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Correlation Energy of a High-Density Gas: Plasma Coordinates
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The model Hamiltonian of Sawada which describes electron correlation at high density is examined.
It is shown that the set of scattering modes for momentum transfers below a certain g, is not complete.
It is completed by the plasma mode. (q,„) ' is the natural Debye length of the theory.

2. FORMULATION OF THE THEORY

We shall adopt Sawada's Hamiltonian' with some
modifications in notation.

We define the creation operator of a pair (excited
particle p+q, hole y) as ds*(p), i.e.,

ds*(p) =&s+s*bs* (2.1)

in Sawada's notation. Then defining the operator

(pp ——Fermi momentum)

Oq dyes'(y)+d-s( —p) j. (2 2)
(2~)'" i si &~.

Is+el &»

The Hamiltonian taken by Sawada is (A=1, sums on

p include spins)

r Sawada, Brueckner, Fukuda, and Brout LPhys. Rev. 108,
50/ (1957)g, preceding paper.

s '9i/. Glaser and G. Kallen, Nuclear Phys. 2, 706 (1957).' K. Sawada, Phys. Rev. 106, 372 (195/).

I. INTRODUCTION
" 'T is the purpose of this article to supplement the
~ ~ mathematical methods of the preceding paper' by a
somewhat more detailed analysis. The problem is treated
here in the language of continuous spectra. It is then
shown that for q .q, , where q, is given by Eq. (9)
of reference 1, the set of scattering states does not form
a complete set. The set is completed by the plasma
mode. For q&q, , the set of scattering states is
complete. This is true only in the infinite limit, for only
then will the plasma mode for q)q, „completely
dissipate itself into the scattering modes. A similar
situation arises in the theory of particle decay as
carried out on a simplified model by Glaser and Kallen. '

This paper represents work carried out by the author
after his remark on the existence of plasma modes
in the Sawada theory. ' The previous paper is, in the
main, the work of Sawada, Brueckner, and Fukuda.
Though the two independent investigations led to
identical results, it was thought to be instructive
to the reader to present the two lines of argument
concurrently.

O'=H p+P„

+0= — dpep+p &p — ~ dpepbs bp
(2rr)'~ p) pp (27r)s~ p& pp

+ —, dy, (2.3)
(2~)».&»

1 p 2s-e' 1
+c= — dq

(2s') ~ q (2s) ~p &sr
i~+&i »~

dp

(Note that II, is the usual Coulomb Hamiltonia, n but
with scatterings of excited states to excited states and
holes to holes omitted. ) The usual operator,

Pq= ~~+q ~u7
(2s.)t& p&pp

1 (4n.e )
L~ d-, (-y)3=-s(y)d-, (-y)+

(2s-)& ( q' j
1 p47r

L&, d.*(p)j=—~s(y)d.*(p)—
(2s)&E q' 2

(2.4')

Equations (2.4') have the property that although Hs is
not a function of the pair operators, the commutator
LHe, d, (y)$ is nevertheless a function of ds(p). This

4M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957).

s D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).

is now replaced by oq.
In evaluating the commutator of d, (p) with the

Hamiltonian, one makes the further approximation of
neglecting the commutator of d, (p) with all de*(y')
but for q= q'. This eliminates the exchange scattering
diagrams in the Gell-Mann and Brueckner scheme' and
is the direct analog of the random phase approximation
in the Bohm and Pines theory. ' With this approxima-
tion, the excitations decouple for different tI and behave
like bosons, i.e., one may take

Lds*(p) d% (p)3= (2~)'b(ti —q')~(p —p'). (2.4)

Equations (2.3) and (2.4) define the problem.
The solution runs as follows. One finds the commu-

tators
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FIG. 1. Contour for the integration of Eq. (2.14).

makes commutators (2.4') linear functions of ds(p).
One may then introduce the concept of normal modes
(i.e., linear combinations of ds(p), say g, which have
the property that EB',rfj=Qg. We shall work always in
the continuous limit though the problem may be
equally formulated for the discrete case. In that case
consider the set of operators which create the real
scattering states corresponding to the excitation ds*(p).
These are

4s.e' ( 1
~,*(p)=d,*(p)+

qs E (2m') s) ~ p' &pr
l v'+el &P»

ds*(p')

- ~ +(~,(p)) E~s(p) —~.(p')+sej

d-s( —P')
(2 5)

~+(~s(P)) E~s(p)+~s(p')3-

and its complex conjugate. Here

4~es~ 1

qs & (2n')s) & p'&p~
l u'+al »»

(2 6)

q= Vd, (2.9)
where an annihilation operator in the transformation
carries a negative energy in its coefBcient in accord
with (2.5). The establishment of (2.8) is equivalent to
UU+=1. The completeness part of the theorem con-
cerns U+U and it is here that the plasma mode will
appear. For this reason we shall enter into some detail
upon the calculation (see also Klein and McCormick ).

The off-diagonal element of U+U is, by direct
evaluation,

X
-~s(p) —~s(p')+s«s(p)+~s(p').

With (2.6), it follows from (2.4') that

E&Bs'(P))=—~s(p)~s*(p) (2 &)

Equation (2.7) says that the real pairs have zero
self-energy.

The next task is to investigate whether the states
(2.5) constitute a complete orthonormal set. That the
g, (p) are orthonormal follows immediately from the
evaluation of the commutator Eye*(p),gs(p')). Using
Eqs. (2.4) and (2.5), one finds that

b.*(P),n.(P')3 =8(P—P') (2 )' (2 g)

The only remaining question, completeness, would be
established if the transformation (2.5) is unitary. Let
us symbolize (2.5) by

~+(~s(p)) E~.(p) —~s(p')+sej E~.(p') —~s(p) —se3 t -(~s(p'))

1 t'4s e')

(2s.)' L qs I &p-&p
l
9"+(I l &»

1
Il

L .(p")— (p) —j t -( (p"))~+( (p")) L (p")— (p')+ ' j

The integral in the second half of (2.10) is transformed by using the algebraic relations

1 (1 lid' 1

~ qi t-J Et-—t+)
2es phrs'&

l

' 8(~s(p"))—~s(p"'))dp"'
(2s.)s E q' )"

f4ne''t
I&( .(p"))(q)

t -(~s(p"))—~+(~s(p"))=—

' A. Klein and B. McCorrnick, Phys. Rev. 98, 1428 (1955).

1
t

1

(p")—,(p) —s jE,(p")—,(p')+f ),(p")— (p)+'f (P")—.(p')+s I E (P)—.(p')+s 3
(2.11)

(2.12)
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writing
1

dp"= &(~s(p"))d~s(p"),
(2~)»

where the cps(p") are arranged in monotonic sequence, we have for the integral in (2.10) upon using (2.11) and
(2.12),

1 1
~s( ")

2zi E(o,(P) r0—,(P')+is) ~ e+(~-.(P")) v-(~.(P"))- ~.(P")-~.(P)-se

COg 07q GO@ 4)g Z6 COq GOq

Changing variable to g=~,'(P"), (2.13) becomes

1 f'1i t df 1 1

(gt) -g —'( )— (2.14)

The speciied contour is shown by the solid lines in I ig. 1.
%e must now consider the singularities of y. Define g as the value of p obtained from taking the principal-

value parts of q+, i.e., g =Req~, and let ~~ be the root de6ned by

~(~s) =o. (2.15)

Equation (2.15) is the dispersion relation of Bohm and Pines for the plasma frequency. For q
—+0, the solution

of (2.15) is co,=ra, ~= (4rne'/m)&.
Now two cases arise:

(a) ~, is in the continuum, i.e., co, & (1/2m) (2PFq+q ),
(b) cos is out of the continuum, i.e., Fu,) (1/2m) (2psq+q ).

If one has case (a), then lim, sy(cos&ie) &0 and the point t =&os will not have pole-like behavior (the point
F in Fig. 1).The deformation indicated by the dotted lines in Fig. 1 is then permitted and one picks up the two
poles I' and P' as indicated. The result is that (2.14) exactly cancels the first part of (2.10).

If one has case (b), then 11m, s p{roz&ie) =0 and the point 1 =Fu, is a pole. In this case a convenient deformation
is given by the dashed lines in Fig. 1 around pole X. The remaining poles cancel the first part of (2.10), leaving
a residue from X. The 6nal result is that

Case (a):

Case (b):
UU+=1,

1
UU+= U+U=1, co, & (2pr q+q').'

2m

(U+U)ss =
4s.e' ( 2cvs p 1 1

q' &~'(~s) & -~s' —~s'(p) ~s' —~'(p')-

1
+~(P—P') ~.& (2P~q+q')'

2m

(2.16)

The only remaining question is to find the coordinate which, when added. to the set ri, (P), will complete it.
This is the plasma mode for g (q, , where q, is defined by

1
~smax= Pps'qmax+qmax j.

2m
(2.1/)

These modes are given by
4rre'/q' '* t' 1

, I

y ((os) E (27r)*) 0 @&pe
lu+al &P»

ds'(p) &-.(—p)

-~s—~s(p) ~s+~s(p)-
(2.18)

(Notice that as q
—4, ps~os. ) With the addition of es, it is readily verified that the ris(y) set is completed. This

completes the proof. The calculation of the energy is given in reference 1.
The fact that the inequality ( p+q( )pz that arises in (2.15) (see (2.6)g drops by symmetry was pointed out by P. Nozieres.

This insures that (2.15) is the dispersion relation of Bohm and Pines.


