained. If this time-
interval can be taken as sufficiently short so that only
small displacements of charge, 5q (small in comparison
with the total fluctuation or "spread" of the ensemble),
are to be expected —i.e., so that the individual Auctu-

ations in q may be considered as local—then we may
write:

—;(Lf(q—5q) Xr, (q —hq) —G(q) q/Cj)
+2(Lf(q+5q) jL» (q+5q) G(q) q/C j-)= o (—4)

r+(q) indicates that we select only those systems with

r(q))0, and correspondingly with r (q), while the
angular brackets indicate an average over all circuits

' H. Nyquist, Phys. Rev. 32, 110 (1928).' J. Weber, Phys. Rev. 101, 1620 (1956) [see also J. Weber,
Phys. Rev. 90, 977 (1953);94, 211 (1954); 96, 556 (1954)g.~~¹Balsas, Phys Rev 105, 896. (19.57).

"neighboring" to q. Then4

(kf(q) qG(q)/C)+ '(d-/dq) Lf(q)~(q) ~q)&= o (~)

Evidently an immediate solution is now only possible
if (r (q) bq)

—=(5q'(q))/t has some definite limit, for
suKciently small t.~ That is,

(bq'(q)) =E(q) t, or (8qs(q)) = 2F(q) kTt, (6)

say, which is a generalized form of the Einstein equa-
tion. Equation (5) may then be solved to give

f(0)F(0) ( 1 ) ~'(qG(q)i

F(q) tkTC) ~s E F(q) l

where we must normalize so that

f(q)dq=1

r+ d ~+00

q Lf(q)F(q)]dq=— q'G(q)f(q)dq (g)
dg kTC~ „

fusing also Eq. (6)). Integrating the left hand side by
parts and assuming f(q)~0 rapidly as q~+oo,
have'

p+00 1 p+"
F(q)f(q)~q= „qG(q)nq)«

kTC~
or

F(q) f(q)dq

p
+00

q'G(q) f(q) dq q'f(q)dq (10)

4 The derivation given of Eq. (5) is admittedly rather heuristic;
a more formal derivation could be given but, the writer believes,
with no greater rigor.' We have assumed here that we need not consider Quctuations
moments higher than the second, i.e., (bq') H. A. Kramers .[Physics
7, 284 (1940)g has mentioned the possibility that higher-order
moments may contribute, but we believe that this contingency
may be neglected, at any rate in cases where modest nonlinearity
is concerned with which we are primarily concerned in the present
paper. See also Appendix 2.

An alternative and rather direct proof of this result is
given in Appendix 2.

As far as we can see, no mandatory general thermo-
dynamic relationship exists which might relate uniquely
G(q) and F(q) for arbitrary values of q. We shall see
later that this is not necessarily a serious drawback
since the only cases likely to be of physical importance
will involve only a very modest degree of nonlinearity,
which can often be analyzed without further assump-
tions. Before discussing this, however, we can make
some further remarks about the general problem.

3. GENERAL CONCLUSIONS

From Eq. (5), multiplying through by q and inte-
grating, we have
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f(q) dq =1.

However, we have also to satisfy the general relation

p
+00

(q') —= q'f(q) dq =kTC

which will not be true in Eq. (12) for arbitrary G(q).
Consequently we must reject equality of F(q) and G(q)
in general. Let us now instead make the plausible
assumption that the Quctuations are throughout deter-
mined by some average taken over the whole physical
"state" of R, so that F(q) =F say, where F is in fact
the average conductance defined by Eq. (9) or Eq. (10).
Hence from Eq. (7),

f(q) = f(0) exp —(1/kTCF) qG(q)dq (13)

[where again of course f(0) is determined byJ' „+"f(q)dq= 1j.If now we take the special case where

G(q) is itself a constant, say G(q) =G, then also F=G,
so that (bq') = 2GkTt, the Einstein relation, and

f(q) = f(0) exp( —q'/2kTC)
= (1/2s.kTC) & exp( —q'/2kTC). (14)

Thus (assuming F=F) the canonical distribution [cf.
Eq. (1)j will hold true for any degree of damping so
long as the damping ("viscosity") is strictly linear.
Otherwise it seems unlikely that this will be so, if,

Thus we have the entirely general result that

(F(q)) =(q'G(q))/(q').

In deriving Eq. (5) we have assumed that statistical
equilibrium has been achieved; if this is not the case,
so that f is now also a function of time, then Eq. (5)
will read,

P(q, t) = —Lf(q) qG(q)/C j kT(—~/~q) Lf(q) F(q) j,
where P(q, t) is the net Qux of systems "upwards"
(i.e., the net fraction per unit time whose charge is
increasing through q). We have also, however, (8f/»)
=—(BP/r)q), and thus,

(~f/») = (1/C) (~/~q) LqG(q) f(q)j
+kT(~'/~q') [f(q)F(q)], (11)

which is then the generalized Fokker-Planck equation
for systems with nonlinearity under our assumptions.

Failing any entirely general theorem connecting the
instantaneous values F(q) and G(q), let us consider two
particular possibilities. First let us assume that we
might set F(q) =G(q); then Eq. (7) reduces to

f(q) = [f(0)G(0)/G(q) j eR (—q'/2kTC), (»)
where f(0) is determined by

We see here that three conductances, G(q), q(c)G(q)/clq),
and F(=(q'G(q))/(q')), are involved in place of the
single parameter G of the linear approximation.

4. MODEST NONLINEARITY

Let us now consider systems with a modest degree of
nonlinearity, setting G(q) =n+yq' where y is "small. "r
It is not necessary here to make any particular assump-
tion(s) relating F(q) to G(q), such as we have discussed
above, except naturally that the nonlinearity in F(q)
is also modest and symmetrical in q.

Now by Eq. (10):
+ao +CO

(F(q))= ~ q'f(q)dq+~ q'f(q)dq
~00 00

kTC. (16)

The 6rst term in the numerator has the value akTC
quite generally; and in the second term we can evidently
use the unperturbed (canonical) distribution for f(q)
as an adequate approximation. That is to say, we do
not require to know specifically f(q) to deal with
modest nonlinearity of this type, and we then have

((bqs))=—2(F(q))kTt=2nkTt+6qk T sCt.s(17)
In an earlier paper, ' the writer approached the problem
of the Brownian movement of systems with a nonlinear
relaxation mechanism by proposing the following
hypothesis: an ensemble of circuits subject to Brownian
movement will behave in such a way that the average
charge in a subensemble having a given initial charge
will relax as would the charge in a siegle circuit having
the same initial charge, presumed to be free from
Brownian movement. This hypothesis is now seen to
be untenable [cf. Eq. (19) belowj (Polder' had already
voiced his objections). However, it is interesting that
this hypothesis, as we foresaw at that time, showed
the general behavior to be expected, since for small I
we also found then,

((oq')) =2nkTt+6yk'T'Ct.

[See Eq. (15) of reference 8 with t +0.j-
We now inquire about the frequency-spectrum of the

fluctuations. In order to do this, as discussed in our

7 We are thus restricting ourselves in this section to a sym-
metrr'cat nonlinear conductance G(g); some results for an asym-
metrical nonlinear conductance will be given in the following
section where we consider a speci6c example.

s D. K. C. MacDonald, Phil. Mag. 45, 63 (1954).
s D. Polder, Phil. Mag. 45, 69 (1954).

indeed, we assume F(q)=F as in the foregoing, we
should have to use Eq. (13) with Eq. (9). With this
assumption, the Fokker-Planck Eq. (11) will read,

(~f/») = (1/C) (~/~q) LqG(q) f(q) 3+FkT(~'f/~q') (15)

where, as before,
p+00

F= (1/kTC) j q'G(q) f(q)dq.
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earlier paper' on this subject, we wish to determine the
quantity ((q(t)q(0))) (for all values of t) averaged over
the entire ensemble in equilibrium. Using our previous
notation we can write (essentially following Langevin")

(dq/«)+( q/C)+(vq'/C) = (q), =—A. (t), y, (1g)

and thus obtain an approximate solution under the
usual assumption (see, e.g. , Uhlenbeck and Ornstein")
that the correlation time of A(t) is very short com-
pared with C/n. This we have in fact already used
in Eq. (5) above, having seen that the relation
&8q') ee t for t((C/G is a necessity for the maintenance of
statistical equilibrium. After a little analysis, outlined
in Appendix 1, we And

(q(t))=: q(0) exp( —nt/C) —(Yq'(0)/2n) exp( —nt/C)

X[1—exp( —2at/C)) —3yq(0)kT exp( nt/C)—

X{t—(C/2n) [1—exp( —2nt/C))}. (19)

This equation is of interest in itself. : If p=0, we have
simply (q(t))=q(0) exp( —nt/C) the familiar result in
the conventional theory of linear Brownian movement;
the Brownian movement is not manifest in the average
relaxation. However in the general nonlinear case the
Brownian movement makes itself felt directly [as evi-
denced in the third term of Eq. (19)) by spreading
out the distribution of the subensemble over the
nonlinear relaxation mechanism as time proceeds.

Continuing the analysis, if we average over the whole
ensemble in equilibrium, we have

((q(t) q (0)))=k TC exp (—nt/C) —(3yk'T'C'/2n)

X [exp (—ntlC) —exp (—3nt/C) )—3yk'T'C

X{texp (—nt/C) —(C/2n) [exp (—nt/C)
—exp( —3nt/C))}, (20)

using (q') =kTC and (q')=: 3k'T'C' (this approximation
is suflicient in the nonlinear term, as pointed out earlier).
Hence

current fluctuations is then given by (see previous
papers by the author' ")

00

W(f) =4rrf ' —(&(hqt)')) sin(2~ft)dt;

and, using Eq. (22), again after some algebra, we find

W(f) = 4nkT (1+3ykTC/n) {(taC/n)s/[1+ (coC/n)s) }
—24yk T C((oC/n)s/[1+ (taC/n)') (23a)

where td= 2rrf—Corr. esponding to Eq. (23a) the charge
fluctuations are given by &qr')=W(f)/tds and the
voltage Quctuations by

(Vf') = ((qf')IC') = [W(f)lot'C')
= (4k T/n) {(1+3ykTC/n)/[1+ (toC/n) s)}

—(24yksT'C/a')/[1+ (toC/a)')' (23b)

The to/al charge Quctuation is given by

(q')= &q ')df= ' [W(f)/4n'f')df
~0 "O

and it may readily be checked from Eq. (23a) that this
yields once more (q') =kTC, so that the whole analysis
is self-consistent. If y=0 so that we assume'strict
linearity of the relaxation then Eq. (23b) simply gives

(VI') =4RkT/[1+ (caCR)') or if coCR«1:
(24)

&Vs')=4RkT, where R= 1/G=1/a—
the familiar result from Nyquist's theorem.

5. METAL-OXIDE RECTIFIER

An interesting example is provided by one of the
models for the metal-oxide rectifying contact discussed
by Mott and Gurney. "The theory gives for the current
~, in terms of the potential de'erence V across the
contact

((Lq(t) —q(o))'))—=&(~q '))=2kTCL1 —exp( —«C))
+ (3yk'T'C'/n) [exp( —nt/C) —exp (—3nt/C) )
+6yksT'C{t exp( —nt/C) —(C/2n)

X[exp(—«/C) —exp( —3at/C))} (21)

i = (4trrrteksT'/ks) p exp( —Es/kT) [exp(eV/kT) —1),
where e is the electron charge, p is the probability
of an electron penetrating the potential barrier, and
Eo is an electron excitation energy. For convenience,
let us take p as constant so that we may write
'=A[exp(eV/kT) 1), where A is —independent of the
otential difference, V. Hence,

Thus

G(V) =il V= (A—/V) [exp(eV/kT) —1),

((t)qts))=2nkT—(1+37kTC/n) exp[ (nt/C))— p
dt —6nyk'T't exp( —nt/C). (22)

[As t~0 this yields

—((~q '))
dt

=2nkT[1+ (3y/n) kTC),

in agreement with Eq. (17).) The spectrum of the
' P. Langevin, Compt. rend. 146, 530 (1908)."G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823

(1930).

i.e.,
G(q) = (AC/q) [exp(eq/kTC) —1). (25)

Now we shall see a postersori that the nonlinearity
involved is rather slight (as will presumably generally
be the case physically), and consequently we may
write G(q) =n+Pq+7q', where n= eA/kT, P= e'A/

"D.K. C. MacDonald, Phil. Mag. 40, 561 (1949).
"N. F. Mott and R. W. Gurney, Electronic Processes At Ionic

Crystals (Clarendon Press, Oxford, 1940), p. 181.
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2k'T'C, and p =e'A/6ksT'Cs. Now (q)= q—G(q)/C
= —(nq/C) —(Pq'/C) —(Vq'/C), and since (q) must
equal zero in equilibrium, it is clear that (q) must now
differ from zero. To the 6rst approximation,

(q) = —PkTC/n
= —e/2,

(26)

in the present case (emphasizing that the asymmetry
is certainly very slight!). If we now make the assump-
tion that F(q) =F (cf. Sec. 3 above) then we can readily
derive a first approximation to (q'), obtaining

(q') = —SP (kTC)'/n, (27)

so that to the second approximation

(q) = —e(1—Se'/6kTC)/2. (2g)

We may remark immediately that the term Se'/6kTC
is extremely small in all cases that are of practical
interest, at any rate at present Le.g., C= 1 Iupf (10 "f);
T=1'K; Se'/6kTC= 10 s$.

We can also now derive the average Quctuations,
since

((bq')) = 2t(q'G(q))/C Lsee Eq. (9)j
=2t( (q')+&(q')+~(q'))/C
=2 kTt(1 —L(SP'/ ') —(37/ )lkTn (29 )

and in the present case this gives

((bq')) =2eAt(1 —3e'/4kTC). (29b)

It is clear again that the deviation from linear theory
is small in all practical cases.
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APPENDIX i
We have

(dq/«)+(~q/C)+ bq'/C) =A.(t) (1g)

Neglecting at 6rst the nonlinearity, we have as the
solution of Eq. (18):

q(t) =q(0) e~( «/C)—
+ex~(—«/C) exp(rrx/C)A (x)dx.

Jp

Hence, to the next approximation, we have

(dq/dt) + (nq/C) =A, (t) —Lpq'(0)/C j exp (—3«/C)

—L3yq'(0)/C7 exp( —3«/C)
~

exp(crx/C) A (x)dx
0

pt—L3yq(0)/Cj exp( —3«/C) exp[a(x+y)/C) j
o4o

XA (x)A (y)dxdy —(y/C) exp( —3«/C)

pt pt pt
X '

. expLcr(x+y+s)/Cj
~o &o &o

XA(~)A (y)A(s)dzdyd. .

Solving again and making use of the usual assumptions
about F(t) (e.g., Uhlenbeck and Ornstein"), we have

(q(t)) = q(o) exp( —«/C) —(yq'(o)/2~3 exp( —«/C)
XL1—exp (—2«/C) $—3&q (0)kT exp (—«/C)

X{t—(C/2cr) L1—exp (—2«/C) ]},
which is Eq. (19) in the text.

APPENDIX 2

Consider, as before, a simple circuit as in Fig. 1 and
let q(t) be the charge on the condenser C at time t. Then

(L (t) —(0)j')=(q'(t))+q'(0) —2( (t))q(0),

where the angular brackets denote averages over a
subensemble of such circuits all having the same charge
q(0) at t=0. Thus,

&Lq(t) —q(o) j') -o=:(q'(t))—q'(o) —2q(o)(q(o))t,
for suKciently" short t

=(q'(t)) —q'(o)+2q'(o) G(q(o)) t/C
for t«C/G(q(0) ),

where, as in the text, G(q) is defined by (q)= —qG(q)/C.
If now we average over all values of q(0) and assume
that there is statistical equilibrium so that ((q'(t)))
=(q'(0)), then

((Lq(t) —q(o) 1')) - = 2t(q'G(q))/C

which is equivalent to Eq. (9) in the text.

'4 The assumption that a short enough time t can be chosen so
that higher order terms such as tr(j(0))/2 car be neglected in
comparison with t(q(0)) appears to correspond to the neglect of
higher order fluctuational moments in Kramers' discussion (see
reference 5).


