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Equation of State of Gases and Liquids at Low Temperatures*
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Application of a quantum-mechanical many-particle perturbation method is made to the determination
of the equation of state of gases and liquids at low temperatures. The method utilizes the "nearest neighbor"
expansion, which is a special case of Brueckner's "linked cluster" expansion. A description is given of con-
densation, mixed phases, the critical point and the critical temperature. It is shown that even the lowest-
order approximation, which involves a relatively simple calculation, yields a physically reasonable theory
of these phenomena, as well as the equation of state of the liquid phase. Specific calculations are presented
for a system both above and below the critical temperature, and a description of collective phenomena in a
quantum-mechanical system is given. The physical basis of the approach rests in a technique for inter-
changing the order in which averages are taken, and putting "fluctuations" into higher-order terms, which
in turn may be handled by the same method. At low temperatures, when the thermal de Broglie wavelength
of the particles is large so that they are effectively "spread over large distances, " such fluctuations due to
particle-particle encounters are expected to be small.

I. INTRODUCTION

' 'N a previous paper, ' which will hereafter be referred
~ ~ to as I, we described a perturbation method for
calculating the energy of a quantum-mechanical system
composed of lV identical particles (N&&1), contained in
a box of volume 'U. The particles were assumed to
interact through two-body potentials

~'1= i 'f(r' rf)

where the subscripts "i" and "j"refer to individual
particles, and r; is the coordinate of particle "i".The
energy of the system was expressed in the form of an
expansion which was called the "nearest-neighbor ex-
pansion. "This method represented a specific example of
the proposal of Brueckner' to expand in "linked
clusters. "

As a perturbation method, the object in I was to
calculate the energy E&0 corresponding to that eigen-
state '9 0" of the complete Hamiltonian which is
associated with an unperturbed state "ps". For our
present discussion it will suffice to suppose the unper-
turbed state pD to be an eigenstate for Enon-interacting
particles in the volume 'U, so that

tion of pairing of states enables us to write

E1D=E(pst», yDNSN). (3)
%'e now wish to discuss applications of this pertur-

bation method to quantum statistical mechanics. In
particular, we shall consider the calculation of the
equation of state for gases and liquids, the nature of
the phase transition between gas and liquid states, and
the properties of the system at the critical point. The
discussion of the wave function of the system (and its
relation to particle correlation functions) is given in a
separate publication, '

For simplicity we shall suppose that the S particles
which comprise our system are identical, and that the
interactions between them, i.e., the V, s of Eq. (1),
depend only on (r;—r,) and the spins S; and S;. Our
formal argument remains valid if the S; are generalized
to describe all internal degrees of freedom when the
"particles" are complex systems.

To develop the thermodynamic properties of the
system we shall use the canonical4 ensemble for an
E-particle system, and therefore must evaluate the
partition function

ps=(pslSlppDDS2p ' 'y pDNSN). (2) Z=Q exp( —
PENED)

Xo

Here pD; (2=1, 2, ~ ~ E) represents the momentum
vector of the ith particle and S; its spin coordinate.
Equation (2) simply indicates a scheme for labelling
unperturbed states in terms of a complete set of inde-
pendent-particle quantum numbers. Thus the assump-

Herc
Xexpr —pE(p S,, yDNSN) j. (4)
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1/P= 8=kT——

is the temperature of the system in energy units. The
index ) 0 runs over all quantum-mechanically distinct
states, and the factor (E!) ' arises in the explicit repre-

7 3 R. Karplus and K. M. Watson, Phys. Rev. 107, 1205 (1957).
3 4 D. ter Haar, Elements of Statistical Mechanics (Rinehart and

Company, Inc., New York, 19S4).
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8
U= ——lnZ

t9

= internal energy,

=pressure,

8
S=k lnZ —kp—lnZ =entropy,

8

(6)

Ii = U—TS=—8 lnZ=Helmholtz free energy,

where the normalization of Z as given by Kq. (4)
ensures that thermodynamic functions like entropy and
free energy are properly extensive quantities.

In the next two sections we discuss the problem of
evaluating Z once the energies E(pptSt, ' ' ppgSy)
have been found. In the cou."se of the discussion it will

be necessary to anticipate some properties of the
E(ppt SN) which are physically plausible —but
which must actually be justified by detailed calculations
for specific physical systems. For this reason we em-
phasize that the discussion of Secs. II and III is not
presented as a theory of the equation of state or of
condensation, but rather as a method for evaluating Z
(and thus the thermodynamic properties of the system)
once the spectrum E(ppt S~) has been obtained. In
Secs. IV and V we shall give examples by calculating E
and the equation of state for gaseous, mixed, and liquid
phases in the vicinity of the critical point, for systems
having specified potentials V;;. In the remainder of this
section we review the quantum-mechanical perturbation
method which was described in I.

The erst step in obtaining the energies Ego was the
elimination of the potentials V;; in terms of two-body
scattering matrices R;;. This is the technique introduced
by Brueckner et al.' in their studies of nuclear structure,
and which also had been used in studying multiple
scattering by quantum-mechanical systems. ' On physi-
cal grounds this appears very reasonable, since in
principle one now starts from exact solutions to the
two-body problem in studying the many-body problem.
From the standpoint of obtaining a rapidly converging
E-particle perturbation theory, the use of the E; s has

~ K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344
(1955);R. J. Eden and N. C. Francis, Phys. Rev. 97, 1366 (1955);
R. J. Eden, Phys. Rev. 99, 1418 (19SS);K. A. Brueckner, Phys.
Rev. 100, 36 (1955); 103, 1121 (1956); K. A. Brueckner and
W. Wada, Phys. Rev. 103, 1008 (1956).' N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953);
K. M. Watson, Phys. Rev. 89, 575 (19531.

sentation of the partition function in the form of an
integral over momenta and a sum over spins as a
consequence of the indistinguishability requirement
placed on the Ã particles.

For later reference we express several thermodynamic
functions in terms of Z, which is considered to be a
function of X, p=e ', and 'U:

n=2 il.(i2( ~ ~

s„(it i„)

The quantity s„(it i„) represents the interaction
energy of particles i& ~ i„.Its perturbation expansion'
1s

v„(it i )

1 1
p, p p R.,—o; -R.

& pg). (10)
l a]. , n2, ~ ~ a)

Here (and in the following) Greek subscripts such as ot

refer to pairs of interacting particles, and R, is the two-

VAn integral equation representation for v„ is possible. See
reference 1.

a particular advantage in that regions of coordinate
space corresponding to large values of

~ V;;~ tend to
become "smeared out" and weakened in the E; s. For
example, if the V; s have "in6nite repulsive cores, "
there is no perturbation theory possible in terms of the
V; s. The E; s remain finite in this case, however, and
are suitable for use in a perturbation theory.

This feature of the E; s results from the principle of
complementarity, according to which particles having
momenta within a restricted range of values cannot be
precisely localized in coordinate space. Indeed, one of
the principal physical reasons for using a momentum-
space representation is that we thus automatically
exploit this quantum-mechanical "smearing" of inter-
actions. We expect that for an essentially "random
medium" such as a gas or liquid, the interactions will
be "smoother" functions of the momenta p; than of
the coordinates I';. This simplification is expected to be
especially important at low temperatures.

We may restate this point by saying that the energy
of each particle, expressed as a function of its mo-
mentum, is that of a particle traveling in a dispersive
medium —a medium consisting of the remaining (Z—1)
particles. The total energy E&0 represents a self-con-
sistent summation over these single-particle energies.
The calculation of the energy of a particle in a dispersive
medium is that of ending the index of refraction for a
wave propagation through a medium, or that of 6nding
the "optical model" potential. Here the "suddenness"
of particle-particle encounters may be largely lost in
the wave-number (or momentum) description.

To continue, the "nearest neighbor" expansion'
expresses the energy in the form

E~o= &(po)+&E,
where

~ poP
&(po) =2

i=& 2M

is the kinetic energy, M is the particle mass, and 8E is
given by the expectation value
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particle scattering operator E;; mentioned above. The
summation over (ni ni) runs over all combinations
of pairs of particles belonging to the set (ii i ) in
such a manner that every member of the entire set
(ii i„) is "linked" to each other member in the sense
of Brueckner. ' That is, two particles such as "u" and
"b" are linked in Eq. (10) if for each term in the sum
either "u' and "b" scatter directly, or there exists at
least one set of particles a1, a2, a„such that "u" and
a1 scatter, a1 and u2 scatter, , u, 1 and a, scatter,
and GnaHy u, and "b" scatter. The sum / runs over aH

numbers of scattering consistent with the requirement
that the set (ii i„) be "linked. " Finally, no pair of
particles scatters twice in succession in Eq. (10).

The energy denominators d in Eq. (10) are defined as

where e(p;) is the "dispersive" energy of the ith particle
in the medium. This is given by

with

(12)

(13)

evaluated as an expectation value for particle "i" in
the excited state p;. Thus be(p~) is just the "optical
model potential" for particle "i."

Finally, the two-body scattering operators are dered
as solutions to the integral equations

1
R;;=V;;+V;,—R;;.

particles may be represented by two intersecting par-
ticle lines, etc. Equation (9) then represents a "vacuum
expectation value. "A more detailed description of this
terminology is given in Sec. V. When Eqs. (9) and (10)
are interpreted in this manner, the development of
reference 1 is unchanged.

Boundary conditions at the walls of the volume 'U

will be consistently ignored. ' This means that we shaH
calculate only the volume energy (and not the surface
energy) of the system. For most systems of interest in
statistical mechanics this seems a quite satisfactory
approximation.

We anticipate that some of the states )0 of the
g-particle system may contain "bound states" of
smaller groups of particles. For instance, there may be
bound states of pairs of particles, triplets, etc. These
"bound states" are characterized by the fact that the
"bound particles" are con6ned about their center of
mass to a region of space with volume less than 'U.

Such states are "degenerate" in the sense that the
centers of mass associated with them may be moved
about within the volume 'U. In particular there may be
"bound states" containing very large numbers of par-
ticles. We shall call one of these a "droplet" substate of
the system when it contains enough particles that its
surface energy may be ignored compared to its volume
energy.

On this basis we shall classify the "bound states"
as either "droplet states" or "cluster states, "depending
upon whether or not the number of particles involved is
large enough that the surface energy may be neglected.
This separation. appears somewhat arbitrary, but
becomes precise once we have specified the error which
can be accepted in the "surface energies. "As we shall
see, the "droplet states" become important only at the
condensation point. Thus large "droplets" appear sud-

The evaluation of these was described in I. In the
appendix we give a somewhat expanded discussion of
Eqs. (12) and (13).

For degenerate Fermi-Dirac or Bose-Einstein systems
it may be convenient to write Eq. (10) in second-
quantized form. Following Brueckner and Levinson, '
we may set

where the g;~ and g; are creation and absorption opera-
tors, respectively, for particles in the momentum state
p;, 8;. In this case, we use the terminology "connected
Feynman graph" rather than "linked cluster" in
describing the terms in Eq. (10). To use this ter-
minology, we may think of "po" as the "vacuum state. "
A pair of particles is "created" when the particles
scatter out of the "pq" state. The scattering of two

FIG. 1. The energy of a "droplet" as a function of the volume
to which it is con6ned. When the walls pull away from the droplet,
its energy remains constant. The dashed curve shows the failure
of perturbation methods to yield constant energy for Uz) uo.

H. A. Bethe, Phys. Rev. 103, 1353 (1956), has described a
method by which boundary conditions can be handled in prin-
ciple.
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Eg= EL%,g, (16)

where the "energy per droplet particle" %l,& is inde-
pendent of EL. The total volume associated with all
droplets will be

U0 +Lapp (17)

where 7 p is independent of XL. As was shown in I,
Eqs. (16) and (17) hold for every term in the sum over
I of Eq. (9). That these equations hold for the sum
itself must be verified for each specilc problem.

There is a Qaw in the argument given above, because
the medium may also have "crystal-like" states. Such

denly, and a precise de6nition of a "droplet" appears
unnecessary in practice.

To identify and obtain the energy of these "droplet
states" we argue as follows: the actual volume 'U of the
system is replaced by a variable volume 'U&, and the
number of particles X is replaced by S&.Let us suppose
that we have found the energy Ep of the lowest state
as a function of 'U~. If the forces between the particles
lead to satlrutioe, then Ep should become very large
for small 'U&. As we increase 'U&, Ep may fall to a value
EL at a volume 'U~='Up and then remain constant for
'Ug& 'Up. This will happen if EL(0, and means that for
'U&&'Up the confining walls have moved away from the
system which then occupies its retiral vollme 'Up. Such
a situation is shown by the solid curve in Fig. i.

In actual practice, calculation is more likely to yield
a result such as is indicated by the dashed curve in
Fig. 1 for 'U~& 'Up. This is anticipated because we expect
any perturbation method to converge much more
slowly (if at all) when the system has been put into the
wrong volume in the unperturbed stated po. This need
cause us no difhculty, since we only need to locate the
minimum value of Eo (i.e., Ez) at the volume 'Uo. This
value we know to be the actual value of Ep for 'U~&'Up,

which permits us to obtain the complete solid curve in
Fig. 1 without further calculation.

In general, of course, there will also be excited states
of the E& particle subsystem, which are con6ned to a
volume 'U~'Up. These states must be obtained in the
same manner (i.e., the first excited, second excited, etc.
states will show a similar behavior as a function of
energy —the number of states actually "bound" pre-
sumably being finite).

For an actual state Xp of the S-particle system, we

may count all the particles in droplet states to obtain
a total number XL. Thus,

EL= total number of particles in "droplet states, "
Ng ——N —Nz, =number of particles in "gas-like (15)

states. "
Here Eg is the number of all single particles and all
particles in "cluster states. " Since we are calculating
only the volume energy of the droplet states, it follows
that the total energy E~ of these will be proportional
tO SL.

states would probably be missed in our perturbation
calculation, since it was designed for media which are
essentially "random" rather than "ordered" in coor-
dinate space. Here we appeal to physical plausibility,
arguing that for a system in either its gaseous or liquid
phase the "crystal-like" states play a negligible role in
determining its thermodynamic properties. In other
words, these states will have a negligible statistical
weight in the evaluation of Z for a liquid or gas. In this
sense our theory is incomplete, since we do not expect
to obtain liquid-solid phase transitions from it.

We close this section by summarizing its contents: it
is proposed to calculate the energy of the many-particle
system in such a manner as to treat glctlatioes asso-
ciated with particle encounters as perturbations. This
is done 6rst of all by using a momentum-space de-
scription, which for the lowest states exploits the
expected quantum-mechanical "smearing of particle
positions. " The quantum-mechanical "smearing" is
particularly emphasized in the use of the E.;,'s rather
than the V;; s. Finally, retaining the energies be in the
propagators d means that complex cooperative inter-
actions are kept even in a lowest-order calculation, but
that Quctuations in these interactions have been
"averaged out. "

Ng=N, +N~+; Ng+Nz, =N.

We formally write Ez as

@i=Exs+Exy+ ' ' '++AD&

(18)

(19)

where Ez, is the energy associated with the single par-
ticles, Ez„ is the energy associated with bound pairs of
particles, . -., and E~~ is the energy associated with
droplet states. E~~ is well-dered because we have
agreed to keep only the volume energy of the droplets.
A more precise de6nition of Ey„Eg„, ~ ~ will be given
in Sec. III.

As a consequence of Eqs. (18) and (19), Eq. (4) can
be written in the form

N6 =0
prg+z'i =x)

Zz, (Nz) Zg (N g), (20)

II. EVALUATION OF THE PARTITION
FUNCTION —CONDENSATION

In this and the following section we shall suppose the
eigenenergies Eq to have been obtained and shall con-
sider the purely formal problem of evaluating the par-
tition function Z. The momentum-space representation
which we are using has some novel features which appear
to be quite helpful in carrying out this evaluation.

For a given volume 'U, a given number of particles E,
and a given state ), let us write Eq. (15) in greater
detail by assuming that there are X, single particles,
E„particles bound as pairs, E~ particles bound as
triplets, ~ 1VL particles bound in droplets. Then
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with

Zz, (Nz) = P exp( —PEgD),
Xgp

(NI. fixed)

Zg(Ng) =
~ e ~

Ns, Np ~ ~ ~ {Ns+Np+ ~ ~ =Ng)

XexpEP(E..+& „+")j.
In carrying out the above sum over states X& in ZI„

one must in principle sum over the number of "droplets, "
say D, and the possible positions of the droplets within
'U. The statistical weight of these states is negligible,
however, since it is roughly given by

L~esp/as]D

which by Eq. (17) is to be compared with

$Nz, ra&'p/h'$"'

Here e'p is the appropriate volume element in mo-
mentum space. Since the droplets have been assumed
"big," the first factor is negligible compared to the
second. Thus the droplets may be treated as if they
were all "coalesced" into a single large "droplet" which,
for instance, may rest on the "bottom of the container. "

We shall henceforth refer to Zg as "the partition
function of the gaseous phase" and to ZL as "the par-
tition function of the liquid phase" —a terminology for
which the justi6cation will become evident. Once ZL
and Zg are individually known, the evaluation of Z in
Eq. (20) is easily accomplished by a saddle-point
method. ' In the remainder of this section we illustrate
this technique in some detail because of its importance
to the following discussion. In Sec. III we consider the
evaluation of ZL and Zg.

We erst observe that ZL and Zg may generally be
written in the form

Finally, Qz, and Qg are functions of the indicated
variables, the evaluation of which we shall consider in
Sec. III.

According to Eq. (6), the pressures of the two phases
are, respectively,

Pg 8 8
lnZg ——-+—lnQg,

V BV

PL 8 1 8
inZz =—+—ingz,

8 O'UL 7 c)r

where we have introduced

(25)

v ='U g/N g. (26)

To obtain Z, and thus the equation of state, let us
start the system in a volume 'U large enough to ensure
that the system is purely gaseous. We shall then
suppose it to be compressed isothermally, and shall
calculate the equation of state at each stage of the
compression.

Equation (20) may be rewritten as

('U Nzr-
Uggg(v e) = (U Nz7)ggl'

N Nz, )—
Nz, r Nz (=—~gg(vg. e) 1-

'U N ( vg)

N 1
Z= Q (Nzrgz(r, e)j~z

»=o N, ! (N —Nz) I

XL'Uggg(v, e)j" "'. (27)

When 'U is suKciently large we may consider ÃL&&/,
and expand 'U g, Qg to first order in Nz .'

LN"g.(,e)j",
QL!

zg= P3ggg('Ug/Ng, e)7+g.
Qg!

(22)

Xvg lngg(vg, e)
Bvg

N.P.
='UQg(vg, e)

1

1— (r vg)+1 . (28)—S 0 t

Here we have dered

vg =—'U/N (»)
and have eliminated (8/Bvg) lnQg by means of Eq.
(25). We have considered r to be a parameter and used
Eqs. (23) and (24) in expanding 'U g.

For very large X we have

(23)UL—=+Lv

is the volume occupied by the liquid phase. The actual
value of z will be determined in the following discussion;
we anticipate, however, that ~ will be approximately
equal to the rs of Eq. (17).Then 'Ug is defined as Nz I'g

1— (r—vg)+1
(24) N e

Here ~ is interpreted as the "volume per particle" in
the liquid phase, so that

' Considerably more complicated sums than that of Eq. (20)
are handled by this or related methods, of course. See, for instance,
reference 4.

Pg

e 1'
—exp —Nz (r vg)+1—
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Substituting Eq. (28) into Eq. (27) and using both
this result and Stirling's approximation for the factorials,
we obtain

=1 ~ ~eNq» N;-g. (re) »-
z=—L~e.(",8)j" Z lgt »=o 1 Nzl 'UQg(vg, e)

Xexp —Nz, (r vg)—+I
8 I

We return to Eq. (27) and write it in the form

Z= Q L(N N—g)rgz(r 8)j" "'
Ng-o (N—Ng)!

1
X P'Uggg(v, e)j"'

Egt

N ~-Kg
= P Pergz(r, e)5~ ~' e Qgl

Ng-o . Ng KNg )
1=—L'Ugg(vge)]" 2 & '

Ef NL, =O

gN+1 )=—L~g.("8)j"I

1V! ( I—R
(30)

=—I: Q( 8)7" E I'(N),
Ng=p

where

lnI'(Ng) —=1Vg ln
vggg(v, e)-

Ngrgz(r, e)

(36)

(37)

where

Pg
(vg r) .—

Nrgz(r, e)
exp

'UQg (vg, e) 8

To derive Eqs. (36) and (37) we have again used
Stirling's approximation for the factorials. A Taylor
expansion of lnI' about the value Egp of 1VG which

(31) maximizes Int' will yield an expression of the form

Since X is assumed to be very large, it is evident that
for

(32)

only values of Nz, are important in the sum of Eq. (30)
for which Nz,(&E. Thus, our approximation that
Nz«1V, made in Eq. (28), is justified. It also is evident
that in this case we may replace Eq. (30) by

inI'(N g) =1nF (1Vgo) — (1V g —1Vgo)'+, (38)
2g gp

with 0. given by
8' lnF

o.= —Sg
BEG Ng =Ngp

To calculate lnI'(Ngo), Ngo, and n, we still treat r as
an undetermined constant parameter, and write

'U g 'U Nzr = 'U—— N—r+N gr, — (39)

z=zg ('U,N,e)

1=—L~e.(",8)j",
Et

(33)

so that
8'Ug/BNg= r,

Bv 8 t' 'Ugi 1
P T

81Vg 81Vg ~1Vg) N g

(40)

and the resulting equation of state is that of the gaseous
phase.

It is clear that for 8= 1, or for

Nrgz(re)e "g'I'=Vgg(vg e)—e g"«'—(35)

the properties of the system show a discontinuous
change. This occurs, as we compress isothermally, at
the first (i..e, largest) value of 'U, say 'U„which satisfies
Eq. (35). (We have not yet shown how to obtain r, of
course. ) As we shall see, Eq. (35) defines the conden-
sation point.

When E&1, the approximate evaluation of Z as
given by Eq. (30) fails. For 'U &'U, we therefore evaluate
Z by means of a conventional saddle-point method.

From Eqs. (6) and (25) we obtain the pressure of the
systems as

P=Pg,

Consequently Xgp is determined by the equation

'U ggg(v, e) 8
lnF(Ng) =ln +—& —(v —r)—»Qg

N grgz(r, e) v BP

=0. (41)

Pgo= (U go —N gor) (44)

Since this equation depends only upon v='Ug/Ng and
not upon XG or 'U g separately, it has a solution of form

vo—= U go/N go, (42)

which is orzdepemdemt of the volume 'U as long as

0&+go&+; 'Ugo&0. (43)

Combining Eqs. (37) and (41), we obtain

T 8
lnl'(Ngo) =N go ——+I+ (vo —r)—lnQ g

Pp 8P
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where we have used Eq. (25) to de6ne

'go
=——+ InQg(vp, 8).

PO ~PP
(45)

When the conditions of Eq. (43) are satis6ed, Pgo is
evidently a constant, independent of the volume 'U.

To 6nd the parameter a of Eq. (38) we differentiate
Eq. (41) with respect to Xg, set'Ãg= 1Vgp, and use Eq.
(45):

phase" region given by Eq. (43), and by continuity at
the condensation point given by Eq. (35), r is deter-
mined by Eq. (49).

As we compress the system isothermally in the
"mixed phase" region, the pressure is determined from
Eq. (48) to be

P 8
lnZ

8 W3

82 lnr'

BSg Ng =1Vgp &go

1 T
Pp —T

PO Pp

Pgo( r ) W3gp

v, & aV

Thus

82—(vo —r) —
lnQ g (vp, 8)

BPo

BPgp
-(vp —r)'

e&go BPo

But by combining Eqs. (39) and (42) we obtain

~'Ugo

W3 ( vo~
so that

P/8= Pgo/e. (50)

~ Pgp
Q= Pp T

0 ~Po

The pressure thus remains constant as long as Fq. (43)
(46) is satis6ed. However, as we continue compressing the

system, we shall eventually reach a volume 'U such that

Physical considerations make it clear that in general
Pgp is a decreasing function of Pp, so that e is a positive
quantity. If, furthermore, a is not of order 1/Ego, then
the summand in Eq. (36) will be sharply peaked about
g g= Ngp.

Equations (38) and (44)) may now be used in Eq.
(36), so that the sum becomes

Pgo
Z= [erQr, j~ exp — ('Ugo —&gor)

8

and consequently

U go 0) Ego= 0.

(51)

(52)

As we compress further, Eq. (51) obviously remains
valid so that T no longer remains constant; it is, in
fact, directly determined by Eq. (51). Equations (52)
also remain valid, and the partition function as given
by Eq. (48) becomes

Z= PrQi(r, e)g".

P Py. 1 8=—+—lnQI, (r,8),
8 8 T BT

(54)
We exploit the sharp peaking of the summand by
retaining only the term with Eg=Egp, the remaining
terms giving negligible contributions to Z. There results with r given by Eq. (51).

Equation (35) does not necessarily have a solution,
of course, and in this ease we do not expect condensation
to occur. When it has a solution, comparison with Eq.
(41) shows that

Pgp
Z = 5&rQ&j exp (U go —+gor)

8
(48)

N The equation of state is
X P exp — -(Eg—Ego)' . (47)

&g=o 2Ãgo

Ke now determine v by demanding that when the
conditions of Eq. (43) hold, we must have pressure
equilibrium between the two phases:

&I.=Pg=Pgo

By use of Eq. (25) this becomes

as must be the case. We also expect that Eq. (35) will
in general have solutions for 8 less than some O„where
8, is the "critical temperature. " To see this qualita-
tively, we set

Q ~~skeQ

8 Pgp-+—lnQr, =
T BT 0

where he may be interpreted roughly as the "binding
(49) energy" of a particle in the "droplet states. "Also, we

may take

which, as we have seen, in a constant independent of
'U when Eq. (43) is valid. Therefore in the "mixed

exp — (vg —r) —1.
8
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Then Eq. (35) becomes

'U
ePhe

Sv
(55)

Comparing Eqs. (21) and (56), we are led to

Z, (N,) =P exp( —PE&„),

Z„(N )=P exp( —PEq„), (57)
As we raise the temperature P—A and 'U/Nr +1. How-
ever, as'U/1Vr —1,L4—4because the distinction between
"droplet" and "gaseous" states is lost as ~r. Con-
sequently Eq. (55) will in general have the solution
s 0= 7 at some 6nite temperature 8,. This determines the
critical point, above which condensation does not occur.
Reference to Eq. (46) shows that fluctuations in the
system become arbitrarily large close to the critical
point —which is to be expected, of course. In Secs. IV
and V we shall illustrate these remarks with speci6c
calculations.

Let us emphasize again that the foregoing is not
presented as a "theory" of condensation, since the
evaluation of the quantities Qg and QL, has not yet been
described. Some comment on the relation to theories of
condensation is in order, however.

Our "droplet states" are certainly related physically
to the "liquid droplets" of the liquid drop model. ' We
have not had to make simplifying assumptions, how-
ever, concerning the properties of the droplets. Closely
related, also, are the theories based on "dissociating
systems" of Band" and Frenkel. "Less closely related
is the theory of Mayer. " Indeed, the present use of
"linked clusters" is not at all the same as the use of
"clusters" by Mayer. "

III. EVALUATION OF THE QUANTITY Sg

The determination of Zg presents far more formidable
problems than those encountered in Sec. II. We are
therefore forced to find approximate methods applicable
to special systems. A simplifying assumption, for
instance, presents itself quite naturally as a consequence
of the smallness of the relative Quctuations known to
prevail in gaseous systems. Thus the actual interaction
energies of bound groups of particles, such as pairs, with
single particles and other bound groups may be replaced,
approximately, by an "average" interaction of the
pairs, etc., with a statistical medium composed of the
other bound groups.

Let us now assume that Eq. (21) for Zg may be
written in the form

An energy such as Ez„contains, of course, not only the
"binding energy" of the pairs, but also the interaction
energy of the pairs with single particles, with each
other, and with all other bound-particle con6gurations.
The factorization of Eq. (21) made in Eq. (57) implies
that we replace the interactions of the "pairs" with
"single particles in the state ),"by an interaction with
"single particles in an average (or most probable)
state X„"etc. This approximation is in accordance with
the assumption made above, and appears to be valid
for many physical situations. In any case, we shall
accept Eqs. (56) and (57) as the basis for most of the
discussion in this section.

Following an argument similar to that of Sec. II, we
may replace Eq. (56) by

Zg(Ng) =Z, (N, p)Z„(N„p) . (58)

where N, p, N„p, . maximize the summand of Eq. (56)
as given by Eq. (57), subject to the restriction that

N.o+N, o+. =Ng (59)

Z, = VgQ,],8 [N! &N, i

1 (2'Ug
Zy-

(-,'N~)! 0 N~ )

(60)

maximize

e
lnI" (N,) =N, ln —'UgQ,

cV,

+,'(Ng N,) ln —-'—UgQ„
Ng —E,

In the particular case that only single particles and
pairs need be considered, we write in analogy with Eqs.
(22)

Zg(Ng) =
Ns, Np

(N +Np+ ~ ~ ~ =Kg)

Z, (N,)Z„(N„), (56) with respect to S„and obtain

where Z„Z„, - are considered to be partition func-
tions for the "single particles, ""pairs of particles, "etc.

&no

2N, p' 'U gQ, '
(61)

'OR. Seeker and W. Doering, Ann. Physik 24, 719 (1935);
H. %ergeland, Avhandl. Norske Videnskaps-Akad. Oslo I. Mat-
Naturv. Kl. No. 11 (1943).

"W. Band, J. Chem. Phys. 7, 324, 927, 1114 (1939).
~ J. Frenkel, J. Chem. Phys. 7, 200 (1939)."J.E. Mayer, J. Chem. Phys. 5, 67 (1937).

Here Q, and Q„are functions yet to be determined.
We next consider the problem of calculating Q, or

Z, . A method of doing this for low temperatures was
given in I. This assumed that E~, could be expanded
in a power series in the particle momenta yo;. Terms no
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higher than quadratic were kept, giving

&~ po.»,=g — +"extra terms. "
i-l 235*

(62)

Here 3II*=M*(E,/'Ua) is an "effective mass" and the
"extra terms" were shown to be negligible. The existence
of an expansion such as Eq. (62) will have to be verified
in any special case. It always appears possible, however,
to obtain the correct second virial coefficient at low
temperatures from Eq. (62), at least for two-body
forces having finite range.

Using Eq. (62), we obtain

The physical meaning of the first approximation as
given by Eq. (65) is that each particle moves in an
"average potential" due to the other particles. In
contrast to the effective potential in the dynamical
problem, this represents a statistical potential averaged
over X, states.

To simplify notation, we shall omit the subscripts"0"on po, ,
"s"on E„and "G"on 'Ua in the remainder

of this discussion. For the same reason we also shall
not write explicitly the spin variables S;, which may be
included formally in the symbols "p,".

To determine the pl and the average potential, we
use the entropy principle (or H theorem) as a maria
tiorta/ principle Ind. eed, it is well-known that

1 t' t' P
Q =— d'pexpl — p'

Im* )
—H—=—Q pg, inp)„

&e
(68)

=—L2~m*e) t.
h'

We shall now describe a general method, involving
a sequence of approximations, for obtaining Q,. This
makes use of our observation that in the momentum
representation each particle "moves in an effective
potential due to the other particles. " Rapid con-
vergence is expected when the finite wavelength of the
particles "smooths out" the uneven interactions in
coordinate space.

We consider the "single particle" density function in
phase space given by

satisfies a maximal principle subject to the conditions
that

2 ti.=1,
&e

P»,pq, —= U= constant.
&e

(69)

We can use this maximal principle as a variational
principle to determine the "best" densities pl.

For example, let us expand, in accordance with Eqs.
(9) and (10), the energy as

».=Z &.(p')+Z»(y' p )

+ Z»(y*, y, ,y~)+ (7o)

pq,
—=exp'

e )' We have written
E,=p,s/2M, — (71)

which is normalized so that

PXs= ~p

or

1 'Ug~'
d poi

' ' ' d pomp(poiSi& ' ' ' poxSN) = 1.gI hate S &

and have expanded the energy in terms of "linked
clusters. " It is often desirable to sum the series (9)
formally by means of integral equations. In this event
a different expansion than Eq. (70) might be desirable,
which would lead to minor modifications of the following
development.

Using Eqs. (65) and (70), we find that the expressions
(66), (68), and (69) become:

Thus pi, depends upon the variables (poiSi, polio)
introduced in Eq. (2). Our first approxirlatiort involves
replacing Eq. (64) by

px, =g pi(yoD ),

with the pl normalized to unity:

(65)

where

H=E)' ho~pi(p) ln»(y),

&=&7 +l(~o)+-'(»)+ ".),

(72)

where

it=—Q ~' Cko„;p (p;,S,)=1,
S;4

e 'U0
dM& =— tPp

X, h'

(66)
&~.»(y)&.(p),
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f
(v 4)—= (N —1)(N —2) des„da&„d(u„

Xp (p)p (y') p (y") (y p' y")

Finally, by Eqs. (60) and (6) we have

~ =—I:'UQ 3"=exp(—~/8),gl

By varying the functional form of p&, we obtain the
erst variations 8H, 8U, and 84I. Introducing 1/8 and
f&/8 as the customary Lagrangian multipliers, we
obtain the minimum value of H subject to the con-
straints that 8U=bp=0 by solving the equation

so that substituting Eqs. ('76) and (77) into Eq. (78)
we obtain

1 t. p'
Q, =— d'p exp —p + v, (p) —2(v, )h'~ 2M

8H+ [bV —Nggb—gg =0.
0

On substituting from Eq. (72) this becomes

(y) l P —-L& —& (p) "(y)
|t

—-'v, (p) —"j =0 (73)

where

.(y)—= (N-I) d. o(y') (p, p'),

v3(p) = (N 1)(N 2)

Xo~(y")»(y, y', y") (74)

Since the left-hand side of Eq. (73) is to vanish for
arbitrary bp&, we obtain

p (p) =e p( —pr —4 +&.(p)+ (p)+lv (p)+ 3).
(75)

This provides a nonlinear integral equation to determine
pi

It would be incorrect to calculate the partition
function Z, directly from the p&'s. Instead we must use
S=—kH, which is stationary at its correct value. Using
Eq. (6) we get

P = U—TS= U+8H,

which becomes, after substitution from Eqs. (72) and
(75),

F=N E+-'(v )+-'(v )+ +tP — d „p (y)

+-'"(y)--:(")+" (79)

A similar technique may be applied to the calculation
of Q„, etc.

It is possible to generalize the assumption of Eq.
(65) systematically by including "pair correlations"
p, (p;,p,), "triplet correlations" p4(y, ,p;, PI,), etc. in the
density function pz, . A discussion of these is given later
in this section.

Ke emphasize, however, that the omitted correlations
in Eq. (65) are in momentlm space rather than in coor-
dir4ate space It is .quite clear from Eqs. (75) and (79)
that complex correlations between clusters of particles
are already included in our erst approximation. Indeed,
as we shall see in Sec. IV, even our first approximation
can lead to a description of condensation.

We now calculate the second virial coefficient in
order to illustrate the technique described and also to
show that particle-particle correlations are included in
the trial form of Eq. (65).

To calculate the second virial coeKcient we need
consider only the limit of very low density. Thus, only
v2 need be kept in Eq. (9), and Eq. (70) for Eq, becomes

Ng

&~.=Z +E &' (p', p ),
s=& 2' '(80)

»nce»(y', p, ) =(pl~'~l p) =&'~(p', p~), and»=v4=—0. For simplicity we neglect spin interactions. Then,
as was shown in I [Eq. (136)], the diagonal elements
of R;; may be expressed in the form

8~5
~"(y',y~) = — Z(2I+1)8~(&'~)

'UMk;; ~

X (&,(p)+v2(y)+-', 8&(p)+ )

=NIL —l(») —3(»)- (76)

Furthermore, from the normalization of p~ it follows
that

e 'U
e-~ I'=—— d p exp( —pL+, (p)+v, (y)Nh'~

+l83(y)+ "3) (77)

where k;;=—~ (y;—y;) is the relative momentum, 84 is the
scattering phase shift for a pair of particles interacting
in a state of orbital angular momentum l, and the sum
runs over even or odd values of / depending upon
whether the particle statistics is Bose-Einstein or
Fermi-Dirac.

In general, the particle pairs may have bound states.
Let us assume that there is only one such state with
binding energy ~&, the generalization to many bound
states being straightforward. Then, in the low density
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limit, the "pair energy" is
p.'

&1,= —2&,2S+
r(pairs) 4~

(82)

P
Q =— d'p exp l

— -p' !(1—pLB~(P) —r'(~2}7)
& 2~)

1 2vr3II ' PcV 22r3E & t

d pld p2
h' P 2h'

Xexp (pl +p2 ) +12(k12) ~ (83)
2M

By letting k12 and P=pl+ P2 be the independent vari-
ables, we may integrate over the latter to obtain

1 22rM'& 4%2 E p+ ——
~ dkk

h' P 2r 'U M "2

Xexpl ——k'!Q(21+1)S,(k). (84)
(

M

Here p, is the center-of-mass momentum of the rth pair.
To obtain Q, in the low density limit, we may take

p' q E h' 22'
p, =exp —

Pl
—y,+m) v. p

jn Eq. (75), and expand the exponential of Eq. (79) to
first order in v2. Thus

The coeflicient of 1/'U in the second term within the
curly brackets is the exact second virial coefficient. '4

The above calculation was made to illustrate a
somewhat trivial example of the methods developed in
this section. In general, our technique of developing p
in terms of correlated densities in momentum space is
not simply related to the virial expansion. Indeed, our
method is intended primarily to describe systems at low
temperatures and high densities.

We shall now generalize the assumed form for p~,
given by Eq. (65). There are various possible ways of
doing this, such as developing p~, and Z, in a "cluster
expansion" in momentum space. We prefer, however, to
continue using the variational principle by improving
our trial form (65).

We illustrate the generalization of our method by
making the special and simple assumption

P10 II Pl(P0)p2(PN —+010&PN 00+2) '—' '»(PN —lpPN) q

»(p, p') =»(p', p). (65')

To keep our expressions simple we neglect v3 v4 etc
in Eq. (70). We consider the functional forms of pl and
p2 and the value of e, as quantities to be varied.

Repeating the steps taken in connection with Eqs.
(72), (73), and (74), we obtain

d .~1(P)=1,

Similarly, from Eq. (82) we obtain

et"~ 4 3E-~

To first order in 1/'U, Eq. (61) gives

-', E~ = E (X/'U) e&0~2&L22rph'/M7&,

(85)

(86)

~l~n'»(PiP )=»I

H= (37—I)) d2l„p, (p) 1npl(p)

I+-„d .d '»(p, p')»~2(p, p'),

since now 'Ug='U.
Finally, by combining Eqs. (6), (60), (84), (85), and

(86), and dropping terms of higher than quadratic
power in 1/'U, the equation of state is obtained in the
form

8 lnZ, 8 lnZ„-

1 (E—22)(E—I—1)
U= (Z—22)X,+21K,"+— (~)

E 2

22(22 —1)
+ -(12) +22(1V—22) (e2)' ~, (72')

2

- Ng2Ny

Z[ E (221PA2q &

=—~1——2:e~ ~!
)

(P q 0 +00

+16r*k2! —! dk k
E~) J,

Xexpl ——k' lp(2l+1)bl(k) . (87)
P,&

M )

d A (p)»(p),

E',"—=) ke,dco„K,(p)p2(P, P'),

( )—=&~"d 4 ' (p,p'9 (p)u (p'),

'4 G. E. Uhlenbeck and K. Beth, Physica 3, 729 (1936}.
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(v,)&—=E da,d(0„»(y,p') p2(p, p'),
There results

(v2) ' =+ d~y~n'dion"v2(p p )pi(p)p2(p', p").

The variational principle becomes

1 S
8H+ —5U—(X—N)pilgi ——$28g2 =0.

0 2

Carrying out the variations, and de6ning the quantities

Pi(y) =exp' L A+E. (P)+(I P)"2(p)
8

+pv (p)j
1

P&(y P ) =exp'
r 2A ~G+IJ(v2)++ (P)

8
(88)

+&.(P')+ (&—~) (v~(p)+vm(y'))

+»»(P,y')3,

v (p)=& « '»(p p)pi(p)

v2" (p) =& ~y ~y"»(p, p')u~(p', p")
~

p= u/E, —

we get a modified form of Kq. (73):

(S—I) &~~~i(y) rlnpi(p)

+— ks„d(o, Spy(y, y') lnp, (p, y')
2~

+-L&*(P)+&*(P')+(&—~)v2(y)
0

+ (&—~)82(p')+~»2(p, p') —A]

+~+ ~ dM 'p2(p p ) lnp2(p p )
2~

d .ui(p)»ui(p)+-L&: —&
aJ 8

(74')

The parameter G must be chosen to normalize p2 to
unity according to the second equation of Eqs. (72').

An equation to determine e is obtained from the
last term of Eq. (73 ). The explicit indication of a cor-
rection due to "Quctuations" is evident from the form
of Kq. (88) for p2. A variety of possible forms for p&„

other than that of Eq. (65') are feasible, of course. In
particular, three-particle correlations p3, etc. may be
kept.

Furthermore we observe that the zeroth-order ap-
proximation to pz, of Eq. (65) [leading to Eq. (75)J
becomes exact in the limit of sero temperature if the
power-series expansion of Eq. (62) for the energy is
valid. This is consistent with our point of view that
Auctuations should become small at low temperatures.

Finally, the methods for obtaining Z, which we have
described are expected to be applicable to the calcu-
lation of ZL, . Also, it appears possible to improve the
approximate Eq. (56) if necessary. That is, "fluctu-
ations" associated with the dependence of E~„on 'A„

etc., may in principle be handled by the techniques used
in connection with Eq. (88). Thus we feel justified in
describing our method as providing a systematic means
for evaluating the partition function for a low-tem-
perature system.

IV. APPLICATIONS —THE "EFFECTIVE
MASS" APPROXIMATION

+(~—2p)(»)'"+p(»)"—(&—~)(»&j =o (73')

When the coefficients of 5pi, 5p2, and 5„ in Eq. (73') are

separately equated to zero, and the normalization con-

ditions on p~ and p2 are written down, we obtain a
complete set of equations. To exhibit these, it is con-

venient to de6ne a parameter G by means of

f2= 24 i+~G w(v2). — —

In this section we shall discuss the energy spectrum,
and give thermodynamic applications, in the approxi-
mation that only two-particle scatterings are kept. We
recognize that this approximation may be quite inade-
quate, in general. On the other hand, we shall see that
it can give qualitatively correct results even for the
liquid state."In Sec. V we shall study many-scattering
contributions to the energy.

"This is the approximation used by Brueckner et a/. in their
theory of nuclear structure, references 2 and S.
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Use of this approximation in calculating the prop-
agator d of Eq. (11) enables us to write the integral
equation (14) for R in the form

(k'lRlk)=(k'l vlk)

(k'l v[k")(k"lRlk)

FIG. 2. A typical intermolecular potential, with long-range
attraction and a repulsive core.

=Z(pp', pp l~l po', po ).
i(j

The J;&'s in Eq. (13) become unity, and hence the dis-

persive energy of a single particle is given by

pp
e(p~) = + & (p* pp l&l p' po &

2M j(its)

The second term is our present approximation to
be(p, ) in Eq. (12). The scattering matrix E is defined

by the integral Eq. (14).
For small values of p; let us assume that the second

term in Eq. (90) may be expanded in the form

be(p;) = ep+-,'ap p+ (91)

the higher power terms in the momentum variable
being neglected. The coefFicients eo and a are of course
functions of the volume 'U and the parameters describ-
ing the interactions. By use of Eq. (91), Eq. (90)
becomes

To provide a simple model, we shall neglect exchange
corrections, treating the particles as equivalent but dis-
tinguishable. The investigation of degenerate Fermi-
Dirac' and Bose-Einstein systems by the methods
which we describe is of considerable interest, but must
await a subsequent publication. To simplify notation,
we shall also assume that the particles have no spin.

Our approximation implies that we keep only the
terms involving v& in Eq. (9), so that

bE=(pel & &' l po&

Here k is the relative momentum -,'(p;—p;) of the two
colliding particles.

When the expansion (91) is valid, the use of the
eRective mass simplifies our calculation considerably.
This approximation is of course completely independent
of that of keeping only the terms r& in Eq. (9). With
use of both approximations, the problem is completely
defined by Eqs. (89), (91), (93), and (94).

The appearance of the dispersive energy shift in the
equation for the 8; s means that complex cooperative
phenomena are included to some extent even in the
first approximation of keeping only the v, 's in Eq. (9).
For instance, saturation would not take place in a non-
degenerate gas or liquid in an approximation in which
only two-body correlations occur. As we shall see,
however, saturation may be accounted for in the
approximation just described.

For example, let us suppose the two-body force to
be attractive at large distances, but very strongly repul-
sive at short distances. The potential corresponding to
such a force is illustrated in Fig. 2. In this case we may
expect the energy 60 to be negative. The shift 8e, how-
ever, might be expected to increase with p, becoming
positive' for large p (i.e., small "impact parameters").
With a "smooth" p dependence, such as indicated in
Fig. 3, the eRective mass approximation should be
valid.

For the case illustrated in Fig. 3 the coefficient a of
Eq. (91) is positive This quan. tity is expected to vary
roughly as 'U ', so that the eRective mass as given by
Eq. (93) will decrease as 'U decreases Decrea. sing M*
reduces the eRective strength of the potential, as is clear
from Eq. (94). Thus compressing the gas (or liquid)
will "reduce" the strength of the interactions between
particles. In particular, the eRect of the attractive

e(p,)=ep+ +-pP
2M 2

where

1—ep+ pP
2M*

M*/M =1/(1+aM) .

(92)

(93)

M* is thus an "t.Gective mass. " '
"The degenerate Fermi-Dirac system is, of course, that origi-

nally studied by Brueckner and his collaborators, references 2
and 5.

Fro. 3. The expected de endence of the energy be
of Zq. 91) on P.
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part of the potential (Fig. 2) is thereby reduced. The
R matrix is, however, little aGected by the actual
"height" of the "repulsive core, " so that the repulsive
part of the interaction is not much inQuenced by com-
pression. Consequently, when the system is compressed,
the forces may change from being electively attractive to
being electively repllsi, we as a result of the "effective
mass" correction.

To illustrate these remarks, let us carry through an
explicit calculation. We choose a potential having the
properties of that of Fig. 2. We shall actually use a
potential that is "factorable" in momentum space, since
this will permit us to find an analytic solution to Kqs.
(94), (93), etc.":

1.8—

I.6

),4

l.2

1.0

(kl Vlq) =Grot(k) t r(q)+Gsv s(k) v s(q).

Here G~&0 and G2))0 are constants, and we
choose

q, (k) = (1—bk') exp( —ak'),

ps (k) =exp( —nsk'),

b =2 (a+ns), ns=a.

(95)

(96)

~ 8
0

I

~ 4 .6
I

~ 7

FIG. 4. Variation of the effective mass with volume
for the system descrfbed by Kq. (100).

For a strong "repulsive core, "we may set G2= ~ in
Eq. (97), and obtain

If we evaluate the expectation value of the potential
of Eq. (95) for wave packets separated by a distance r,
we obtain. an energy with spatial dependence similar to
that of Fig. 2. To reduce the number of terms in the
solution (97), we have chosen pt and ps to make the
integral Jo"dkq r(k) ys(k) vanish.

With this choice of V, Eq. (94) may be solved
rigorously. We are interested in the system only at "low
temperatures, " which implies that only energies near
the ground-state energy are important. Adopting the
conventional continuum normalization, we therefore
obtain

G, t s'(k)(2s-)' Gtq '(k)
(kin lk) =

'U 1—krM*GgIg j —kr3f G2I2

with

1 b 3 f'b1'
I,= — dk&P(k)= —

l
—

l
1—-+—

l

—l,Js 2E2a) 2a 16&a)

1f ~y&
dk~ss(k) =—

l

2 E2nsJ

(97)

"Applications of such potentials to statistical mechanics have
been suggested by K. M. Watson, Phys. Rev. 103,489 (1956).The
use of variational techniques for solving Eq. (94) was also de-
scribed there.

In obtaining this solution we have replaced the actual'
boundary condition on the pole of Eq. (94) by that
of taking the principal value of the integral. The correct
value of R is just a simple algebraic function of that
given in Kq. (97), as was discussed in I. When the
scattering phase shift b is less than m/2, Kq. (97) gives
a fair approximation to E.; this will be the case in our
example.

(2s.)' Gtprs(k) toss(k) —. (98)
'U 1 47rM*GrI—t 4n.M"

l Is l
.

In the limit of very low temperatures, Eq. (90)
becomes

e(P') = +&&sP'l~l sP'),2' (99)

since then k= rsy, in Eq. (98). An exPansion in Powers
of p, , as in Eq. (91), then leads to an explicit expression
for M*. The quantity bE is finally obtained from Eq.
(89).

For the purpose of carrying through a specific
numerical example, we have taken

nr—= -', L3a+2nsg,

Gg= —o.g&Ug,

r)
—= UrMat=0. 78,

r—= (ns/n, )&=0.20,

U~=0.1 ev,

h(47rnr)1=10 s cm,

pp
—= (X/'U)nrlks,

'Uo='0 po.

(100)

The evaluation is straightforward and wil1. not be
shown in detail. The effective mass M* and the energy
ep of Eq. (91) are shown as functions of the density ps
in Figs. 4 and 5, respectively. The "droplet states" were
identified from Fig. 5, as described at the close of
Sec. I. The effective mass approxim-ation of Eq. (63)
was used to evaluate the partition functions Qr, and Qg
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decreasing 'U will help to reduce the importance of the
higher order terms in Eq. (9).

It appears that the approximation involved in Eqs.
(89) and (90) amounts to treating fluctuations" as
small. That is, e(p;) in Eq. (90) is an aeerage energy,
whereas the actual energy of a particle shows Quctua-
tions. These Quctuations appear as higher order terms
in Eq. (9).

«2
0

I I
~7

P.

FIG. 5. Variation of the energy ~& with volume for
the system described by Eq. (100).

(in the present case Q, =Q &), so from Eq. (63) we obtain

eP(«ols)Q~ —Qa

V. COOPERATIVE INTERACTIONS

In this section we discuss more generally the nearest-
neighbor expansion given by Eq. (9). In I it was
observed that the terms in the series had rather simple
topological properties and, in particular, could be easily
represented by graphical constructions. Let us first
review and extend this description.

It is convenient to draw an analogy to quantum
field theory. As described in Sec. I, the "reference state"
(or "unperturbed state") ps= (ye&S& pszS&) may be
considered as analogous to the "vacuum state. " A
particle which by virtue of a scattering is excited out

(101) (c)

et
0

l

R.5
l l

5o 3.5
g ~/~

FIG. 6. Calculated isotherms for the system described by Eq.
{100).Here P0 is a constant scaling parameter, the value of which
may be obtained from the curves in the large volume region, where
they approach ideal gas isotherms. The critical temperature is
T', =40'K, and the critical point is shown on the diagram as a dot.
Phase-transition points are also indicated by dots.

The equation of state was obtained exactly as
described in Sec. II. In our specific example, the critical
temperature was found to be T,=40'K. Several calcu-
lated isotherms are shown in Fig. 6.

The simple example just given suggests that a quali-
tative, or semiquantitative, description of a low-
temperature system may be obtained even in a 6rst-
order calculation. To get detailed quantitative results,
we must investigate higher order terms in Eq. (9), as
will be done in the next section. We may now note,
however, that an e8ective mass which decreases with

(e)

Fze. 7. Several typical "Feynman graphs, "as dis-
cussed in the development of Sec. V.

of the ps state, may be considered to have been
"created. " Since according to Eq. (10) the terms in
Eq. (9) are expectation values with irespect to the
ps state, every„particle which has been "created" must
be "annihilated" by the time the final scattering has
occurred. Thus':Eq. (9) represents a "vacuum expecta-
tion value. "

The scattering of a pair of particles from the ps state
represents "pair creation. "The scattering of an "excited
particle" by one in the ps state may leave both particles
"excited."These processes are illustrated in Figs. 7(a)
and 7(b) by means of "Feynman diagrams. " In the
latter type of scattering the original particle may drop
back to the ps state. In this case the new particle con-
tinues as if it were the original particle, but with a dif-
ferent momentum in general. This type of scattering is
represented by an "x"drawn on the particle line, as in
Fig. 7(c). In a topological sense, no scattering has
occurred, so that we may describe this process as "par-
ticle exchange" scattering. (It is to be recalled that we
must never return the system to the ps state as a
virtual intermediate state. ')
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Let us now consider in detail Eqs. (9) and (10). To
excite the system out of the ps state, the first interaction
must in any case "create" a pair of particles, and there-
fore we may write 5E in the form

&1' ' '&nF
l=i

l gi1 ~ ~ iss

0 1
Q Pii ~ ia/ R-lip
p=i

infinite set of coupled equations. Let us consider the
e-particle amplitude Fi». "i„which satisfies

R;,—Rg 0 . 102

Here F;; is a "two-particle amplitude" which describes
all possible scatterings taking place between the
"creation" of the initial pair and the ultimate return of
the system to the ps state. This amplitude can be repre-
sented by the following set of coupled integral equa-
tions":

N e 1
Fbi ' ' '1p )i~] ' ' 'lg Rlip

l =1 p=i 6f
t gi1 ~ Zo-

N

+ Q Pit ~ i„ik-Rlk
lpga

l,k gi1 ~ ~ .i„

A 1
+ P Pil ' 'ty-1iy+1 ' 'ip 1~p+1' ia +ihip.

p, v=1
(104)

N 1 1

+ Q P;r Ri;+Pyi Ki;-
t=i

In this equation F;;t is a "three-particle amplitude" and

F;;I,t is a "four-particle amplitude. " The first term
above represents the creation of a third particle l, as is
shown in Fig. 7 (b). The second term is of the "particle-
exchange" type as shown in Fig. 7(c)-; here one of the
particles (i,j) is "annihilated, " i.e., returned to the

ps state. The third term describes the "creation of a
new pair" (k,l), as in Fig. 7(d). The last term anni-

hilates the single-particle pair on which F;; operates.
This is illustrated in Fig. 7 (e). The annihilation must be
consistent with the "linkage" requirement as well as the
restriction that the same two particles not scatter
twice in succession. ' The last term of Kq. (102) is

necessary to subtract out the direct "closed loop" con-

tribution furnished by the integral Eq. (103).
To complete Eq. (103),we must define the amplitudes

F,;&, F;;&&, etc. This may be achieved by means of an

Equation (103) represents an extension of a technique sug-
gested by W. Macke, Z. Naturforsch. SA, 192 (1950). We are
indebted to Professor K. A. Brueckner and Professor M. Gell-
Mann for calling Macke's work to our attention, and also for the
suggestion that it might be extended in generality by means of
integral equations. These equations are precisely those used in I
to determine 8E, written out in greater detail, and, as was noted
in I, the terms treated by this method can be made to furnish
a starting point for a perturbation expansion. In the meantime, a
detailed development of the technique has been carried out inde-
pendently by Professor Brueckner and Professor Gell-Mann and
by ourselves. See also reference 19.

The terms here are the same as the corresponding ones
in Eq. (103).Again we emphasize that in both equations
the sums over interactions must be consistent with the
requirement that the same pair of particles not act
twice in succession. The first two terms of Kq. (104)
describe single-particle creation and annihilation, re-
spectively; the third term, annihilation of particle i,
and creation of particle l; the fourth term, creation of
the pair (t,k); the last term, annihilation of the pair
(i„,i,). The prime on the last summation of Eq. (104)
means that this sum must be carried out in such a
manner as to leave no "unlinked clusters. "A properly
linked pair-annihilation diagram is illustrated in Fig.
7(f). In a topological sense, the annihilation diagram
may be "straightened out" to correspond to Fig. 7(a),
just as if neither annihilation nor creation had occurred
in the intermediate states.

The similarity to Feynman diagrams is quite evident,
and suggests that Eqs. (103) and (104) may be formally
simplified by the use of second quantization. A more
detailed development of this approach will be published
separately in connection with a discussion of degenerate
Bose-Einstein systems. "

An interesting approximation to Kqs. (104) results
if we omit the first two terms on the right hand side.
This amounts to dropping graphs of the form shown in

Fig. 7 (b). As was noted in I, in this case all graphs may
be deformed into simple loops in view of the non-
occurrence of "unlinked" diagrams. Also, for each scat-
tering the momentum imparted to each particle is
always &q, where q is a variable. Integration over this
variable q is performed as the last step in the second
term of Eq. (102). The system of equations (104)
therefore reduces to a set of algebraic eqeatioes.

"M. A. Ruderman and K. M. Watson (to be published). Also,
K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117 (1957).
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In this approximation, the solution of the set of Eqs.
(104) for the ground-state energy of a system of
distinguishable, spinless particles becomes almost trivial
(we shall use the effective-mass approximation of Sec.
IV). The handling of excited states may also be illus-
trated by simple methods, and we shall do so at the
end of this section.

Our approximation enables us to write R=R(q) as a
function of the momentum transfer g only, and the
propagator as given by Eq. (11) becomes

d = —(n/2M*) q'—= (e/2) D, (10S)

where e is the number of particles excited above the
pp state (psi ——0, ps&=0). W'e define

Solving Eq. (110) for r and using Eq. (109) for F&, we
obtain

r=W {iA i

—LA —(2pM*U) j1}
2ÃpM*U

F2=ra,
'U

8E=-,'1VpU(0)W i| g'q
4k3m*~

2
X i A j

—fA' —(2pM*U)'7'W —(pMeU)' (113)
q2

where
Fii ts~=N Fs ' m=1 2 ''' (106)

f1 ' ' '$2te

A =—q'+2pM*U, (114)

and sum Eq. (104) over (ii i& ) to obtain

1 1
N' Fs =N' +'2mFs„R+N'"+'Fs„s

ssD (m+1)D

+N'~m(m —1)Fs~ s R; m) 1. (107)
(m —1)D

In a similar manner we may sum Eq. (103) over (i,j),
getting

and the upper or lower signs are used when A&0 or
A &0, respectively.

The expression for the energy shift given by Eq.
(113)seems physically reasonable. It exhibits saturation
for repulsive-core interactions, and can lead to a
description of condensation and the liquid state even
when one sets 3f*=M. The result agrees with that
obtained by Lee and Yang" for the ground-state energy
shift of a system of Bose particles interacting through
hard-sphere potentials of radius a. In that case, we may
set

1 1
Fs 2NRFs+Ns ——R'—F4+R.

D 2D

Fe=D(q). (108)

Comparing this result with Eq. (107), we obtain the
identihcation

R=4v a/(M'U), p U= 4v-Na/(m'0),

ps= N/'U, b—=8v Na/—'U,

and obtain

2x'XppG x'0 f
M h'M "s ding

(11S)

The solution to the set of difference Eqs. (107) subject
to the boundary condition of Eq. (108) is

~2m yg tr ~Pa

where r is that root of the quadratic equation

(109)

NsR
=0,

E D—2N R) D—21VR

which remains 6nite as E approaches zero.
To simplify notation, we write

(110)

R(q) =——U(q), p=—
'0

where ro is a distance, presumably of the order of the
range of the two-body force, and U is an "effective
interaction energy. "Equation (102) for eF becomes

'U 1
BE=,'1VpU(0)+-,'N'

i dsq-(F&(q) —R(q)j—R(q).
D

(112)

X(q'+b —
t (q'+b)' —b'7' —s (b'/q')) (116)

2vNppa 128(pea')1
1

15'�&A'

This result for Bose-Einstein systems was also obtained

by Brueckner and Sawada, "using a diferent method.
Inspection of Eq. (113) shows that for attractive

potentials care must be exercised in Gxing the lower
limit of the magnitude of q in the integration, because
the integrand should be restricted to those values of q
for which the energy is real. 7Ve conjecture that values
of q less than the minimum value q; have a connection
with the "condensed sub-states" discussed in Sec. I,
but it appears that a definite answer to this question
depends upon a more detailed quantitative evaluation
of the scattering matrices. In any case, restriction of
the integral to the range J&;„"dq seems a valid ap-
proximation.

It also appears likely that our approximate solution

(109) to Eqs. (104) may provide a starting point for

~ T. D. Lee and C. ¹ Yang, Phys. Rev. 105, 1119 (1957).
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further calculations. The possibility of applying the
"Tamm-Dancoff" or "Tomonaga" techniques from field
theory is suggested —indeed, our equations look very
much like those of a "cuto6 6eld theory. ""

The handling of excited states may be illustrated by
the following simple calculation:

Neglecting the amplitudes F;;&&, and retaining only
"closed loop" terms, Eq. (103) for the two-particle
amplitude may be written in the form

The solution is

r,= F2=
D—ER D—XR

2RDF2
F4

(D NR—) (D 2NR—) ', i'

2R(F2+R)

(124)

1 1
F';=+ Fa R~i+—F~i Ra —+R'g,

l S&g

where, by Eqs. (11) and (92),

(117) with
(D—NR)(D 2iVR)—~, i

D
Fm

——w f (
A

(
—LA' —(2NR)'j'*),

2''R (125)

d =D ("1/M~—)q (y —y ) D= —q'/M*. (118)

Since the reference po state is considered to be an
excited state in this discussion, we define

R;,=—R+R;,', F;,=F2+F;,— (119)

where F2 is given by Eq. (106), and R is the scattering
operator as specified in the development preceding Eq.
(105). We also expand the propagators in the form

1 1 R q (yo, -yo;)—R=—R+6;;, 6,;=—— . (120)
dv D D q'+q (yo' —yo!)

We treat the 6;;, R;,', and F; as small perturbations
in Eq. (117), and keep only first-order terms in these
quantities. Substitution of Eqs. (119) and (120) into
Eq. (117) then yields

F"'=EL~2(A'~+~~~)+F2(1/D) (R'i'+R~i')

+R(1/D) (F;)'+F;i')j+R, . (121)

We assume a solution of the form

F, =r, g(A;g+6;)+I' Q(R, '+R,y')
k k

F, .=F2+F,!+F,!I. (126)

with F;;" representing the second-order contribution,
quadratic in the A;;. Substitution into Eq. (117) yields

F'/=E F~(~'i+Agi)+R (F;(+F;i'), —
D

(127)

F~j'=Q F'(~'i+F; ~'~~i+R (F'i"+F~i")—

A =2ÃR —D.

Examination of Eq. (120) and Eqs. (122) to (125) shows
that F;,' remains finite over the entire range of values
that the integration variable q may assume, and in
particular as q

—4. Substitution of Eqs. (119)and (122)
into Eq. (102) leads to an expansion of the energy shift
in which the dominant term is usually proportional to
P;&,(yo;—yo,)', although the exact form of the ex-
pression depends upon the behavior of R(q).

The second-order calculation of the amplitudes F;;
proceeds in analogous fashion, but for purposes of
illustration it is advantageous to simplify the algebra
by setting the R;,' equal to zero. Under this assumption
we expand F;; in the form

rR ™r+r'R'~ +r'~ (1 ) The first of Fqs. (127) is a special case of Eq. (121),and
the solution is given by Eq. 122 with

substitute into Eq. (121), and obtain the identifications
DF2

XR
r,=F,y r„

D

F2 XE.
r,=—+ r,+—r„

D D D

F3= 1)

2R 2R 2TR
r4= ri 2 A'+ rmp R' + r4.

D ', & D i, s D

(123)

r,=
D—NR

(128)
r4 —— Z~a

(D NR) (D 2iVR) ~—,i—
I'2= I'3= 0.

After substituting this solution into the second of Eqs.
(127) we obtain

F;;"=ppr, (a,,a,,+a;,a;,)+r,(a;,A„+a,,a„)j

"Schweber, Bethe, and de Hoffmann, Mesoes cled Fields (Row,
Peterson and Company, New York, 1955), Vol. lI, Sections 40-44.
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We assume a solution of form

F;;"=H P(a; +a; )+H P(z, S;„+a; a;„)

+H3+(h; 6 „+6; 5 )+H4, (130)

and insert it into Eq. (129) to get the identifications

ÃR
Hi = Hi+I'4,

D

XR
H2=1'i+

D

ER
H3=1'i+ H3,

D

(131)

2ÃR 2R 2R
H4+ Hi Q 6;,+ (H2+H3) Q &gh;g, .

D D ', s D i, j,k

The solution of Eq. (131) is

2RD'F2
Hg=

(D NR)'(D ——2XR) ', i

Hg=H3=
(D—1VR)'

4RD'F
H4=

(D—ER)'(D—2XR)

(132)

x (Q4,)'+Q ~;;&a .
.D—25R

This technique can be used to extend the expansion
in powers of 6;; to higher orders.

APPENDIX

We shall describe brieQy the physical properties of
the "linked clusters" of Brueckner' as they appear in
our "nearest neighbor" expansion. A more detailed
discussion will appear in reference 3.

The basis of the derivation in I was that for an
extended medium (E))1) the linked clusters behave as
if independent of each other. For instance, the wave
function of the system may be considered as describing
an "ensemble" of all possible diGerent combinations of
the particles formed into linked clusters. '

The problem of understanding the cluster expansion
is complicated by the fact that one uses the kinetic
energy of a particle "in the medium, " rather than the
actual kinetic energy. As will be described in reference
19, there are a variety of ways of defining this "effective
kinetic energy" other than in the form given by Kqs.
(12) and (13), which is taken from reference 1.

We should emphasize that in reference 1 two diferent
derivations were given of equations having the general
form of (12) and (13).In the text of I an approximate,
qualitative argument was given for the form of 8e(p;)
[see Eq. (12)].Here the evaluation of 8e was described
as involving an "average over fiuctuations, " since the
"right cluster" [i.e., the rest of the medium] was
treated as remaining in its unperturbed state Po. This
appears to be a very plausible approximation.

On the other hand, in the Appendix C of reference 1
a rigorous development was given. Here a more com-
plicated form for be was obtained [Eq. (C-25) of I],
since 6e was expressed as an expectation value with
respect to eigenstates y of the "right-cluster medium"—rather than as an expectation value with respect to
the unperturbed state po. This latter method is evi-
dently more complicated to use. Recently, however, a
straightforward technique for evaluating such expec-
tation values has been developed. ' When necessary, this
makes it possible to avoid the approximation just
described.


