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The contribution from zero-point plasma oscillations to the correlation energy of an electron gas at high
density is considered, using the exact high-density theory of Gell-Mann and Brueckner and of Sawada,
The plasmon energy is determined as a function of q by an eigenvalue equation identical with the dispersion
relation of Bohm and Pines. The plasma solutions are stable only below the energy-momentum values at
which they merge with the continuum spectrum arising from particle excitation, thus introducing a natural
cutoff into the theory. At high density, however, it is shown that this cutoff can be allowed to become
inFinite without affecting the correlation energy.

The contribution from the plasma energy is exactly re-expressed in terms of the contribution from the
scattering states by making use of the analytic properties of the scattering amplitudes. This transformation
also establishes the connection between the Gell-Mann-Brueckner and Sawada results.

Some remarks are finally made on the relation between these results and those of Bohm and Pines.

L INTRODUCTION

'N two previous papers" the exact correlation energy
' - of an electron gas has been determined at high
density. This was done first by Gell-Mann and
Brueckner' who showed by examination of the structure
of the perturbation series that the infrared divergence
appearing in this series could be removed by formal
summation of the most divergent terms of the series,
the summed series then giving correctly the screening
of the long range Coulomb interaction. In its original
form this theory did not exhibit explicitly the well-
known features of the collective or plasma degrees of
freedom of the electron gas. This led to some questions
concerning the contribution from the excited bound
states (plasma oscillations) to the correlation energy
since this might be overlooked in the perturbation
theoretic approach.

Following this work, one of us (K. Sawada)' showed
that the selective series summation of G-B was equiva-
lent to the solution for the eigenvalues of a reduced
form of the Coulomb Hamiltonian. It was further noted

that the identity in structure of this reduced Hamil-
tonian to that of scalar-pair meson theory made it
possible to diagonalize the Hamiltonian directly fol-
lowing closely the methods used by WentzeP in his
solution of the pair theory. The significance of the
plasma solutions in Sawada's result was later pointed
out by one of us (R. Brout); the discussion of the plasma
properties forms the principal content of this paper.

In Sec. II, the eigenvalues and eigenfunctions of the
reduced Hamiltonian corresponding to plasma oscil-
lations are obtained and their contributions to the cor-
relation energy is di.scussed. The high-momentum cuto6
of the plasma degrees of freedom is naturally derived
from the theory. In Sec. III the correspondence between
the present results and those obtained in G-B is demon-
strated directly by making use of the Wentzel trans-
formation. It is shown at the same time that the reason
that the perturbation theoretic approach of G-B
includes the contribution from the excited bound states
(plasma oscillations) is due to the analytic behavior of
the scattering amplitudes. In Sec. IV some comments are
made on the Bohm-Pines theory of plasma oscillation.

* On leave of absence from the Tokyo University of Education.' K. Sawada, Phys. Rev. 106, 372 (1957), hereafter referred to
as (I).

2 M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957), hereafter referred to as G-B.

s G. Wentzel, Helv. Phys. Acta 15, 111 (1942).
4 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953);D. Pines,

in Sobd State Physics (Academic Press, Inc. , New York, 1955),
Vol. 1, p. 367, hereafter referred to as B-P.
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II. PLASMA SOLUTIONS AND PLASMA
ZERO POINT ENERGY

The reduced Hamiltonian considered by Sawada is

where
H=Hp+H. ,

&p =+p(pa'/2m) ((is*~i,—4'4), (2)

2mk'e'
Z(~~.*fp*+b~.~p)

e Qq' u

xZ(~'-.*f''+f p -.~') (3)
pl

&&~sr(p J'f.j-= Z((ip+p*4'+bp+, a;) (4b)
Qq~

The terms discarded in reducing the original Hamil-
tonian and commutation rules to these forms, except
certain obviously negligible terms, are those where the
interactions corresponding to different momentum
transfers are involved. These terms give a contribution
which has been shown to vanish in the high-density
limit (except the second order exchange energy defined
as e(pl('l in G-B and I) compared to the leading terms
retained. It is interesting to note that the so-called
"random phase approximation" of Bohm and Pines is
very similar to the approximations made in obtaining
Eqs. (3) and (4) and is exact in the high-density region.

To proceed, we next consider the eigenvalue equation
for the excitations. This is directly obtained by an
application of the commutation rules of Eq. (4), as
derived in (I). The result is

Zn
~g lul &P». I@+a) &PJ Jul &&~, lu+ai &P~

X . (3)
g—gp+g (pi —Q + (p)

Writing E—So=fur and making the transformation
y+q~ —y in the second term, we have~

(y q/m)+ (q'/2m)
(6)

Qqs ~pl &p», ~p+p~ &p» (M)' (y q/m—+q'/2m)'

Sxk'e'

This eigenvalue equation has two types of solutions;

' By a simple transformation this can also be rewritten as

4xpph'

m p, tpl&p» (Aa& —q p/ns)' —(q'/2™)'
similar to the B-P dispersion formula, except that p's are
g numbers here instead of operators.

The approximations involved in obtaining this form
are discussed in detail in I. A similar approximation is
involved in the commutation rules, which are

4m b'e'
L&~p*f p*& j = -—Z(&p+p*4*+4+pap) (4a)

0 s'
ar, pp(2m)p (qs qp (qpp~s

I+(I )'
4ir q' (2m) ( m )

lL(q/2 )+(qp, / )j -(~)
)&In

l L (q'/2m) —(qp »/m) g' —(hey)'

q' (q'/2m)' —Pup+qp»/m)'
+2 kor ln

2m (q'/2m)' (h(d——qp»/m)' l

where
a= (4/9p)1.

-4, (g)2m' '

It is easy to obtain from this equation the values of

q, and (ppi(q, „) at which the plasma solutions cross
over into the continuum; this occurs at k(ppi(q, „)
= (q,„'/2m)+(q p»/m), which gives'

qmax ars ( qrnax) ( p»
I 2+ I»I i+2

I

—2 (9)
p, ~ & p ) & q...)

For momenta above this value, the plasma solutions
are unstable and quickly transfer their energy into
particle excitation. Such strongly-damped solutions do
not contribute to the high density energy. Conse-
quently, a characteristic high-momentum cuto6 for the
plasma oscillations appears in the theory.

We next consider the properties of the plasma solu-
tions and their contributions to the energy. The first
result of interest is the explicit form of the wave function
for a plasma oscillation or "plasmon" of momentum q
and energy )s(p»(q); this is

+~a*&n*
q'pi(q) =&p 2

Ppp i(q) jv~ (o)+Q (o)

b u

I »(q) &~p"'+&p—"'
6 This equation has been independently derived by R. Ferrell,

Bull Am. Phys. Soc. Ser. Il, 2, 146 (1957).

the simplest are those for which the eigenvalues lie in
the continuum of solutions for which

~=(y q/m)+(q'/2m); I y I &pr, I y+ql &p» (7)

These correspond to the energies of free pair excitation
and may be called scattering solutions. These scattering
solutions are given explicitly in I.They are of a standard
form, i.e., an incoming wave together with a scattered
wave. The continuum of solutions resulting from pair
excitations terminates at the maximum value of energy
possible, which for a given value of q is h(p = (pzq/m)
+ (q'/2m). Another type of solution lies above this con-
tinuum; this solution is of the plasma type, as we show
in more detail below.

Integration of Eq. (6) gives the relationship between
the plasma frequency (p»(q) and r, as follows:
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where S, is the normalization constant determined in
the Appendix. This form of the plasmon wave function
exhibits the simplicity of the particle excitations which
give rise to the plasma oscillations, these being simply
pair excitations with a 6xed momentum transfer,
summed with proper phase relations.

The contribution of the plasma zero-point oscillations
to the correlation energy is now easily obtained using a
method similar to that used in I in obtaining the scat-
tering-states contribution.

The details are given in the appendix. The result is

0.2

I

1
q pp/mh susg

= s ZP .i(q) —h .~(q)("-e)j (11)

Fro. 2. Variation of the integrand of Eq. (15) determining the
plasma energy. The function shown as a solid curve is the high-
density limit of (Lka&»(q) —qpp/erg/Ace. ~) (qpp/mls, ~)'. Also
shown are approximate curves giving the above function at the
indicated values of r,.

where x= qpp/mtue, & and
Thus the correlation energy arising from the plasma
oscillation is given as the difference between the zero-
point energy of this oscillation and the value this
energy approaches as the coupling is switched off.~ This
value is simply

1 1+x
f(x) = ln --2.

g 1—g
(14)

The plasma energy then is, summing over all momentum
transfer q up to q, ,

1 4n.O
E,) ——— q'dq/ha), &(q)

—(qp p/m) j. (15)
2 (2xh)s ~e

h(o»(q), ~ s——(q'/2m)+ (qpp/m),

which is the upper limit of the continuum of pair
excitation energy (at given q). One consequence of the
appearance of this difference of energies is that in the
high density limit the plasma cutoG q,„can be allowed
to become in6nite without affecting the contribution
from the plasma energy, since the plasma energy
Iud»(q) lies very close to the continuum limit for large

q and small r, . This is shown in Fig. 1.
We make use of this result to obtain explicitly the

plasma energy in the high density limit. In this limit
the dispersion relation t Eq. (8)) becomes, neglectin
everywhere q/pp compared to unity,

To show precisely from what values of q the plasma
energy arises, we give the integrand of Eq. (15) in
Fig. 2, measuring the plasma energy in units of the
classical plasma frequency

1 (4crr, pp') &

ru, t
——lima, g(q) =—

~

—
~

= (4rrpe'/m)&, (16)
h& 3~ m'J

2nr, pp'
1= f(x),

g
and the momentum in units of maud, ~/pp. Figure 2

shows that the contribution comes largely from
(qpp/mt', &) of the order of or larger than unity, which
corresponds to

(q/pp) &~ L(4/3s)nr, j&=0.470r;:. (17)

It is interesting to notice that the correlation energy
at high density arising from the plasma oscillations
comes mainly from value of (q/pp) much larger than
the limit obtained by Sohm and Pines, 4 which is

(q,„/p p) =0.353r,&. (18)

We return to a discussion of this discrepancy in more
detail in a later section.

Now returning to Eq. (15), we use the relation
Co i

Qp lllltl4lei,

(19)(2qdq/P ps) = (2o.r, /vr) f'(x) dx,
FzG. i. Variation of plasma energy with momentum at very

high density. Also shown are the cutoff momenta at the indicated and get
values of r,.

4+0 f'ar, r 1 x bg'2nr,7 In B-P, on the other hand, not the difference but the zero
point energy alone appears exp'licitly in the result. Our result is +p&= f'(x)

)&

=1
&[

f(x)dx (20)
~ops natural, as also seen in reference 3.
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eo) =Eo)/(onesN/2h') f(ro +is) =

In the conventional notation, we measure the energy where
in Rydbergs and express it per particle; the result is

7rk'e' 1 1

, Zl . + . l, (26)
Qq o' (roti &do 2e Goo'+(do+le]

3 t' ]. 3 r' f(x) '
f(x)f'(x) ——1 dx= ~' dx. (21)

.s 2x p - s
II I&P~, 11+el&P~ (27)

(22)

which, when combined with the scattering contribution 4xkV
Imf(ro„+is) =or (28)Z ~(~o—~o),

Qq2 u'(23)e„=—0.229+0.0622 lnr„

gives as the total correlation energy

e,.„=—0.096+0.0622 Inr, .

This agrees with the result given in G-B.)

the 2nd term of Eq. (25) which is denoted by J is

(24) transformed into

~

der Imf(&u„+ie) )
—1

(

2ore' J ( 1+f(oo„+t',e)III. USE OF THE WENTZEL TRANSFORMATION

This integral cannot be evaluated analytically but
We have added for the sake of convenience +se in the
second denominator of f.

cp)
——0.133, Making use of the identity'

The correspondence between the results of the last
section and those obtained by G-B can be demonstrated
directly by using a transformation introduced by
Wentzel in his treatment of the scalar pair theory. The
total correlation energy (neglecting second order
exchange) corresponding to a momentum transfer q is
now given by (see appendix)

1
t ( f(oo,+is)

Im d(a„~ f(&o,+—ie) ~. (29)
2ore' & &1+f(coo+is) J

The integral over m„runs from zero up to the upper
bound of the continuous spectrum given by Eq. (7).
Ke can write the above expression as the contour
integral along Ci shown in Fig. 3:

BE„„(q) 1 Bazoo, i(q) 2trh'
+

Og2 u, lr I &P~, la+el &P»

& f()
f~&) I—

4ore'i "ct &1+f(s)
(30)

X~ —1
~

(23) Now, using the analytic property of f(s), it is easily
& (1+f(roo+ie) (' ) shown, that

„cg
+ =

~

+Residue at fs=tuv i(q)$, (31)
. C2 03 C2

FIG. 3. Contours for analytic continuation. C1 and CI circle
around the continuum and the plasma energy, respectively. C2
runs along the imaginary axis from —i~ to +i~.

1 into&e added in proof. The integral in Eq. (21—) has been
evaluated by Professor Lars Onsager, who obtains the result for
the plasina energy (in Rydbergs)

=1 2=
e i=-——=0.13069i.

3
Re-evaluation of the scattering contribution, which must be done
by numerical integration, gives e„=—0.227+0.0622 Inr, so that
the correlation energy is unchanged. We are indebted to Professor
Onsager for informing us of his result.

= —2m$

(B/Bs)f(s) =s-. «l

Btua„i(q)=—2a.ies, (32)
882

where use is made of Eq. (A-18) in the appendix and

8 The scattering amplitude, or the T matrix introduced in I,
LEq. (A-3) in Ig, is given by

4m.A'e
To +so,o+so — $1+f(s'o +io)g——

P SP iP SP gag

Then the unitarity condition for the S matrix given in terms of
this T matrix

Irn2 o+soo+so =or ~o'I I o'+so', o+so I S(~&

is essentially identical with the identity, Eq. (28).

where the contour C2 runs along the imaginary s axis
from i~ to +ion. The re—sidue at h~o~(q) is

f(&)
Res =2xi lim f(s) L&

——&~.~(q)j
s~sup&{q) 1+f(z)
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the eigenvalue equation

f( .)+1=0
Then, we get

pl+carr (q) t' f()
~sl —f(s) I.

43re'i & os &1+f(s)

Putting z=ie and integrating over e', we find

ao r (E„„=P—' de inI 1+
3 4

3rhses pp„z
Qq n tp& +'v )

Sxk'e' o)~

Qqs 3 ps~3+vs
(34)

Now, to compare this result with that given by G-B,
we make the change in variable

pr (pp 1
o= 2u

I

= Rydbergs
Pr 2m E 2rr3 nsrP

(35)

and then use the function Q, (u) defined in G-8 (Eq.
18). We 6nd

Sxk'e' o)„nr,
Q, (u),

Qq' v o)„3+vs 3r q'
(36)

in dimensionless unit. In this unit P, is equal to
(3/Str)N J'dq, N being the number of electrons. Hence
the correlation energy per electron becomes

+carr 3 t t' f nrs
e„~= =— q'dq inI 1+ Qp(u) I

43r &p & E 3r'qs )
Qr 1

Q, (u) du Rydbergs, (37)
cx r

showed the soundness of the underlying physical
concepts of the theory, it seems to us that the accurate
quantitative aspects of the theory have been still
somewhat in question. The uncertainties of the B-P
results arose from certain approximations essential- to
their procedure, namely

(a) the random phase approximation,
(b) the perturbation theoretic treatment of the elec-

tron-plasma coupling,
(c) the determination of the cutoff momentum for

the plasma oscillations,
(d) the neglect of the subsidiary conditions on the

wave function.

We shall discuss these approximations and attempt to
cast some light on their validity, making use of the
results of the exact high-density theory given by the
techniques of this and earlier papers.

The 6rst approximation essential to the B-P theory
is the random phase approximation which neglects the
coupling between the excitations corresponding to dif-
ferent momentum transfers q and q'. As we have seen in
our theory, this approximation is ir3 fact exact in the
high-density limit and is the or3ly approximatiors
required to obtain an exact high density result.

The validity of the perturbation treatment of the
electron-plasma coupling is most readily examined by
actually considering the structure of the B-P results in
comparison with ours. Our result (taken in the G-8
form), "disregarding et'�"' and 5 which are independent
of r„ is

3 t' I" 4nr,
e,.„=— qsdq R(u)

4 ~0 ~ -~q'

4nr, q 1
-inI 1+ R(u) I

du Rydbergs. (38)
~qs i n'r '

0.866
ps

0.458 0.019
p'+ p' ry,&L.R.

which gives just the same expression as obtained by The B-P result is separated into two parts, that arising

G-l3 as a series t Eq. (1.9) in G-l3j. This shows that the
result obtained by G-B includes automatically the
eGect of bound states or plasma oscillations.

IV. COMPARISON WITH THE BOHM-PINES THEORY

The theory of Bohm and Pines has in the past been
the only theory of the electron gas which has attempted
to determine both the correlation energy and the col-
lective properties of the system. As for the first point
the B-P theory was quite successful since the correlation
energy obtained agreed approximately with that
obtained earlier by Wigner' and also with experiment.
The plasma properties predicted also were highly
reasonable since they were closely connected with the
classical behavior of an ionized medium and experi-
mentally conhrmed. In spite of these successes which

' E. P. Wigner, Phys. Rev. 46, 1002 (1934).

re
(39)

0.708 ( 3 ) 0.517 0.058
~eL.R.= O'I 1+ O'

I

— P—' P'ry. —
10 )

and that given in second order perturbation theory
applied to the screened Coulomb interaction" (q/pr~&p),

es.R.= —(0.0254—0.0626 lnP+0. 00637P') ry. (40)

In the exact theory the sum eL R +DE'L.R.+ps.R. should
be independent of P. This is not only manifestly not so

"Here 4vR(N) is the value of Q3(u) at q=0 and is given by

R(N) =1—I tan '(1/I).
"The parallel spin correlation energies are omitted. See G-B,

footnote 4.
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for the B-P result, but also the polynomial expansion
of pL. R. in powers of p is incompatible with the ap-
pearance of the term lnp in os a.. In fact, the appearance
of this term shows that a polynomial expansion for the
long range part of the G-B-S energy, cutting off the
integral at q=p is not possible as is obvious from Eq.
(38) since a direct expansion in powers of p' diverges
at the term p4.

The problems encountered above in the power series
expansion in terms of p also cast some doubt on the 8-P
determination of the cut-oG momentum q,„=ppr. This
is evaluated by them by minimizing the energy given
by part of their transformed Hamiltonian t pL.R. of Eq.
(39)), assuming all the remaining terms dependent on

P to be neglected. This procedure seems to us for
several reasons to be only a semiquantitative procedure.
First, since the actual correlation energy is independent
of p, it is not possible to decouple a snzatl part of the
Hamiltonian giving a p-dependent energy and to
minimize it with respect to p, neglecting the variation
of the remaining larger terms. This criticism is equiva-
lent to the statement that it is not possible to decouple
the various terms in the Hamiltonian in such a way as
to treat the p variation of oL.R. separately from that of
much larger terms in d6L.R. and fs.R.. Even if such a
decoupling could be qualitatively justi6ed by physical
rather than mathematical argument, the value of P so
determined can give at best only a rough approximation
to the actual magnitude of AeL.R. and 6s.~..

The actual value of the cutoff obtained by B-P,
P=0.353r,&, is considerably below the point at which
the plasma solutions start to merge with the pair ex-
citation continuum, which occurs for values of q/pr
larger than p=0.470r, &, particularly at high density.
Consequently an important part of the plasma oscil-
lations (important since the contribution to the energy
varies roughly as p') is omitted if the 8-P cutoff is used.
It is to be emphasized that the plasma solutions lying
above the low B-P cutoff have a perfectly real physical
meaning since the plasma can in fact oscillate stably for
these frequencies, particularly at high density.

We 6nally wish to comment brieQy on the question
of the B-P neglect of the subsidiary condition. We
believe, although we have not been able to prove this
in detail, that the B-P subsidiary condition is equivalent
to our de6nition of the ground state of the system. As
shown in the Appendix, the ground state can be de6ned
as that state in which no plasmons are present, i.e., it
satisfies the condition

~s &u+e
+ %p ——0, (42)

&~p~(q) &~o—"'+~0"'

which is reminiscent of the B-P subsidiary condition

We wish here to emphasize that our condition stated in
Eq. (41) or Eq. (42) is exactly satisfied at high density
where our solution is exact; the B-P subsidiary condi-
tion will therefore also be exactly satis6ed at high
density by our ground-state wave function. The actual
techniques used by B-P in obtaining their solution lead
to some violation of the subsidiary condition, but almost
certainly, as B-P emphasized, no serious error arises
from this aspect of their approximations.

In conclusion we would like to say that the differences
between our results and those of B-P are only in tech-
niques and mathematical detail and that the latter
theory, although it seems to be only semiquantitative
in nature, provides an excellent physical insight into the
properties of the electron gas.
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APPENDIX A: CORRELATION ENERGY ARISING
FROM PLASMA OSCILLATION

We 6rst determine the plasma wave function. Since
this is a one-pair state as discussed in Sec. II of I, it
must have the form

%,&(q) =A,*%p, (A-1)
where

A,*=+„(n„a~,*b„*+P„b~,a„). (A-2)

The constants n„naPd„must be chosen so that 0'oq(q)
is a properly normalized eigenfunction of the Hamil-
tonian, i.e.,

(Ho+H, )+, (q) =LE +Puu, (q))@, (q), (A-3)
where

4=0
~ co' —

I (lr p;/m) —(hk'/2m) j'
k(kc (k=q/k). (43)

A+p=0,

where A is the annihilation operator for plasmon
def'ned by Eq. (A-10) and 4'p is the exact ground-state
wave function. Written explicit1y in terms of the par-
ticle creation and annihilation operators, this condition

1S

(Ho+H. )+o=&o+o

This can also be written as an operator equation

t (Hp+H, ), A*i =fuooiA*.

Once this is satis6ed it then follows that

L(Hp+H, ), A) =—k(ooyA,

(A-4)

(A-5)

(A-6)
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so that

(Hp+H, )Aqro (E——o
—ho) pi) A+s.

To obtain the expansion coeKcient Cpi(q), we take
the scalar product of Eq. (A-13) with 4'»(q), obtaining

Since %0 is the state of lowest energy, this equation can
be satisfied only if

A% 0=0. (A-8)

This condition allows us to fix the normalization since

(~,i,~,i) = (q „AA*es)= (e„P,A*) ee)
=P (((r [s—(Pp[s)=1. (A-9)

I'he coeKcients np and Pp may now be determined by
making use of the commutation rules given in Eq. (4);
the result is that

(-" i(q) = (P i(q), P (a~.*b,'+b~,a„)Po). (A-13)

Using Eqs. (A-1), (A-3), and (A-8), this becomes

C.i(q) = (+s, LA, Z.(a~,*b,*+b~.a.)j-q'e)
n O'n u ~

Using Eqs. (A-9) and (A-10) for (spa nd Pp, this is

(:»(q)=&.( E. — Z. )
I ~I &» Iul »~

I v+a I &» I v+e I &»

1 (4)rhse )x =( ( x„(A-16)
ho)pi(q) —E~,(')+Ep(') ( Qq' )

0,'y = )&const
ho)pi E~,(')—+E„(')

for [p~ &pp, [p+q~) pp,

y &const.
(s)+E (s)

for [p()esp, [p+q[ &ps.

Combining this result with Eq. (A-9), we find

(A-10)

where we have used the dispersion formula to eliminate
the sum over p. To bring this to final form, we differen-
tiate the dispersion relation with respect to e', which
gives

4m.k'e'

, ( Zp — Zp )
Qg~ lpl &» Ipf &»

Iu+aI &» la+el &»

8AGOp]

X +, (A-17)
(ho) E(')+E—('))' Be'

'ppi(q) =&s Z
p ho) i—E~ (s)+E (s)

@(), (A-11)
(e)+E (s)

i.e., from (A-12),

Thus we find

(4~h'e') Bho), i(q)

( Qq' ) Be'
(A-18)

where

fl&. l') '=(
lpl &»

Iu+ql &» I ul &p~
I 0+el &»

(4)rh'e') *

( Bho), i(q) ) '
(=.i(q) =

/ ) (
e' [, (A-19)

(Qqs) & Be' )'
so that Eq. (A-14) can be written as the simple result

X (A-12)
(ho) i(q) E~ (s)+E„(e))s

Bho)pi(q)BEpi 1

Be2 2 e Be
(A-20)

We now determine the plasma energy. Since the
eigenvalue equation has a bound-state plasma solution,
Eq. (9) in I should be modified to become

Pp(a~, *bp*+b~,ap) =scattering solutions

+C,i(q)%', I(q), (A-13)

where %pi(q) is the normalized plasma solution given
above. The plasma contribution to the energy then is

which is the desired answer.
Finally it is interesting to note that the plasma

energy is expressed in terms of the contributions from
the scattering states alone. To this end, we make use of
the Chew-Low-WickI2 equation for the T matrix intro-
duced in Eq. (A-3) of I, from which a term arising from
the bound state (plasma state) is separated. It turns
out that this equation becomes a diGerential equation
[by means of (A-19)$ to determine the plasma energy
in terms of the scattering amplitudes, which has the

aEpi 2m h2e' 1
2 —IC„(q) ls.

Be' Q s q

(A-14) ' ~s G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956);
G. C. Wick, Revs. Modern Phys. 27, 339 (1955).
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solution

[ (qpp q' )' p" 2mb'
+ I +4~i~, E.

E m 2m) ~0 Qq' (p( &e~
I a+el &pF

1
XI1—

/1+ f(cop+Ze) f')

We thus can rearrange Eq. (B-1) into the form

2%hV 27IA 8

, +2 2, F,(p)
u&nJ' q Qg u&uF q Qg"

27/A 8Z, Fa(p)+E~'" (B-4)
p &ps' q Qg

la+el &pF

27lh 8
LF.(p) —11

p &ps q Qg
l p+cl &»

(B-3)

and E» is the plasma energy. In the perturbation limit,
E„ is simply the (divergent) second order interaction
energy. For small q the nonperturbation function F,(p)
varies as q' and hence the low-momentum transfers in
the scattering are screened out. Thus, in some sense,
Kq. (B-3) represents a screened Coulomb interac-
tion term.

To make the correspondence with 8-P more apparent,
we arrange the terms in (B-1) in a different fashion.
First, we note that the 6rst term in E,„and the second
term of E„combine. We next make the replacement in
the sum of the first, term of Kq. (B-3):

p &ps q
lu+al &pF

u&uS q p &pF
iu+q. l &»

which f defined in (26).

APPENDIX 8
In order to exhibit the formal correspondence of our

calculation with that of B-P, we may write our result as

E=E +E (+E (B-1)
where E, is the exchange energy given by

27[k 8

, +E "'. (B-2)
p &pz q Qg

lu+el &PF

E„as given in I, Eq. (19), is of the form

As it stands, the second and third terms in Eq. (B-4)
each diverge at large q. However, the sum converges
since F,(p)-+1 for large q. On the other hand, the two
terms behave differently for small q, the 1/q' behavior
in the third term being cut oG at small q. This suggests
that the high-q part of the second term be separated
and combined with the third. It also is convenient to
choose the point of separation, which we denote as
q,„, to approximate as well as possible to the natural
cutoff in F,(p). We thus are led to the final ordering:

2' AV

p &pE' q &qmax Qg

271 hV

, F.(p)
p &pz q Qq2

le+el &»

2' PP8

+ Z Z- F(p).u&uz q Qg

+E~"'. (B-3)
P &PF q &qmax Qg

These terms are now in complete correspondence with
the structure of the B-P result. The first bracketed
terms correspond to the plasma energy of B-P, the
second to the screened Coulomb exchange energy, and
the third to Pines' screened short-range correlation
energy.


